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ABSTRACT

Although numerous approaches have been proposed to discern driver from 
passenger, identification of driver genes remains a critical challenge in the cancer 
genomics field. Driver genes with low mutated frequency tend to be filtered in 
cancer research. In addition, the accumulation of different omics data necessitates 
the development of algorithmic frameworks for nominating putative driver genes. 
In this study, we presented a novel framework to identify driver genes through 
integrating multi-omics data such as somatic mutation, gene expression, and copy 
number alterations. We developed a computational approach to detect potential 
driver genes by virtue of their effect on their neighbors in network. Application 
to three datasets (head and neck squamous cell carcinoma (HNSC), thyroid 
carcinoma (THCA) and kidney renal clear cell carcinoma (KIRC)) from The Cancer 
Genome Atlas (TCGA), by comparing the Precision, Recall and F1 score, our method 
outperformed DriverNet and MUFFINN in all three datasets. In addition, our method 
was less affected by protein length compared with DriverNet. Lastly, our method 
not only identified the known cancer genes but also detected the potential rare 
drivers (PTPN6 in THCA, SRC, GRB2 and PTPN6 in KIRC, MAPK1 and SMAD2 in 
HNSC).

INTRODUCTION

With the development of high throughput sequencing, 
amounts of cancer omics data have allowed us to better 
understand cancer biology [1].The Cancer Genome 
Atlas (TCGA) project stores omics data of more than 20 
cancer types, thus allows us to study cancer driver genes 
(driver gene is a specific type of cancer gene). However, 
the key question is how to distinguish the driver genes, 
which confer a selective advantage to tumor growth, from 
passengers, which provide no fitness advantage to the tumor 
[2]. Besides, how to subsequently integrate omics data, 
including exploit protein interaction networks to detect 
cancer driver genes remains a challenge. Computational 
approaches and tools have been developed to identify driver 
genes. These methods can be categorized into gene level 
and module level approaches [3]. Gene level approaches 

for identifying drivers mainly rely on the hypothesis that 
driver has a more chance to be mutated across a set of 
tumors [4, 5]. These approaches including the mutational 
significant in cancer (MuSiC) [6], OncodriverCLUST [7], 
and MuSigCV [8], which can identify the genes that harbor 
significantly more mutations than background mutation 
rate. Although the gene level approaches can be used to 
distinguish driver genes from passengers, rare mutations 
played functional roles in later stages of tumor progression 
are failed to be detected [9]. What’s more, cells are made 
up of multiple molecular structures that form dynamic 
networks [10]. Under a network, a genetic aberration may 
affect its connection within the network [10]. The module 
level approaches using the network or pathway information 
can be effective in identifying drivers. An example is 
that Hamed and his colleges used the protein interaction 
network for identifying cancer drivers [11]. DawnRank, 
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which used PageRank algorithm to detect driver genes [12], 
is an affective module level method. Besides, DriverNet 
identifies drivers by estimating their effect on mRNA 
expression [13]. MUFFINN prioritizes driver genes based 
on genes and their neighbors in functional network [14]. 
In addition, some approaches were developed to identify 
driver modules or pathways, such as MEMCover and 
MEMo [15, 16]. Although these approaches are effective in 
detecting drivers, they have limitations. First, the network 
is built based on static network, rather being condition 
specific. Second, network edges are often not considered in 
the majority of the aforementioned approaches.

In view of the functional relationship between 
gene pairs in a network may radically boost the 
detection of drivers [17]. The network consists of 
nodes (which may stand for genes or proteins) and 
edges (which may present the functional links that 
connect them). Merid et al. performed a network-based 
algorithm to identify driver genes by considering the 
relationship between the mutation events and functional 
gene sets (FGS), the result showed a complementary 
to frequency-based driver analyses [17]. However, 
their method did not consider gene expression data. 
In a biological network, an interacting gene pair tends 
to present positive or negative correlations which are 
reflected by the gene expression data. Alteration of 
these gene correlations indicates system’s condition 
(such as normal or disease state) [18]. Therefore, 
differentially correlated gene pairs can distinguish 
tumor and normal sample [19]. Thus, candidate 
potential cancer genes can be detected by studying 
dynamic regulation between genes, which may improve 
the detection of driver genes [17].

