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ABSTRACT

Hodgkin Lymphoma (HL) is a tumor of B-cell origin characterized by Hodgkin and 
Reed-Stenberg (H/RS) cells embedded in an inflammatory tissue where numerous 
cytokines/chemokines contribute to shape the microenvironment, leading to the 
typical clinical symptoms.

We investigated: i) the expression of Interleukin-IL-31 (IL-31) and Thymic 
Stromal Lymphopoietin (TSLP), two Th2-related cytokines with tumor-promoting and 
pruritogenic functions, and of the respective receptors in HL invaded lymph nodes by 
flow cytometry, and ii) the potential association of IL-31/TSLP plasma concentrations 
with clinical characteristics by ELISA.

H/RS cells and the major immune cell types infiltrating HL lymph nodes expressed 
intracytoplasmic and surface IL-31/TSLP, and their receptors. A subgroup of patients 
showing at diagnosis elevated IL-31 and TSLP plasma levels had an International 
Prognostic Score>2, indicative of high risk of relapse, and a subsequent positive 
interim PET-scan, indicative of insufficient response to chemotherapy. No correlation 
was found between IL-31/TSLP plasma levels and overall or event-free survival.

In conclusion, IL-31/TSLP and their receptors are expressed in HL cells and in 
immune cells infiltrating affected lymph nodes, where both cytokines may contribute 
to local immune suppression. The clinical impact of IL-31 and TSLP plasma levels has 
to be further defined in larger patient cohorts.
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INTRODUCTION

Hodgkin Lymphoma (HL) is a B cell-derived 
malignancy characterized by low proportions of neoplastic 
mono-nucleated Hodgkin and multi-nucleated Reed-
Stenberg (H/RS) cells in the invaded lymph nodes. 
HL is subdivided into classical (c) form, occurring in 
approximately 95% of cases, and nodular lymphocyte 
predominant (NLP) form (4-5% of cases), considered 
a different disease [1]. H/RS cells are embedded in a 
reactive microenvironment including CD4 T cells, B cells, 
macrophages, dendritic cells, eosinophils, fibroblasts, 
and basophils/mast cells [2]. This inflammatory 
microenvironment provides essential signals for H/RS cell 
survival [2, 3].

Although originating from germinal center (GC) 
or post-GC B cells [4], H/RS cells are characterized by 
down-regulation of B-cell markers and expression of 
CD15 and CD30 [5, 6]. Only a small proportion of HL 
(1-2%) originates from T cells [7].

Four histological subtypes of cHL have been 
identified based on HRS morphology and microenvironment 
composition: nodular sclerosis (80%), mixed cellularity 
(15%), lymphocyte rich and lymphocyte depleted [1].

The neoplastic tissue in Hodgkin lymphoma 
produces a wide spectrum of cytokines and chemokines 
that contribute to shape the microenvironment and lead 
to the typical clinical symptoms, as fever, night sweats, 
weight loss or pruritus.

Interleukin-31 (IL-31) is a cytokine related to the 
IL-6 family secreted by activated Th2 cells, monocytes, 
macrophages, dendritic cells and mast cells [8–10]. 
It signals through a heterodimeric receptor complex 
composed of the IL-31 Receptor Alpha (IL-31RA) and 
the Oncostatin M Receptor (OSMR) subunits [11–13]. 
Engagement of the IL-31R with IL-31 results in the 
activation of JAK1 and, to a minor extent, of JAK2 
followed by activation of STAT1/3/5, MAPK, and PI3K 
signaling pathways [13–15]. It has been shown that IL-
31 serum levels are increased in patients with cutaneous 
T cell lymphoma [16] and, more recently, our group has 
demonstrated that the IL-31/IL-31R axis promotes tumor 
growth in Follicular B cell lymphoma [16, 17].

Thymic Stromal Lymphopoietin (TSLP) is 
expressed by epithelial cells in the thymus, lung, intestine, 
skin, gut, and tonsil as well as by stromal cells and mast 
cells [18]. The high affinity TSLP receptor complex 
is composed of the IL-7R alpha chain/CD127 and the 
TSLP-specific Receptor component, TSLPR/Crlf2 [19]. 
The heterodimeric TSLP receptor activates, in addition to 
STAT5, STAT1/3, STAT4, and STAT6, as well as JAK1 
and JAK2 [20]. The TSLP/TSLPR axis has been shown 
to promote tumor cell survival in both solid tumors and 
leukemia [21].

