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ABSTRACT
Early alterations in textural characteristics of quantitative ultrasound spectral 

parametric maps, in conjunction with changes in their mean values, are demonstrated 
here, for the first time, to be capable of predicting ultimate clinical/pathologic 
responses of breast cancer patients to chemotherapy. Mechanisms of cell death, 
induced by chemotherapy within tumor, introduce morphological alterations in 
cancerous cells, resulting in measurable changes in tissue echogenicity. We have 
demonstrated that the development of such changes is reflected in early alterations in 
textural characteristics of quantitative ultrasound spectral parametric maps, followed 
by consequent changes in their mean values. The spectral/textural biomarkers derived 
on this basis have been demonstrated as non-invasive surrogates of breast cancer 
chemotherapy response. Particularly, spectral biomarkers sensitive to the size and 
concentration of acoustic scatterers could predict treatment response of patients with 
up to 80% of sensitivity and specificity (p=0.050), after one week within 3-4 months 
of chemotherapy. However, textural biomarkers characterizing heterogeneities in 
distribution of acoustic scatterers, could differentiate between treatment responding 
and non-responding patients with up to 100% sensitivity and 93% specificity 
(p=0.002). Such early prediction permits offering effective alternatives to standard 
treatment, or switching to a salvage therapy, for refractory patients.

INTRODUCTION

Patient response to cancer treatment is an important 
therapeutic parameter that is dependent on many factors 
including pathologic subtype, tumor grade, and stage 

of disease, as well as patient age, genetic-profile, and 
immune response to therapy, in addition to other factors. 
Therefore, a predefined therapy regimen does not result 
in an equivalent response in different patients, nor is it 
an effective treatment for all patients. This highlights 
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the importance of early predictions of ultimate patient 
responses to cancer therapies. Detecting refractory 
response of a specific patient to a routine therapy at early 
stages can facilitate an alteration in primary treatment, 
or even a switch to an early salvage therapy, leading 
to potentially better outcomes [1,2]. This has in part 
motivated research towards the concept of personalized 
cancer therapy with much attention recently in many 
aspects of biomedical sciences [3–7].

Breast cancer patients represent a patient population 
who may benefit from changing ineffective cancer 
therapies to more efficacious treatments [8]. Breast cancer 
is a most frequently diagnosed cancer and the second 
cause of cancer related death in women [9]. Despite recent 
improvements with the detection of breast cancer at early 
stages, a considerable fraction of this patient population 
is diagnosed with late stage disease. An estimated 5-20% 
of newly diagnosed cases remain still classified as locally 
advanced breast cancer (LABC) [10,11], with even larger 
proportions outside of North America. Locally advanced 
breast cancer, according to clinical guidelines, includes 
stage III and a subset of stage IIB (T3N0) disease and 
often presents as tumors which are frequently greater 
than 5 cm, involving the chest wall and/or classified as 
inflammatory breast cancer. Locally advanced breast 
cancer patients generally have poor long-term survival 
rates (five-year survival rate of 55%, approximately) in 
comparison to the early stage patients, mainly due to the 
progression of the disease and a high risk of metastatic 
spread [11].

Locally advanced breast cancer patients are currently 
treated with aggressive therapeutic combinations, often 
with neo-adjuvant chemotherapy followed by surgery, 
radiation therapy, and when indicated, Herceptin and/or 
hormonal manipulation [12–14]. Within this therapeutic 
scenario, the importance of clinical and pathologic 
complete response to neo-adjuvant chemotherapy has 
been highlighted, in several studies, as a marker of better 
outcomes (with survival rates reaching 70% with complete 
response) [15,16]. However this prognostic factor is 
often assessed at the time of surgery, far too late to make 
any modification to a neo-adjuvant treatment. This is 
mainly due to the fact that standard clinical surrogates 
based on on-going physical assessment by palpation, 
or using conventional clinical imaging such as x-ray 
mammography, or B-mode ultrasound, suffer from an 
inability to objectively evaluate treatment response early 
on during a course of treatment [17]. 

Despite the complicated nature of responses to 
cancer treatments, tumor cell death frequently results 
in micro-structural and gross functional alterations in 
tumors which are measurable even at early stages [18–
24]. These alterations are introduced through different 
physiological mechanisms and can be monitored using 
functional imaging techniques [25,26]. Accumulation 
of such early micro-alterations, in long term, results in 

macroscopic changes in the physical properties of tumors 
such as their size, which is currently used as a standard 
clinical criterion of tumor response to treatment [27,28]. 
Therefore, the quantification of these microscopic changes 
in tumor physiology has a high potential for accurately 
predicting ultimate tumor response early on during a 
course of treatment. In this context, a number of imaging 
modalities, including positron emission tomography (PET) 
[4], magnetic resonance imaging (MRI) [29,30], diffuse 
optical spectroscopy (DOS) [31,32], and elastography 
[33], have recently been demonstrated for evaluating 
cancer treatment responses within weeks to months after 
the start of treatment.