In this paper, we presented a network-based 
approach which integrated gene expression, mutation 
data, and PPI (protein-protein interaction) data to 
distinguish between driver and passenger genes. Our 
approach built on a hypothesis that a driver gene can 
be determined by its neighbors. We firstly built a 
relationship network among the DCGs (differentially 
coexpressed genes), functional genes, and then calculated 
the impact of DCGs by weighting the relationship 
between the DCGs and its connective functional genes 
on a bipartite graph. Finally, we combined the mutation 
information to improve the effect of screening drivers. 
In order to evaluate the performance of our approach, 
we applied it to three datasets (KIRC (kidney renal clear 
cell carcinoma), THCA (thyroid carcinoma), and HNSC 
(head and neck squamous cell carcinoma)) to identify 
driver genes. We detected some potential rare drivers that 
previously could not be identified by DriverNet such as 
SMAD2 in HNSC [13]. Besides, we also detected some 
known cancer driver genes in each cancer dataset. All 
in all, our computational method is effective to detect 
potential cancer drivers to improve cancer-specific 
therapeutic targets.

RESULTS

Performance comparison

In order to assess the performance of our method’s 
ability to detect known driver genes, DriverNet and 
DawnRank and MUFFINN, and frequency-based 
methods were used to be compared with our method in 
CGC (the Cancer Gene Cense database) and driver gene 
list defined by 20/20 rules [20] as benchmark of known 
drivers. We performed the comparisons as follows: 
we used the same datasets to perform the DriverNet, 
DawnRank, MUFFINN, and frequency-based method 
and our method, respectively. We input these datasets 
into DriverNet, DawnRank, and MUFFINN. Then ran the 
program with the default settings, and we ran our method 
with the settings mentioned above. We calculated the 
DCGs Z-score and the mutated gene Z-score respectively. 
Combining the two scores and using the total score as the 
driver gene score. In CGC benchmark dataset, to evaluate 
the comparison, we used the three measures (Precision, 
Recall, and F1 score) mentioned in the Method Section. 
Based on these measures, our approach showed a 
better performance than MUFFINN and DriverNet 
and frequency-based method. We first evaluated the 
performance of our method. In Figure 1, Precision, Recall 
and F1 score curves of our method are both higher than 
those with DriverNet, MUFFIN and frequency-based 
method, but slightly worse than those with DawnRank 
method in THCA and HNSC datasets. Although 
DriverNet performed comparably in ranking the top 5 
genes in THCA and KIRC, it has poorer performance in 
all driver genes. A potential explanation of the difference 
may lie in the CGC is not cancer-specific and the cancer 
gene listed in CGC is not complete. In Table 1 , we can 
observe LYN is not a CGC gene, while they have been 
reported to have an association with THCA [21].

In benchmarking 20/20 rule dataset, we used the 
top ranked driver genes (top 89, 100, and 100 driver 
genes for THCA, HNSC, and KIRC, respectively (see 
Supplementary Table 1)) to compare with other methods, 
which is shown in Figure 2. It can be seen that our method 
outperformed the other four methods on the top 100 genes 
in HNSC and KIRC dataset. In THCA, our method has 
a remarkably better performance than frequency-based 
method, MUFFIN, and DriverNet, but slightly worse than 
DawnRank. However, in the top 22 gene list, our method 
presents advantage than DawnRank.