The involvement of IL-31 and TSLP as mediators 
of chronic pruritus in the pathogenesis of various 

skin diseases is clearly established [22–26]. Pruritus 
is observed in about 30% of patients with Hodgkin's 
lymphoma, more often in the nodular sclerosis type with 
mediastinal mass [27]. No information is available on 
the relationship among IL-31, TSLP and pruritus in HL 
patients. This latter issue has been here investigated by 
testing plasma levels of both cytokines and correlating 
them to pruritus and other clinical characteristics. In 
addition, we have investigated the expression of IL-31, 
TSLP and their receptors in invaded lymph nodes from 
HL patients in view of the tumor promoting role of these 
cytokines and the complete lack of information on this 
latter issue.

RESULTS

Expression of IL-31 and TSLP and the  
respective receptors in Hodgkin/Reed Sternberg 
cells and lymphoid cells populating the tumor 
microenvironment

We have previously demonstrated that IL-31 is 
expressed on the surface membrane and in the cytoplasm 
of normal and Follicular Lymphoma B cells [17]. We 
therefore investigated by flow cytometry the surface 
and intracellular expression of both IL-31 and TSLP 
in lymph node biopsies from 10 HL patients. Cell 
suspensions isolated from invaded lymph nodes were 
multicolor stained with anti-CD30, -CD15, -CD45 mAbs 
in combination with the anti-IL-31 or -TSLP mAbs, and 
analyzed by flow cytometry after gating first on CD45- 
cells, and then on CD30+, CD15+ H/RS cells (Figure 1A, 
left panel) [28].

In HL lymph nodes, H/RS cells, that ranged from 
1 to 7%, median 3.4%, were found to express IL-31 and 
TSLP both at the cell surface (median MRFI IL-31= 11, 
range 7.2-37, n=10; median MRFI TSLP=12, range 2.0-
23, n=8) (Figure 1A, right panel, first and third boxes, 
respectively, from the left) and intracellularly (median 
MRFI IL-31=7.5, range 6.6-8.6, n=6; median MRFI 
TSLP=15, range 3.2-44, n=6) (Figure 1A, right panel, 
second and fourth boxes, respectively, from the left).

To confirm the specificity of IL-31 and TSLP 
surface staining on H/RS cells, lymph node MNC cell 
suspensions were incubated in a solution at pH 2.5 for 
10 minutes to elute surface-bound cytokines, washed 
and stained as above. Treatment at acidic pH causes 
detachment of soluble molecules non specifically adsorbed 
on the cell surface from the extracellular milieu, whereas 
it has no effect on endogenous surface molecules [29]. IL-
31 and TSLP expression on the surface of H/RS cells was 
unaffected by treatment at acidic pH (not shown).

In situ hybridization with the RNAscope technology 
on paraffin sections from three HL lymph nodes using 
probes for IL-31 and TSLP showed clear punctate staining 
for both cytokines in cells with the morphology of H/RS 
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cells. (Figure 1B-1F). Ubiquitin mRNA, tested as positive 
control, was diffusely expressed (brown dots), whereas the 
bacterial dapB, tested as negative control, was completely 
negative. The CD30 probe hybridized with a proportion of 
the cells with H/RS morphology (circle and inset). Both 
IL-31 and TSLP mRNAs were detected in the cytoplasm 

of H/RS cells (Figure 1E and 1F, insets) and in some of 
the immune reactive cells present in the background. In 
H/RS cells a high number of IL-31-positive dots/cell were 
evident (Figure 1E).