Investigators have recently undertaken genetic 
approaches for therapy response monitoring. Analyses of 
circulating tumor DNA to monitor breast cancer response 
to treatment early on during a course of treatment have 
shown promise [34]. However, regardless of providing 
useful scientific perspective, the proposed method is by 
necessity invasive requiring time-consuming analyses 
for quantification of circulating tumor DNA and gene 
sequencing. In terms of imaging modalities, PET 
remains costly, requiring radionuclide contrast agent, 
and thus limiting the number of times each patient can be 
evaluated during a treatment course. Although DOS and 
elastography have also shown potential for distinguishing 
treatment resistive patients, they remain investigational.

Clinical ultrasound (US) is a low-cost and portable 
imaging modality with a short imaging time and a 
relatively high spatial resolution. In recent preclinical 
studies quantitative ultrasound (QUS) techniques at 
both high and conventional-frequencies have been 
demonstrated in the detection and quantification of cell 
death in response to cancer treatments [23,35,36]. These 
include treatments with chemotherapy, photodynamic 
therapy, radiation therapy, anti-vascular treatment, or 
combined therapies [37]. A very recent pilot clinical study 
also investigated these techniques for evaluating patient 
responses to chemotherapy [38]. In particular, mid-band 
fit (MBF) and 0-MHz intercept spectral parameters which 
can be linked to ultrasound backscatter power, and size 
and concentration of acoustic scatterers [39,40], have 
shown promise. In addition, textural properties of QUS 
spectral parametric maps, including contrast, correlation, 
and homogeneity of MBF and 0-MHz intercept, have 
been investigated preclinically [41,42]. Such parameters 
that quantify the spatial relationship between neighboring 
acoustic scatterers within tissue micro-structures, have 
been demonstrated capable of characterizing response 
heterogeneities, with more sensitivity and higher levels 
of correlation to histological cell death, compared to 
mean values of the spectral parameters [41,42]. These 
parameters can be potentially applied for assessing 
response to neo-adjuvant chemotherapy in LABC patients.

Based on the rationale that responses in tumors 
are spatially inhomogeneous [43], this study evaluates, 
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for the first time, the efficacy of textural characteristics 
of QUS spectral parametric maps for the prediction of 
tumor response to neo-adjuvant chemotherapy in LABC 
patients, early on during a course of treatment. Obtained 
results demonstrated statistically significant differences in 
changes observed in survival-linked textural biomarkers 
extracted from MBF and 0-MHz intercept parametric 
maps between treatment responders and non-responders, 
one week after the start of treatment. Whereas changes 
in mean values of mid-band fit and 0-MHz intercept 
only became statistically significant after four weeks of 
treatment. This study thus suggests for the first time that 
QUS spectroscopic methods in conjunction with textural 
analysis techniques can be used non-invasively to predict 
patient responses to clinical cancer therapies within 
days after treatment initiation. This work establishes a 
framework enabling acquisition of rapid and quantitative 
information to evaluate and predict responses of cancer 
patients to the treatments. Such a system can in the future 
facilitate customization of treatment for cancer patients on 
an individual basis.

RESULTS

Characteristics of the patients who participated 
in this study, their tumor properties, and the treatments 
administrated have been summarized in Table 1A. 
The patients (n=20) had an average age of 45 years 
(SD=7.4, range: 33-57), and an average tumor size of 
7.3 cm (SD=2.8, range: 3-13) with respect to the largest 
tumor dimension. Nineteen patients had invasive ductal 
carcinoma, one had metaplastic carcinoma, and eleven 
patients had tumors with positive estrogen and/or 
progesterone receptors (ER/PR+), whereas eight patients 
had a Her-2-Neu positive (HER2+) status. The majority 
of patients received combined anthracycline and taxane-
based chemotherapy. The clinical/pathologic responses of 
patients to their neo-adjuvant chemotherapy are presented 
in Table 1B. Patients 1, 4, 5, 6, 7, 9, 12, 13, 14, 17, 19, 
and 20 had either a complete pathologic response, or had 
reductions of more than 50% in their tumor size along 
with detectable decreases in tumor cellularity, and were 
categorized as responders. In the case of patients 2, 15, 
and 16 a substantial reduction in physical size of mass 
was not detected, however residual tumor cellularity was 
very low and these patients were clinically/pathologically 
recognized as responders. Patients 3, 8, 10, 11, and 18 
demonstrated progressive disease, or only slight changes 
in their tumor size during treatment along with high 
residual tumor cellularity, and were classified as non-
responders.

Representative ultrasound B-mode images, and 
spectral parametric maps corresponding to a responding 
and a non-responding patient, acquired from the same 
nominal regions of breast tumor, respectively, prior to the 
start of neo-adjuvant chemotherapy and after one and four 

weeks of treatment, are presented in Figure 1. An overall 
increase in the ultrasound spectral backscatter power 
was detectable within the tumor region of the responding 
patients, visualized as considerable changes in the MBF 
and 0-MHz intercept parametric images during the course 
of treatment. Particularly, increases of 3.7 ± 1.5 dBr and 
6.8 ± 1.7 dBr for MBF, and 1.9 ± 0.9 dBr and 2.3 ± 0.5 
dBr for 0-MHz intercept, were measured, on average, 
after one and four weeks of treatment for the responding 
patients. No such increase was observed in the case of 
non-responding patients, where changes of -2.1 ± 1.8 dBr 
and -4.9 ± 6.0 dBr for MBF, and -1.8 ± 1.4 dBr and -0.4 ± 
1.6 dBr for 0-MHz intercept, were estimated, on average, 
after one and four weeks of treatment. Light microscopy 
images acquired from whole-mount histopathology 
sections of mastectomy specimens for a responding 
patient, and two non-responding patients with stable and 
progressive disease, respectively, are presented in Figure 
2. In the cases of responding patients chemotherapy 
effect was clearly detectable within the tumor bed with 