For THCA, our method identified 89 genes (driver 
gene score ≥2) which includes 28 genes found in CGC. 11 
genes found in CGC (NRAS, HRAS, PTPN, PTEN, RB1, 
EP300, ATM, PIK3R1, TP53, HSP90AA1, PML) were 
also among the driver genes nominated by DriverNet 
approach. TG (thyroglobulin) is the 13th-ranked driver in 
our method, and it is altered in 20/435 THCA samples. 
TG plays a role in the pathogenesis of papillary thyroid 
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Figure 1: A comparison of the precision, recall, and F1 score for the top ranking genes in our method and DriverNet. 
The X-axis represents the number of top ranking genes involved in the precision, recall, and F1 score calculation. The Y-axis represents the 
score of the given metric.

Table 1: Top 5 cancer–associated driver genes in each three cancer type

Ranking Gene Driver gene 
score 

Annotation The number of 
mutated gene

THCA 1 EGFR 11.58 Sanger cancer gene 3

2 EP300 11.20 Sanger cancer gene 3

3 NRAS 9.97 Sanger cancer gene 31

4 LYN 9.78 3

5 PTPN11 9.42 Sanger cancer gene 11

HNSC 1 TP53 39.63906 Sanger cancer gene 172

2 PIK3CA 19.19902 Sanger cancer gene 100

3 EGFR 16.93629 Sanger cancer gene 40

4 EP300 16.62027 Sanger cancer gene 22

5 FADD 15.40049 81

KIRC 1 PBRM1 41.84646 Sanger cancer gene 138

2 SETD2 14.98057 Sanger cancer gene 51

3 BAP1 11.83806 Sanger cancer gene 42

4 SRC 11.66549 2

5 EP300 11.39506 Sanger cancer gene 6
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carcinoma and its malignant evolution [22]. However, 
it ranked 478 and was not detected by DriverNet as top 
ranking drivers.

For KIRC, DriverNet identified 100 driver genes, of 
which 21 driver genes were found in CGC. Our method 
identified 127genes (driver gene score ≥2), 52 genes out of 
them were found in CGC. 12 genes found in CGC (PTEN, 
TP53, EGFR, EP300, SMARCA4, ATM, CREBBP, APC, 
NCOR1, XPO1, AKT1, HSP90AA1) were also among 
the driver genes nominated by DriverNet. We detected 
PBRM1 as the first ranked gene (mutated in 138 cases) 
[23], whereas it was not detected by DriverNet.

For HNSC, DriverNet identified 202 driver genes, 
of which 23 were found in CGC. Our method identified 
202 genes (driver gene score≥2), among them, 49 genes 
were included in CGC. 17 genes (TP53, PIK3CA, EGFR, 
EP300, CREBBP, NOTCH1, SMAD4, FGFR1, HRAS, 
CASP8, NFE2L2, MDM2, RAC1, HSP90AA1,AKT1, 
PLCG1, and CDH1) found in CGC were also among the 
driver genes nominated by DriverNet. TP53, PIK3CA, 
HRAS, and EGFR are known oncogenic drivers and it 
indicates that the efficiency of integrating multi-omics 
data to detect drivers. In addition, STAT3 mediates the 
cell cycle, regulates apoptosis, which has been reported to 
be constitutively active in HNSC [24]. However, STAT3 
which was ranked 27th was not found by DriverNet.

Our method is less affected by noise than DriverNet. 
An illustration is that TTN was ranked 23th in KIRC and 18th 
in HNSC by DriverNet. TTN is the longest gene in the human 
genome, which has a higher mutation rate and a potential to 
be artifacts [25]. However, TTN was not detected as driver 
genes in any three cancers according to our method.

Infrequent (rare) driver mutations identified in 
three cancer types (THCA, KIRC, and HNSC)

In this section, we validated the ability of detecting 
rare drivers by our method. We adopted the three criteria 

to identify rare driver genes. Firstly, only the top 30 of 
driver genes in various samples were considered as 
drivers. Secondly, the alteration frequency should be lower 
than 2% in tumor samples. And finally the gene should not 
be reported in CGC [12].