To investigate the expression of IL-31R and TSLPR 
in H/RS cells, cell suspensions from seven HL lymph 

Figure 1: Expression of IL-31, TSLP and their receptors in H/RS cells. (A) Left panel. A representative gating strategy for H/RS 
cells identified as CD45, CD30+, CD15+ cells. Right panel. IL-31/TSLP expression was tested by flow cytometry at surface and intracellular 
levels. Results are expressed in box plot as median MRFI, first and third quartiles, maximum and minimum values, from 10 different HL 
lymph node cell suspensions. (B-F) In situ hybridization for Ubiquitin (B), dapB (C), CD30 (D), IL-31 (E) and TSLP (F) mRNA in cHL 
using the RNAscope technology (B, C, D) original magnification x100; E, F x200; insets x400). Ubiquitin mRNA was diffusely expressed 
(brown dots), whereas the bacterial dapB was completely negative. The CD30 probe hybridized with a proportion of the cells with H/
RS morphology (circle and inset). Both IL-31 and TSLP mRNA were detected in the cytoplasm of H/RS cells (inset) and in some of the 
immune reactive cells present in the background. (G) IL-31RA/OSMR and TSLPR/CD127 chain receptor expression was analyzed by flow 
cytometry. Results are expressed in box plot as median MRFI, first and third quartiles, maximum and minimum values, from 7 different 
HL lymph node cell suspensions.
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nodes were stained with mAbs to IL-31RA, OSMR, 
TSLPR and CD127 and analyzed by flow cytometry 
gating on CD45-, CD30+, CD15+ cells as above. IL-31RA 
and OSMR, as well as TSLPR and CD127, were detected 
on H/RS cell surface (median MRFI IL-31RA=3.0, 
range 2.4-3.5; median MRFI OSMR=3.1, range 2.0-3.7; 
median MRFI TSLPR =1.8, range 1.0-2.3; median MRFI 
CD127=3.2, range 1.8-9.6) (Figure 1G, first to fourth 
boxes from the left, respectively).

Next, we addressed the expression of IL-31/TSLP 
and their receptors in the major cell types infiltrating the 
HL microenvironment. To this end, cell suspensions from 
seven HL lymph nodes and 7 reactive lymph nodes with 
follicular hyperplasia, tested as controls, were stained with 
B cell specific CD19 mAb, T helper cell specific CD4 
mAb, or macrophage specific CD68 mAb, in combination 
with anti-IL-31 or -TSLP mAbs. Median values for CD19+ 

cells, CD4+ cells and CD68+ cells in HL lymph nodes were 
39%, 62%, and 10%, respectively, while median values of 
the same cell populations for reactive lymph nodes were 
39%, 47%, and 10%, respectively.

Consistent with our previous report [17], IL-
31 was detected on the surface and in the intracellular 
compartment of CD19+ B cells from both HL and reactive 
lymph nodes (Figure 2, upper left panel). TSLP was found 
to be expressed in the same B cell suspensions in the 
intracellular compartment, whereas it was absent from the 
cell surface (Figure 2, upper left panel). Expression of IL-
31 in CD4+ T cells was detected intracellularly and on the 
cell surface in both HL and reactive lymph nodes (Figure 
2, middle left panel). TSLP was detected in the same cells 
intracellularly but not at the cell surface (Figure 2, middle 
left panel). Finally, IL-31 and TSLP were detected both at 
the cell surface and intracellularly in CD68+ macrophages 

Figure 2: Expression of IL-31, TSLP and their receptors in lymphoid cells populating HL and reactive lymph node 
microenvironment. Left panels. A representative gating strategy for B cells (CD19+), T cells (CD4+), and macrophages (CD68+). Middle 
panels. IL-31/TSLP expression was analyzed by flow cytometry at surface and intracellular levels on CD19+, CD4+, and CD68+ cells for 
both HL and reactive lymph nodes. Results are shown in box plot as median MRFI, first and third quartiles, maximum and minimum 
values, from 7 different HL and 7 reactive lymph node cell suspensions. Right panels. IL-31RA/OSMR and TSLPR/CD127 chain receptor 
expression was analyzed by flow cytometry on CD19+, CD4+ and CD68+ cells for both HL and reactive lymph nodes. Results are shown 
in box plot as median MRFI, first and third quartiles, maximum and minimum values, from 7 different HL and 7 reactive lymph node cell 
suspensions.
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from HL and reactive lymph nodes (Figure 2, lower 
left panel). Supplementary Table 1 reports in detail the 
median MRFI of IL-31 and TSLP detected in immune cell 
populations from both HL and reactive lymph nodes.