Figure 1: Representative ultrasound B-mode and 
spectral parametric images from a responding and a 
non-responding patient, acquired from the same nominal 
tumor regions (contoured by an oncologist), respectively, 
prior to the start of chemotherapy and after one and four 
weeks of treatment. The scale bar is ~1 cm, and the color map 
represents a scale encompassing ~50 dBr for MBF and 0-MHz 
intercept, and ~20 dBr/MHz for the spectral slope.
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Table 1: Characteristics of participating patients (A), and their responses to treatment (B).
A

No. Age Menop.
status

Initial Tumor 
Dimensions (AP x 
ML xSI) in cm

Histology Grade ER/
PR

Her-
2-neu Neoadjuvant Treatment

1 55 N/A 5.4 x 5 x 2.3 ductal N/A - + FEC + paclitaxel, trastuzumab
2 53 N/A 7.4 x 7  ductal 2 + - Epirubicin, docetaxel
3 41 Pre 4 ductal 3 + + Docetaxel, carboplatin, trastuzumab
4 50 Pre 4 x 5 ductal N/A - + AC + docetaxel, trastuzumab
5 33 Pre 3 x 3 ductal 1 + - AC + paclitaxel
6 33 Pre 5.4 x 5 x 8 ductal N/A + + AC + docetaxel, paclitaxel, trastuzumab

7 48 Post 4.9 x 4.9 x 4.1 
& 3.2 x 1.3 x 2.9 ductal 2 + - AC + docetaxel

8 36 Pre 4.4 x 3.9 x 5.8 ductal 2 + - AC + paclitaxel
9 40 Pre 4.4 x 3.4 ductal 3 - - AC + paclitaxel
10 38 Pre 7.5 x 4.9 x 9.2 ductal 2 + - AC + paclitaxel
11 53 N/A 8.4 x 9.4 x 12.7 meta plastic 3 - - AC + cisplatinum, gemcitabine platinum
12 50 Pre 13 x 11 ductal 3 - - AC + paclitaxel
13 49 Pre 7.1 x 5.5 x 8.9 ductal 3 - + Docetaxel, trastuzumab
14 40 Pre 3 x 2.4 x 3 ductal 3 + + AC + paclitaxel, trastuzumab
15 47 Pre 5.2 x 4 x 4 ductal 2 + - FEC + docetaxel
16 38 Pre 9  x 6.6  x 6 ductal 2 + - AC + paclitaxel
17 38 Pre 8 x 8 ductal N/A - + Dose-dense AC + paclitaxel, trastuzumab
18 47 Pre 8 x 10 ductal 2 + - Dose-dense AC + paclitaxel
19 57 Post 7.9 x 4.1 x 5.5 ductal N/A - - Dose-dense AC + paclitaxel
20 47 Pre 6.3 x 4.1 x 7.4 ductal N/A - + Dose-dense AC + paclitaxel, trastuzumab 
AC: Adriamycin and Cytoxan; FEC: Fluorouracil (5FU), epirubicin and cyclophosphamide

B

No. Residual Tumor Dimensions 
(AP x ML x SI) in cm Notes

Clinical/
Pathologic 
Response

1 N/A Complete pathologic response Good
2 7 x 5 x 3 Carcinoma with mucinous features; very low cellularity Good
3 2.7 x 2.5 x 2.4 Tumor cellularity remains very high Poor
4 N/A Complete pathologic response Good
5 1.4 Good response Good
6 N/A Complete pathologic response Good
7 1.4 x 1 x 1 Small volume of invasive tumor remaining Good
8 11.4 Extensive residual disease Poor
9 N/A Complete pathologic response, with only fibrous tumor bed remaining Good
10 6.5 x 3 x 7.3 Invasive ductal carcinoma remaining Poor
11 All the breast Residual tumor took up all the breast; no response Poor
12 4 Good response Good
13 2 x 1.5 x 1 Complete pathologic response, with only in situ disease remaining Good
14 0.2 x 0.2 Complete pathologic response, with only in situ disease remaining Good
15 6.5 Exceedingly low cellularity, thus overall tumor volume is also very low Good
16 2.9 x 2 x 1.5 & 2 x 1.5 x 1 Tumor cellularity is low Good
17 N/A Complete pathologic response Good
18 12.5 x 4.5 x 3.5 No definite response Poor