Surface staining for IL-31 and TSLP was 
superimposable in the latter cell fractions following pre-
incubation at acidic pH (not shown). To confirm the flow 
cytometric experiments, we performed q-PCR analysis 
of mRNA in CD19+ B cells, CD4+ T cells and CD68+ 
macrophages isolated from tonsils, as well as in the L-428, 
HDLM-2, KM-H2 HL cell lines. The HeLa cell line was 
tested as positive control. As apparent, all of these cell 
types but the HL cell lines expressed the TSLP transcript 
(Supplementary Figure 1).

In additional experiments, we investigated the 
expression of IL-31R and TSLPR in the same cell 
suspensions from HL and reactive lymph nodes tested 
above. Both IL-31R and TSLPR were detected on CD19+ 
B cells (Figure 2, upper right panel). CD4 T cells expressed 
CD127, as well as IL-31RA, OSMR and TSLPR (Figure 
2, middle right panel). Finally, macrophages expressed IL-
31RA and OSMR, as well as TSLPR and CD127 (Figure 
2, lower right panel). Median MRFI values for IL-31/
TSLP receptors for each immune cell populations in HL 
and reactive lymph nodes are reported in Supplementary 
Table 2.

As apparent from both Figure 2 and Supplementary 
Tables 1 and 2, no differences in the expression of IL-31, 
TSLP and the respective receptors were found between 

immune cells present in HL and those present in reactive 
lymph nodes.

Finally, we investigated the expression by flow 
cytometry of IL-31, TSLP and the respective receptor 
chains in HDLM-2, L-428, and KM-H2 HL cell lines. 
None of the cell lines tested expressed the two cytokines 
or their receptors (not shown).

IL-31 and TSLP plasma levels in patients with 
Hodgkin lymphoma

We next analyzed soluble (s)IL-31 and sTSLP levels 
in plasma samples from HL patients at diagnosis and from 
healthy controls. sIL-31 was detected in 65/109 (60%) 
patients (Figure 3) with a wide range from 5 to 7937 pg/
ml and a median of 245 pg/ml. sTSLP was detected in 
52/75 (69%) patients tested (Figure 3) with a range from 9 
to 4209 pg/ml, and a median of 171 pg/ml.

sIL-31 and sTSLP levels in HL patients did not 
differ from the levels detected in a group of 84 age-
matched controls. Thus, sIL-31 was detected in 42/84 
(50%) healthy controls ranging from 8 to 7714 pg/ml 
(median of 281 pg/ml), while sTSLP was detected in 
32/59 (54%) healthy controls ranging from 10 to 2849 pg/
ml, with a median of 134 pg/ml (Supplementary Figure 
2). A highly significant correlation between sIL-31 and 
sTSLP concentrations was observed in both HL patients 
and healthy controls (P<0.0001), suggesting a coordinate 
production of the two cytokines, possibly operated by the 
same cells.

Figure 3: sIL-31/TSLP plasma levels in HL patients. sIL-31/TSLP levels were assayed by ELISA (threshold of detection 5 pg/ml). 
sIL-31 was detected in 65/109 patients, sTSLP in 52/75 patients. The horizontal line separates positive from negative results.
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We next analyzed for associations between cytokine 
levels and patient clinical characteristics. HL is often 
associated with pruritus [27], present in 47% of our 
patients. Pruritus was defined as: i) intense, if widespread 
and associated with secondary cutaneous lesions due to 
scratching and/or need for anti-histamines; and ii) mild, 
when only localized. sIL-31 or sTSLP were not found to 
be associated to the presence or degree of itching in the 
HL patients studied (n=24 no pruritus, n=14 mild, n=21 
intense) (Supplementary Figure 3A and 3B, respectively).

The International Prognostic Score (IPS) is the 
most widely used risk stratification index for HL that 
incorporates seven clinical parameters independently 
associated with poor outcome [30]. IPS from 0 to 2 
identify low-risk patients, while IPS values>2 are detected 
in high-risk patients. Significantly higher levels of sIL-
31 and sTSLP (P=0.002, n=34/72, median 182 pg/ml for 
IL-31, P=0.03, n=25/48, median 167 pg/ml for TSLP) 
were detected in HL patients with an IPS >2 compared 
to those with IPS 0-2. Among the clinical parameters 
included in IPS, WBC count >15x103/ml was found to 
be significantly associated with high sIL-31 and sTSLP 

levels in HL patients studied (P=0.01, n=19/89 for IL-31; 
P=0.02, n=15/59 for TSLP). No correlation with other 
patient characteristics was identified. Tables 1 and 2 show 
in detail the results on the associations between clinical 
characteristics and sIL-31 or sTSLP, respectively.