19 N/A No residual invasive carcinoma in the breast, only lymphovascular 
invasion remaining Good

20 N/A Complete pathologic response, only scattered in-situ component 
remaining Good
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Figure 2: Representative data obtained from a responding patient (first column), and two non-responding patients with 
stable (second column) and progressive (third column) disease. The first and second rows present light microscopy images of 
whole-mount histopathology slides obtained following modified radical mastectomy surgery, at low and high magnification, respectively. 
Areas of residual invasive carcinoma have been pointed out with arrows in low-magnification images. The corresponding areas of the high-
magnification images have been marked with rectangles within the low-magnification images. The scale bars are ~1 cm and ~500 µm, in 
low and high-magnification images, respectively. The third to sixth rows demonstrate the results of ultrasound-based spectral and textural 
biomarkers measured for the same patients over the course of treatment. Data were measured prior to treatment onset, at weeks 1, 4 and 8 
during treatment and preoperatively.
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minimal tumor cellularity remaining. In contrast, the 
whole-mount histopathology samples corresponding to 
the non-responding patients with stable or progressive 
disease indicated areas of residual disease with minimal 
chemotherapy effects in their mastectomy specimens, 
and a large intact residual mass, respectively. Similarly, 
the ultrasound-based spectral and textural biomarkers 
corresponding to these three patient types demonstrated 

different trends measurable over the course of treatment. 
Whereas the responding patients and the non-responding 
patients with progressive disease demonstrated opposite 
directions in the trend of a majority of the ultrasound-
based biomarkers, the non-responding patients with stable 
disease exhibited minimal changes for these biomarkers 
(Figure 2).

Average data obtained from responders and non-

Figure 3: Average data obtained from treatment responding and non-responding patients during the course of treatment for 
the ultrasound-based spectral and textural biomarkers. Data were measured prior to treatment initiation, at weeks 1, 4 and 8 during 
treatment and preoperatively. Red lines display results obtained from patients who were clinically/pathologically categorized as non-
responders, whereas black lines display results obtained from responding patients. Error bars represent ± one standard error.
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responding patients over the course of treatment is 
presented in Figure 3. Among the ultrasound-based 
parameters investigated, a large number of textural and 
spectral biomarkers exhibited a statistically significant 
difference between treatment responding and non-
responding populations after one and four weeks 
of treatment. Particularly, statistically significant 
differences were observed after one week of treatment 
in MBF %ContrastΔ (p=0.002), MBF %CorrelationΔ 
(p=0.044), MBF %HomogeneityΔ (p=0.003), 0-MHz 
intercept %ContrastΔ (p=0.040), and 0-MHz intercept 
%HomogeneityΔ (p=0.035) between the two patient 
populations, whereas MBF %MeanΔ (p=0.054), 0-MHz 
intercept %MeanΔ (p=0.071), Slope %ContrastΔ 
(p=0.091), and Slope %HomogeneityΔ (p=0.090) 
approached the statistical significance. After four 
weeks of treatment, MBF %ContrastΔ (p=0.021), MBF 
%CorrelationΔ (p=0.028), MBF %HomogeneityΔ 
(p=0.021), MBF %MeanΔ (p=0.021), and 0-MHz 
intercept %MeanΔ (p=0.046) demonstrated statistically 
significant differences between the two populations. The 
mean of the slope parameter (slope %MeanΔ) remained 
almost invariant during the course of treatment within the 
two patient populations and was not demonstrated to be a 
statistically significant biomarker.

Results of discriminant analyses performed using 
the quantitative ultrasound-based biomarkers measured 
at week 1 of treatment are presented in Figures 4, and 
Table 2. Figure 4 illustrates the scatter plots of the patient 
data in the %MeanΔ, %ContrastΔ, %CorrelationΔ, and 

%HomogeneityΔ feature planes of MBF and 0-MHz 
intercept parameters, and in a combined feature plane of 
these spectral and textural biomarkers derived from their 
parametric images. In These plots, the determined borders 
of the treatment response classes have been shown by 
dashed lines. The plots suggest that the textural biomarkers, 
particularly %ContrastΔ and %HomogeneityΔ, provide 
considerably better separability between the two patient 
populations after one week of treatment, compared to the 
simple average-based values (%MeanΔ) of the spectral 
parameters. The results presented in Figure 4 also reflect a 
greater separability within a combined feature plane of the 
spectral and textural biomarkers derived from MBF and 
0-MHz intercept parametric images. Table 2 summarizes 
the results of the ultrasound-based treatment response 
classification, in terms of sensitivities, specificities, and 
areas under the ROC curve obtained. In particular, the 
discriminant analyses resulted in sensitivities, specificities, 
and areas under the ROC curve of 100%, 93%, and 0.99 
for MBF %ContrastΔ, 100%, 93%, and 0.97 for MBF 
%HomogeneityΔ, and 100%, 67%, and 0.80 for 0-MHz 
intercept %HomogeneityΔ after one week of treatment, 
whereas the MBF %MeanΔ demonstrated 80%, 80% and 
0.84, and 0-MHz intercept %MeanΔ showed 80%, 80%, 
and 0.85 for sensitivity, specificity, and area under the 
ROC curve, respectively. The %ContrastΔ of MBF and 
0-MHz intercept parameters in a combination, similar to 
%HomogeneityΔ, demonstrated a sensitivity of 100%, a 
specificity of 93%, and an area under the ROC curve of 
0.99 for treatment response classification of the patients 

Table 2: Results of early classification of patient ultimate responses to treatment based on quantitative ultrasound 
biomarkers at week 1.