Early response following 2 cycles of chemotherapy 
is evaluated using (18F)-fluordeoxyglucose (FDG)-position 
emission tomography (PET) (interim PET), which 
represents the strongest predictor to distinguish high-risk 
from low-risk HL patients [31]. PET images are scored 
according to the Deauville classification system [31]. FDG 
uptakes in residual tissue below the uptake in the liver 
were considered as negative (Deauville score 1-3), while 
uptake higher than the liver background was considered 
as positive (Deauville score 4-5) [31, 32]. Interestingly, 
HL patients with a positive interim PET-scan, indicative 
of high risk of relapse, had significantly higher levels 
of sIL-31 (P=0.01, n=13/84, median=298 pg/ml) and 
sTSLP (P=0.05, n=10/63, median 548 pg/ml) at diagnosis 
compared to patients with a negative interim PET-scan 
(Figure 4A and 4B, respectively).

Table 1: Associations between clinical patient characteristics at diagnosis and IL-31 plasma levels in HL patients

  Variable Number
IL-31 level

median
(pg/ml)

P

 IPS parameters 

Age, years
(n=109)

< 45
>45

75
34

10
14 0.9

Gender
(n=109)

Female
Male

53
56

15
5 0.4

Stage
(n=109)

I-III
IV

80
29

5
83 0.1

White blood cell count
(n=108)

≤ 15 x 103/ml
> 15 x 103/ml

89
19

5
294 0.01

Lymphocyte count
(n=105)

≥ 600/ml
< 600/ml

93
12

7
18 0.4

Hemoglobin level
(n=108)

≥ 10.5 g/dl
< 10.5 g/dl

89
19

7
25 0.2

Albumin level
(n=105)

≥ 40 g/l
< 40 g/l

55
50

5
21 0.1

IPS
(n=106)

 0-2
3-5

72
34

5
182 0.002

Histology subtype
(n=109)

 

cHL Nodular sclerosis
cHL Mixed cellularity
cHL lymphocyte rich

cHL NOS
NLPHL

86
1
4
15
3

15
7
9
13
15

0.5

B-symptoms
(n=109)

 Absent
Present

68
41

5
22 0.2
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With a median observation of 32 months, 30/109 
patients experienced an event. This translated into a 
3-year probability of event-free survival (EFS) of 75% 
(95% C.I., 65-82%). Patients with sIL-31and sTSLP levels 
higher than the median did not differ in their prognosis 
from patients with levels below the median. Likewise, 
HL patients were analyzed for overall survival (OS): the 
3-year OS was 90% ( 95% C.I., 82-95%) without any 
difference between patients with sIL-31/TSLP levels 
higher or lower than the median (data not shown).

DISCUSSION

In this study, we demonstrate that H/RS cells express 
intracytoplasmic and surface IL-31 and TSLP, as well as 
the respective receptors. B cells, macrophages and CD4+ 
T cells infiltrating HL lymph nodes showed surface and 
cytoplasmic expression of IL-31, while TSLP was detected 
on the cell surface of macrophages and in the cytoplasm 
of B cells, CD4+ T cells and macrophages. IL-31/TSLP 
and their receptors were expressed with superimposable 
profiles in the same immune cell fractions from reactive 
lymph nodes. The finding that both malignant and immune 

cells in the HL lymph node microenvironment expressed 
IL-31 and TSLP and the respective receptors suggests that 
numerous paracrine and/or autocrine interactions may take 
place in vivo. These cytokines may contribute to cell-to-
cell interactions by shedding of soluble forms from the 
surface membrane or release of the cytoplasmic forms, and 
ii) direct contact between surface bound cytokine(s) on a 
cell and the respective receptor(s) on an adjacent cell. In 
this respect, we have previously demonstrated that IL-31 
is not released in soluble form by Follicular Lymphoma B 
cells, but shed in microvesicles that serve as intercellular 
messengers. This mechanism, that has not been reported 
for TSLP and may operate also in H/RS cells [33] could 
not be investigated due to the paucity of the latter cells in 
affected lymph nodes.