Parameters 

LDA ROC 

Sensitivity Specificity p-value
Area 
Under the 
Curve 

MBF %MeanΔ 80% 80% 0.054 0.84 
MBF %ContrastΔ 100% 93% 0.002 0.99 
MBF %CorrelationΔ 80% 80% 0.044 0.81 
MBF %HomogeneityΔ 100% 93% 0.005 0.97 
0-MHz Intercept %MeanΔ 80% 80% 0.050 0.85 
0-MHz Intercept %ContrastΔ 80% 67% 0.040 0.79 
0-MHz Intercept %CorrelationΔ 40% 60% 0.318 0.65 
0-MHz Intercept %HomogeneityΔ 100% 67% 0.035 0.80 
Slope %MeanΔ 60% 47% 0.522 0.59 
Slope %ContrastΔ 80% 60% 0.091 0.76 
Slope %CorrelationΔ 60% 60% 0.592 0.61 
Slope %HomogeneityΔ 80% 53% 0.090 0.76 
MBF& 0-MHz Intercept %MeanΔ 80% 80% 0.032 0.89 
MBF& 0-MHz Intercept %ContrastΔ 100% 93% 0.008 0.99 
MBF& 0-MHz Intercept %CorrelationΔ 60% 87% 0.102 0.80 
MBF& 0-MHz Intercept %HomogeneityΔ 100% 93% 0.008 0.99 
MBF& 0-MHz Intercept Combined Spectral/Textural %ParametersΔ 100% 100% < 0.001 1 
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after one week of chemotherapy. A combination of the 
spectral and textural biomarkers extracted from parametric 
images of MBF and 0-MHz intercept (eight biomarkers in 
total), however, revealed the best results with sensitivity 
and specificity of 100% (p<0.001), and area under the 
ROC curve of 1.0.

Figure 5 demonstrates results of the recurrence-
free survival analyses. The plots present the survival 
curves calculated for the responding and non-responding 
patient populations based on the QUS spectral (MBF and 
0-MHz intercept %MeanΔ) and textural (MBF and 0-MHz 
intercept %ContratsΔ) biomarkers obtained one week after 
the start of chemotherapy, and those calculated months 
later based on ultimate clinical/pathologic responses of 

the patients. The survival curves obtained based on the 
QUS spectral biomarkers at week 1 of treatment did 
not show a statistically significant difference between 
the treatment outcomes of the two patient populations 
(p=0.220). However a statistically significant difference 
was observed between the survival curves obtained based 
on the QUS textural biomarkers at week 1 of the treatment 
(p=0.003). In addition, a statistically significant difference 
was found between the survival curves obtained months 
later based on the ultimate clinical/pathologic responses of 
the patients (p<0.001). Early survival analyses conducted 
at week 1 based on the combined QUS spectral and 
textural biomarkers in a hybrid profile also resulted in the 
same curves as obtained based on the ultimate clinical/

Figure 4: Scatter plots of the spectral, textural and hybrid biomarkers extracted from the MBF and 0-MHz intercept parametric 
images acquired from the patients one week after the start of chemotherapy. Responding and non-responding patients have been 
classified in each feature plane via a linear discriminant analysis, where the determined border of classes has been demonstrated by a dashed 
line.
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pathologic responses.

DISCUSSION

The results presented in this study indicate for the 
first time that alteration in the textural characteristics 
of QUS spectral parametric maps, complemented by 

changes in their mean values, can be non-invasively 
applied as early surrogates of clinical and pathologic 
treatment response exhibited by LABC patients to 
chemotherapy. Twenty women with LABC were monitored 
during the course of their neo-adjuvant chemotherapy 
and evaluated in terms of current clinical methods. The 
patients were also monitored with quantitative ultrasound-
based spectral and textural parameters as non-invasive 
“biomarkers” of therapy response, measured for each 
patient over the course of treatment. The patients were 
consequently assessed after surgery with whole-mount 
histopathology analysis on mastectomy specimens. 
Obtained results demonstrate that the patients who were 
categorized ultimately as non-responders, according to the 
clinical and pathologic guidelines, exhibited considerably 
different trends for change in their corresponding 
ultrasound-based biomarkers over the course of treatment, 
compared to the clinical and pathologic responding 
patients. Statistically significant differences were exhibited 
between the two treatment response populations with 
respect to textural and spectral biomarkers, after one and 
four weeks of treatment, respectively. 

Scatter plots of the patients’ data in different feature 
planes of the quantitative ultrasound-based biomarkers 
demonstrated a very good separability of two treatment 
response populations at week 1 of chemotherapy. In this 
context, the separability provided by the ultrasound-based 
textural biomarkers after one week of treatment was better, 
compared to the one corresponding to the simple average-
based spectral biomarkers. However, a hybrid profile 
of textural and spectral biomarkers resulted in the best 
separability between the two patient populations. In this 
case, the combination of spectral and textural biomarkers 
derived from the MBF and 0-MHz intercept parametric 
maps resulted in 100% sensitivity and specificity via 
a linear discriminant analysis performed for detecting 
non-responding patients. This implies that quantitative 
ultrasound-based spectral biomarkers can provide more 
information, when combined with the textural biomarkers, 
for treatment response monitoring, even at early stages 
after treatment. These QUS biomarkers, in a combination, 
may be applied for early prediction of ultimate treatment 
response in patients undergoing cancer-targeting therapies. 
Such an early prediction could be used to facilitate the 
decision of switching to a more effective therapy for 
treatment-refractory patients or even shifting to a salvage 
therapy, early on during a course of treatment.

Considering the levels of statistical significance of 
the textural and spectral biomarkers at week 1 and week 
4 of treatment, the results observed in this study suggest 
that alterations in the textural properties of QUS spectral 
parametric maps become apparent at early stages of 
treatment, and will consequently result in more detectable 
changes in the mean values of these maps. This can be 
due to the fact that development of response in tumor 
cells is a gradual process which initially affects tissue 

Figure 5: Kaplan-Meier survival curves of the responding 
and non-responding patient populations, determined 
based on quantitative ultrasound spectral biomarkers 
(first row) and textural biomarkers (second row) acquired 
one week after the start of chemotherapy. The third row 
shows the survival curves determined based on whole-mount 
histopathology analysis on mastectomy specimens obtained 
after the surgery. Early survival analyses at week 1 based on 
the combined quantitative ultrasound spectral and textural 
biomarkers resulted in the same curves as obtained based on 
ultimate pathology of patients (third row). 
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micro-structures heterogeneously. In contrast to late 
effects that are more homogenous, the heterogeneous 
nature of the initial cell death progress and response 
development is expected to influence, at early stages, the 
textural properties of QUS spectral parametric images. 
Here, theses are demonstrated capable of characterizing 
tissue micro-structure effects. A gradual late accumulation 
of such heterogeneous alterations in the tissue micro-
structures is anticipated to result in more detectable 
changes in the mean values of the QUS spectral parametric 
images at later stages [38], as confirmed in this study by 
a greater statistically significant difference between the 
two patient populations at week 4 of treatment. Previous 
pre-clinical studies on xenograft tumor models in vivo 
support the results observed in this study. In those studies, 
ultrasound-based textural parameters were found to be 
more sensitive to cell death, compared to mean values of 
the spectral parameters [41]. Textural parameters were also 
demonstrated to be capable of detecting changes in tissue 
micro-structures with a higher correlation to histological 
cell death, specially at early stages after chemotherapy 
exposure.

It was demonstrated in previous in vitro and 
in vivo investigations of ultrasound-based cell death 
detection that nuclear condensation and fragmentation 
in cell death can result in alterations in characteristics of 
ultrasonic backscatter signals, even at clinically-relevant 
conventional low frequencies [22,35,36,41,44]. This is 
consistent with observations in this study, in which such 
alterations were characterized by ultrasound-based spectral 
and textural parameters. Banihashmei et al. demonstrated 
that the cellular-based sub-resolution scatterers can affect 
ultrasound backscatter signal at low-frequency with 
cell death and evidence for the role of cell death related 
nuclear changes has been summarized there [23].

Results obtained in this study (Figure 3) 
demonstrated a lesser difference between responding and 
non-responding patients after eight weeks of treatment 
and months later prior to surgery. At the eighth week of 
treatment, the non-responders appear to show a late low 
level of response to therapy. In addition, a number of 
partial responders may have their tumor cells repopulated 
in partial regions exhibiting small levels of response. At 
the time of ultrasound data collection prior to surgery, the 
neo-adjuvant chemotherapy has been stopped for several 
weeks, and thus minimal cell death is expected. Also the 
complete pathologic responders, who have no residual 
tumor left in ultrasound scans, are not expected to show 
response and were excluded from the analysis at that 
time. Therefore, having less difference between the two 
patient populations can be expected at these times, since 
changes in the quantitative ultrasound-based biomarkers 
are expected to show the development of response for each 
patient. 

Attenuation was accounted for in this study by 
a sliding window normalization process with data 

normalized using a tissue-mimicking phantom data, 
acquired under identical scan settings. In addition, the 
0-MHz intercept, sensitive to the concentration of acoustic 
scatterers was derived, with parametric maps generated 
for each scan, as it is believed theoretically to be free of 
attenuation effects [40].

Previous studies have investigated the application of 
other functional imaging modalities for cancer treatment 
response monitoring. Examples include the modalities 
based on magnetic resonance imaging (MRI), positron 
emission tomography (PET), diffuse optical imaging 
(DOI), and elastography [25,26,31–33,43]. Unlike 
the methods based on MRI and PET modalities, the 
ultrasound-based biomarkers investigated in this study 
rely on intrinsic contrast alterations arising from changes 
in the acoustical characteristics of cancer cells when they 
die, and hence the method does not require the injection 
of any exogenous contrast agent. Elastography techniques 
have recently been reported useful for distinguishing 
between treatment responding and non-responding 
patients at the fourth week of chemotherapy, but not 
as early as one week [33]. In methods based on diffuse 
optical imaging, the lower resolution available may cause 
uncertainties for determining tumor boundaries, specially 
in the case of smaller tumors. Ultrasound is a portable and 
high resolution imaging modality that has the advantages 
of low cost and short imaging time, and can access tumor 
location not easily visualized with that modality. Genetic 
approaches have also been investigated recently for cancer 
therapy response monitoring [34]. Compared to these 
approaches, QUS biomarkers can provide a non-invasive 
insight of treatment response, needless of time-consuming 
analyses for quantification of circulating tumor DNA and 
gene sequencing.