Plenty cytokines/chemokines released by H/RS cells 
shape the tumor microenvironment. Thus, for example, 
IL-5, CCL5, CCL28 attract eosinophils [34–36]; CCL5 
attract mast cells, [37] IL-8 neutrophils [34], CCL5, 
CCL17, CCL22 Th2 cells, and CCL20 T reg cells [38–41]. 
Although the HL microenvironment is considered as Th2 
polarized, this may be an oversimplification, since a recent 
study demonstrates that T cells infiltrating HL lymph 

Table 2: Associations between clinical patient characteristics at diagnosis and TSLP plasma levels in HL patients

  
Variable Number

TSLP level
median
(pg/ml)

P

IPS parameters 

Age, years
(n=75)

< 45
>45

52
23

80
102 0.9

Gender
(n=75)

Female
Male

39
36

58
101 0.3

Stage
(n=75)

I-III
IV

55
20

71
94 0.6

White blood cell count
(n=74)

≤ 15 x 103/ml
> 15 x 103/ml

59
15

45
246 0.02

Lymphocyte count
(n=71)

≥ 600/ml
< 600/ml

63
8

71
112 0.7

Hemoglobin level
(n=74)

≥ 10.5 g/dl
< 10.5 g/dl

60
14

88
80 1.0

Albumin level
(n=73)

≥ 40 g/l
< 40 g/l

37
36

44
117 0.3

IPS
(n=73)

 0-2
3-5

48
25

44
167 0.03

Histology subtype
(n=75)

 

cHL Nodular sclerosis
cHL Mixed cellularity

cHL NOS
NLPHL

61
1
10
3

117
71
63
582

0.9

B-symptoms
(n=75)

 Absent
Present

47
28

91
52 0.2
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nodes express Th1-type chemokine receptors, cytokines 
and transcription factors [42].

A question raised by this study is how IL-31 and 
TSLP can modulate the HL lymph node microenvironment 
to support tumor growth. In atopic dermatitis, IL-31 
induces chemotaxis, Ca2+ mobilization, release of reactive 
oxygen species, surface expression of adhesion molecules 
and CCL26 in eosinophils, which in turn release IL-31, 
contributing to the maintenance of the inflammatory 

infiltrate [43, 44]. TSLP promotes directly commitment 
of human bone marrow hematopoietic progenitors to the 
eosinophil/basophil lineage and elicits mature basophil 
responses in the periphery [45, 46]. In addition, TSLP 
can enhance eosinophil survival, up-regulate surface 
expression of adhesion molecules and induce the release 
of inflammatory cytokines and chemokines from human 
eosinophils [47]. Finally, TSLP amplifies M2 macrophage 
polarization [48, 49]. Since eosinophils and, at a lower 

Figure 4: Correlations between sIL-31/sTSLP and Interim Pet in HL patients. sIL-31 (A) and sTSLP (B) levels (pg/ml) in 
HL patient plasma were correlated with interim PET scan. PET images were classified according to the Deauville score (1-3 negative; 4-5 
positive). HL patients with a positive score had significant higher median levels of sIL-31 and sTSLP than patients with negative score 
(**P=0.01, n=13/84 and *P=0.05, n=10/63, respectively).
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extent, basophils/mast cells are important components of 
the HL lymph node infiltrate, it is conceivable that IL-
31 and/or TSLP contribute to the recruitment, survival 
and activation of these cell types and, more in general, 
polarize immune responses towards a tumor promoting 
functional state. A note of caution in the discussion of the 
potential mechanisms whereby IL-31 and TSLP can shape 
the HL microenvironment comes from previous studies 
showing the existence of different IL-31RA isoforms, 
some of which are devoid of signalling activity [17, 50]. 
Furthermore, two dominant isoforms of IL-7R alpha 
chain/CD127 coding for membrane-bound or soluble IL-
7R alpha, respectively, have been identified [51], and two 
isoforms of TSLP with completely different functions 
have been reported [52].

IL-31 and TSLP are two Th2-related cytokines 
that promote itch in atopic skin diseases by activating 
cutaneous somatosensory neurons, either directly 
or indirectly through stimulation of immune cells 
[53]. However, no association was detected between 
concentrations of sIL-31 or sTSLP and presence or 
degree of itching in a cohort of HL patients at diagnosis. 
In contrast, we found an association between high 
plasma levels of both cytokines and increased number of 
circulating WBC, in particular neutrophils. In this respect, 
IL-31was found to stimulate in a mouse model the survival 
of myeloid progenitor cells [54], raising the possibility 
that in HL patients IL-31 induces neutrophilia, possibly 
in concert with other cytokines that have myelopoietic 
activity as CXCL8 [55], Since the WBC count is a 
prognostic factor included in the IPS score, both IL-31 
and TSLP levels were higher in patients with an IPS>2, 
indicative of high risk disease.

Finally, patients with a positive interim PET-scan, 
usually indicative of insufficient response to chemotherapy 
[31], had higher levels of sIL-31 and sTSLP at diagnosis. 
The association of positive interim PET-scan and high 
cytokine plasma levels may simply reflect differences in 
persistence of an inflammatory microenvironment in the 
scanned lymph nodes at the time of interim PET without 
truly reflecting disease activity, since we failed to identify 
any correlation between sIL-31 or sTSLP plasma levels 
and event-free or overall survival in our patient cohort. In 
addition, heterogeneity in therapeutic protocols may have 
influenced the correlations between plasma cytokines, 
interim PET scan and outcome. Further studies in a larger 
patient group are needed to better define the clinical 
impact of IL-31 and TSLP plasma levels.

MATERIALS AND METHODS

Patients and controls

The analysis included 109 patients (56 males and 
53 females, 34 of whom >45 years and 75 <45 years), 
diagnosed with cHL (106 patients) and NLPHL (3 
patients) at the Department of Hematology of the Catholic 

University of Rome, Italy. Six of the patients studied had 
an age range from 15 to 18 years. Diagnosis of HL was 
established according to the criteria of the World Health 
Organization (WHO) classification [1]. cHL histology 
subtype was the following: 86 Nodular sclerosis, 1 Mixed 
cellularity, 4 Lymphocyte-rich and 15 that could not be 
classified into any subtype and are referred to as “not 
otherwise specified”. Eighty-four healthy donors (45 males 
and 39 females, 36 of whom >45 years and 48 <45 years,) 
were recruited from the Division of Immunohematology 
and Transfusion Centre, Giannina Gaslini Institute, Genoa, 
Italy. The study was approved by the Institutional Review 
Board of the Catholic University (P/416/CE/2010) and 
the Institutional Review Board of the Istituto Giannina 
Gaslini, Genova, Italy on October 27th, 2005. Informed 
consent was obtained from both patients and healthy 
donors according with the Declaration of Helsinki.

Cell isolation

Invaded lymph nodes from 10 HL patients (6 
males and 4 females, 3 patients >45 years, 7 patients<45 
years) and 7 reactive lymph nodes biopsied for diagnostic 
purposes, were obtained from the San Martino Hospital-
Istituto Scientifico Tumori Biobank (Genova, Italy) and 
from the Sant'Andrea Hospital (Roma, Italy) (Institutional 
Review Board n°168/2003). Lymph node mononuclear 
cells (MNCs) were isolated after a gentle mince and 
cryopreserved in a freezing solution composed of 50% 
RPMI 1640 (Sigma Chemical Co., St. Louis, MO), 40% 
fetal bovine serum (FBS) (Sigma), and 10% DMSO 
(Sigma). Cells were kept in liquid nitrogen until tested.

The human HDML-2, L-428, KM-H2cell lines, 
established from HL patients, were provided five 
months ago by DSMZ (Braunschweig, Germania) that 
certifies their origin. These cell lines were cultured in 
RPMI 1640 medium (Sigma Saint Louis, Missouri, 
USA) supplemented with 10% fetal bovine serum (FBS) 
(Sigma).