In the study here, week 1 ultrasound biomarkers 
already indicated links to differential patient outcomes in 
terms of progression-free survival. At week 1, albeit in a 
small patient population, the combined ultrasound-based 
biomarkers in a hybrid profile resulted in outcomes which 
matched those based on ultimate pathology of patients, 
available months later, after their surgery. 

In conclusion, this study demonstrates for the 
first time that early alterations in textural characteristics 
of QUS spectral parametric maps, complemented by 
changes in their mean values, can be clinically applied 
to predict ultimate clinical and pathologic responses of 
breast cancer patients to chemotherapy. Results indicate 
that treatment-refractory patients demonstrated different 
trends in measured ultrasound-based biomarkers over the 
course of treatment, compared to clinical and pathologic 
responding patients, and with statistical significance 
after one week and at the fourth week of treatment. The 
proposed biomarkers were also found to have a very good 
sensitivity and specificity to distinguish patients with 
poor ultimate response to the therapy, early-on following 
treatment initiation, and even with more accuracy when 
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combined into a hybrid ultrasound-response profile. 
The promising results presented in this study suggest 
that these quantitative ultrasound-based biomarkers, as 
early survival-linked surrogates of ultimate treatment 
response to cancer-targeting therapies, may be applied to 
facilitate switching an inefficient treatment regimen for 
a particular refractory patient to a more effective one, or 
even undertaking a salvage treatment, early on after the 
therapy initiation [8].

MATERIAL AND METHODS

Study Protocol

This study was conducted in accordance with 
institutional research ethics approval from Sunnybrook 
Health Sciences Centre. The study was open to all women 
with LABC aged 18 to 85. Eligible patients were recruited 
for the study after obtaining written informed consent. 
Prior to therapy, all patients underwent a core needle 
biopsy to confirm a cancer diagnosis, where information 
regarding histological subtype and hormone receptor status 
of tumor were recorded. Pre-treatment magnetic resonance 
(MR) images of the breast were acquired for each patient 
in order to determine initial tumor size and to perform a 
metastatic workup as necessary as part of the institutional 
standard of clinical care for such patients. Patients were 
followed clinically by oncologists who remained blinded 
to the study results. Physical examination was conducted 
with each cycle of chemotherapy and size and stiffness 
of tumor was assessed by clinicians. Post-treatment MRI 
scans of the breast were also acquired immediately before 
patient surgery to measure residual tumor size. Patients 
were also followed clinically up to 50 months after their 
treatment and their clinical data were recorded for a 
recurrence-free survival study. 

Following surgery, patient mastectomy specimens 
were mounted on whole-mount [45] 5”×7” pathology 
slides and were consequently stained with haematoxylin 
and eosin (H&E). The pathology slides were digitized 
using a confocal scanner (TISSUEscope™, Huron 
Technologies, Waterloo, ON) at 2 micron resolution. 
All cases were examined by the same pathologist, who 
provided information regarding tumor grade, residual 
size, extent of cellularity, and tumor response. Patient 
responses were categorized following standard guidelines 
based upon changes in overall tumor volume in addition 
to the residual tumor cellularity [27,46,47]. Patients 
were considered as responders if there was a decrease in 
tumor size of 50% or more, and included patients which 
were deemed to have a complete pathologic response to 
treatment (no residual invasive carcinoma) [27,46,47]. 
Conversely, patients were deemed to be non-responders 
if there was less than a 50% decrease in tumor size and 

included patients with progressive disease in which the 
tumor volume increased despite treatment [27,46,47]. In 
cases where the tumor cellularity was very low (overall 
volume of viable tumor cells), the patient was considered 
as a responder as well, even if the diminishment in the 
physical tumor size was less than 50%. 

Ultrasound Data Collection

All the ultrasound data in this study were collected 
by the same sonographer following standardized protocols 
for data acquisition. Ultrasound data was acquired with 
patients lying supine with their arms above their heads. 
Ultrasound data was acquired at 5 times during course 
of treatment for each patient. The first scan was acquired 
immediately prior to the start of chemotherapy which was 
used as a baseline of comparison for subsequent scans. The 
following three scans were acquired during the first, fourth 
and eighth week of treatment, with a fifth scan acquired 
within one week prior to the modified radical mastectomy 
surgery. The mastectomy surgery was typically carried out 
four to six weeks after the course of chemotherapy was 
completed. 

Conventional B-mode images and ultrasound 
radiofrequency (RF) data were acquired using a Sonix RP, 
(Ultrasonix Vancouver, Canada) system utilizing a L14-
5/60 transducer with a transmit frequency of 10 MHz, 
resulting in a frequency bandwidth with a centre frequency 
of ~7 MHz. The ultrasound RF data were digitized with 
a sampling frequency of 40 MHz. The transducer focus 
was set at varying depths depending on individual patient 
circumstances. Scan focal depths remained consistent for 
individual patients throughout the study. Breast regions 
selected for ultrasound scanning were directed by an 
oncologist, who determined acquisition scan planes via 
physical examination of the patient. Data was acquired 
in a single continuous sweep over the entire tumor 
volume in order to provide context regarding changes in 
localization and dimensionality of the tumor across visits. 
Scans of individual tumor regions were also acquired at 
approximately 1 cm increments across the whole tumor 
volume.