Antibodies for flow cytometry

The monoclonal Antibodies (mAbs) used 
throughout the study were the following: Phycoerythrin 
(PE)-conjugated anti-human IL-31RA from R&D System 
(Minneapolis, MN, USA); phycocyanin (PC)7-CD19; PE-
anti-human OSMR, PC7-CD4, Fluorescein Isothiocyanate 
(FITC)-CD68, PE-CD127, PE-anti-human TSLPR from 
eBioscience (San Diego, CA). APC-conjugated anti-
human IL-31 and unconjugated anti-human TSLP were 
from Lifespan Biosciences (Seattle, USA) and Abcam, 
(Cambridge, UK), respectively. Cells were stained with 
fluorochrome conjugated or unconjugated antibodies 
followed by secondary reagents. Isotype and fluorochrome 
matched antibodies were tested as controls. Cells were 
run on a Gallios instrument (Beckman Coulter, Brea, 
CA, USA) and data were analyzed using the Kaluza 
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software (Beckman Coulter). On average 30000/40000 
events were acquired. Results were expressed as Mean 
Relative Fluorescence Intensity (MRFI), calculated as 
follows: fluorescence intensity obtained with specific 
mAb/fluorescence intensity obtained with irrelevant 
isotype-matched mAb. For intracellular cytokine staining 
cells were fixed, permeabilized using cytofix and perm 
kit (Becton Dickinson, New Jersey, USA) and stained 
with anti-IL-31and -TSLP or isotype-control mAbs and 
analyzed as above.

For some experiments, MNCs from three HL and 
three reactive lymph nodes were suspended in 0.5M NaCl 
and 0.2M acetic acid (pH 2.5) and held at 4°C for 10 
minutes to elute surface-bound cytokines. Cells were then 
washed twice with PBS and subsequently stained as above.

RNAscope

The RNAscope assay was applied to lymph node 
paraffin sections from three HL patients using probes to 
IL-31 and TSLP, as previously described [56]. Briefly, 
formalin fixed, paraffin embedded (FFPE) tissue sections 2 
μm thick were deparaffinized in xylene and then hydrated 
in an ethanol series. Hybridization was performed with the 
negative control probe dapB, the positive control probe 
Probe-Hs-Ubiquitin, and the target probes Probe-Hs-
IL-31 and Probe-Hs-TSLP. The preamplifier, amplifier, 
label probe, and chromogenic detection procedures were 
performed according to the manufacturer’s instructions 
(RNAscope® 2.0 HD Reagent Kit, Advanced Cell 
Diagnostics, Hayward, CA, USA).

RT-PCR

Total RNA was isolated using the RNeasy kit 
(Qiagen, Milano, Italy) according to the manufacturer’s 
instructions. RNA was assessed for integrity by gel 
electrophoresis and quantified by spectrophotometry 
(Nanodrop Products, Wilmington, DE). One μg of total 
RNA was reverse transcribed using the High Capacity 
cDNA Reverse Transcription kit (Life Technologies, 
Monza, Italy), according to manufacturer’s instructions. 
The primer sequences for human TSLP and GAPDH 
mRNA and the relative PCR conditions were as described 
[57]. All the primers were purchased from TIB Molbiol 
(TIB MolBiolS.r.L., Genova, Italy). The amplified products 
were visualized by electrophoresis on a 2% agarose gels. 
Images were analyzed by scanning using the VersaDoc 
instrument (BioRad Laboratories, Segrate, Italy). PCR 
reactions for each sample were performed at least twice.

ELISA

Plasma samples from HL patients, collected at 
diagnosis prior to treatment start, and from healthy controls 
were tested for IL-31 (n=109 and n=84, respectively) 
and TSLP (n=75 and n=59, respectively) by ELISA 

(RayBiotech, Inc., Parkway Lane, Norcross, GA, USA). 
The sensitivity threshold for both the immunoenzymatic 
assays was lower than 5 pg/ml.

Statistical analysis

Data were reported in box plot in terms of medians, 
first and third quartiles, minimun and maximum 
values. The Mann-Whitney U test was used to compare 
quantitative variables between two groups of observation 
with 99% confidence interval (GraphPad Prism 3). The 
Spearman test was used for the correlation between IL-
31 and TSLP levels. All statistical tests were two tailed 
and a P value lower than 0.05 was considered statistically 
significant. Statistical analyses were performed using 
Graph Pad Prism 5software.
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