Ultrasound Data Analysis 

Analysis of ultrasound RF data was carried out 
using quantitative ultrasound spectroscopy, followed by 
textural analysis on parametric images of the spectral 
biomarkers obtained. Quantitative ultrasound spectroscopy 
was performed using linear regression analysis of the 
normalized power spectrum [22,23,35,36,39,40], applying 
a sliding window analysis for generating parametric 
images. Ultrasound data was analyzed across all 
acquired planes through the scan volume which included 
identifiable tumor regions, and parametric images were 
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generated for each cross-sectional plane (described 
further below). Analysis parameters were reported from 
data within a region of interest (ROI) located at the 
tumor central area which was consistently positioned 
at the transducer focal depth, typically accounting for 
approximately two third of the tumor area in the plane. 
Obtained values of parameters for each scan were reported 
as tumor volumetric averages (detailed below).

The power spectrum was calculated using a Fourier 
transform of the raw RF signal for each scan line through 
the whole field of view of the ultrasound data. In order to 
remove the effects of system transfer functions, transducer 
beam-forming, and diffraction artefacts, in addition 
to acting as a mechanism of depth related attenuation 
correction, data were normalized using a sliding window 
analysis with the power spectrum obtained from a glass-
bead-embedded agar-gel phantom model [48], with 
properties similar to those of breast tissue (modified from 
[49]). Phantom data was acquired for each setting used 
during patient data acquisition, including variations in 
image gain and focal depth. Each sliding window was 
normalized separately to a reference curve obtained 
from the same region of the phantom, with equivalent 
location and size. This was carried out in order to more 
accurately account for the effects of attenuation and beam 
diffraction across the region of interest especially in larger 
tumors. Linear regression analysis was performed on 
the normalized power spectrum within a -6 dB window 
from the transducer centre frequency determined from a 
calibration pulse, to generate a best-fit line. Parameters 
subsequently reported included the mid-band fit, the 
spectral slope, and the corresponding 0-MHz intercept 
[23,35,39,40], as ultrasound-based spectral biomarkers of 
treatment response. The parametric images were generated 
using the sliding window analysis on a pixel by pixel 
basis, with the parameters calculated for each window 
and assigned to its centre. The size of the sliding window 
was selected to cover approximately 10 wavelengths in 
order to obtain more reliable spectral parameters which 
are independent of window length [50].

In addition to the mean values of these spectral 
biomarkers determined by averaging on the generated 
parametric images, textural properties of each parametric 
map were also characterized to derive ultrasound-based 
textural biomarkers of heterogeneous therapy response. 
Textural analysis was performed based on a gray-level co-
occurrence matrix (GLCM) [51]. Such a matrix represents 
the angular relationship between neighboring pixels as 
well as the distance between them [52], comprising high-
order textural information about patterns of neighboring 
pixels in an image. Symmetric GLCMs were constructed 
considering each pixel’s neighbors located at different 
distances and directions, i.e., at angles of 0˚ (180˚), 45˚ 
(225˚), 90˚ (270˚), and 135˚ (315˚). Textural parameters 
(contrast, correlation, and homogeneity) were extracted 
from the corresponding GLCMs of each spectral 

parametric image, and were subsequently averaged [51]. 
Among the textural parameters determined, contrast 
represents a measure of difference between the lowest 
and highest intensities in a set of pixels, correlation 
quantifies the intensity correlation between pixel pairs, 
and homogeneity measures the incidence of pixel pairs of 
different intensities. All the mean values and the textural 
parameters were determined for each of the scan planes 
collected per patient visit, and subsequently averaged 
across the tumor volume.

Comparison of each patient’s data during the course 
of treatment was conducted using their corresponding data 
acquired prior to the treatment initiation, as the baseline. 
The values of each quantitative parameter for clinically 
and pathologically determined responders and non-
responders were compared independently for each time. 
Normality violations for each parameter were examined 
using a one-sample Kolmogorov-Smirnov test (PASW 
Statistics 18, SPSS Inc., Chicago, IL). Depending on 
whether the changes were normally distributed or not, 
statistical analyses using either a t-test or a two-sample 
Kolmogorov-Smirnov test (two-sided, 95% confidence) 
were carried out, respectively, to assess if responding and 
non-responding patient populations exhibit statistically 
significant differences in changes measured for the 
quantitative ultrasound-based biomarkers during the 
course of treatment. Linear discriminant analyses were 
used to determine which quantitative parameter better 
discriminated between responders and non-responders. 
Sensitivity and specificity were calculated in addition 
to receiver operating characteristics (ROC), in order to 
measure the performance of the quantitative ultrasound-
based treatment response classification method compared 
to clinically and pathologically determined responses. 
Survival analyses were performed to generate recurrence-
free Kaplan-Meier survival curves for responding and 
non-responding patient populations, determined based 
on ultrasound-based biomarkers, and based on ultimate 
clinical/pathologic responses. Survival curves obtained 
for the two patient populations were compared using a 
log-rank test to evaluate if they demonstrate statistically 
significant differences between the treatment outcomes.
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