In THCA, we found some novel rare driver genes. 
Of them, PTPN6 is the most promising. PTPN6 has 
been described as a tumor suppressor gene [26]. PTPN6 
participates in several cancer related pathways, including 
adherens junction, T cell receptor signaling pathway, B 
cell receptor signaling pathway, and Jak-STAT signaling 
pathway (see Supplementary Table 2). PTPN6 is the 11th-
ranked driver in our method, and it is altered in 0.23% 
THCA samples.

In KIRC, there were three candidate novel drivers 
including SRC, GRB2 and PTPN6. SRC is 5th-ranked 
driver in our method, and it is altered in 0.48% KIRC 
samples. SRC is human proto-oncogene, which was 
reported as a novel therapeutic target in renal cell 
carcinoma [27]. GRb2 (The adapter protein growth 
factor receptor-bound 2), a scaffolding adaptor protein, 
has recently been involved in a critical crosstalk 
between RTK signals and the intracellular signals [28]. 
The enrichment analysis shows that GRb2 participates 
in multiple cancer related pathway, such as chemokine 
signaling pathway, ErbB signaling pathway, MAPK 
signaling pathway, Jak-STAT signaling pathway (see 
Supplementary Table 2).There is a significant association 
between the protein tyrosine phosphatase PTPN6 
(SHP-1) and GRB2 expression, which may amplify 
tyrosine kinase signaling in human breast cancer [29]. 
Nevertheless, direct demonstration of the relationship 
between the PTPN6 (SHP-1) and GRB2 in KIRC 
has been reported. In the cluster 1 of the Figure 3, we 
can observe that PTPN6 and GRB2 connect with each 
other. GRB2 is the 6th-ranked driver in our method, 
and it is altered in 0.24% KIRC samples. PTPN6 is the 
12th-ranked driver in our method, and it is altered in 

Figure 2: Cumulative numbers of retrieved cancer genes annotated by 20/20 rule within top 25, 50, 75, and 100 of 
HNSC and KIRC, top 22, 44, 66, and 89 of THCA using four different methods.
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0.72% HNSC samples. These findings suggest potential 
crosstalk between mutant PTPN6 and GRB2.

In HNSC, two potential novel drivers we found are 
MAPK1 and SMAD2. SMAD2 is 28th-ranked driver in our 
method, and it is altered in 0.59% HNSC samples. The 
algorithm also identified a well-established tumor suppressor 
gene SMAD2. According to the pathway enrichment analysis, 
SMAD2 is involved in TGF-beta signaling pathway, Cell 
cycle, and Wnt signaling pathway (see Supplementary 
Table 2). In addition, SMAD2 mutations in human head 
and neck cancer have been reported [30]. Additionally, we 
identified one MAP kinase MAPK1, which is 19th-ranked 
driver in our method, and it is altered in 0.79% HNSC 
samples. We can observe that MAPK1 is involved in multiple 
pathways (see Supplementary Table 2). In a recent study, 
MAPK1 (p38) mediates epithelial-mesenchymal transition 
to drive HNSC metastasis [31].

Confirmation of cancer genes

In total, we found 89, 127, and 202 drivers in THCA, 
KIRC, and HNSC respectively (see Supplementary 

Table 1). The identified driver genes were overlapped with 
CGC and shown in Figure 4. In THCA, it can be seen 
that 28 driver genes out of top 89 driver genes are known 
driver genes in CGC (p-value < 2.2e-16). In HNSC, of 
these top 202 driver genes, 49 driver genes are in CGC 
(p-value < 2.2e-16). In KIRC, of these top 127 driver 
genes, 52 are identified in CGC. Our result indicates that 
the detected driver genes are enriched among known 
cancer related genes and cannot be selected randomly.

We examined the top 5 ranked in THCA, HNSC, 
KIRC respectively (Table 1). In addition, 12 genes have 
been functionally linked to cancer in multiple reports.

In THCA, EGFR is especially intriguing. It is a 
member of the protein kinase superfamily, and ranked 
first in the predicted THCA driver genes. EGFR mediated 
downstream signal transduction and was overexpressed 
in an aplastic thyroid cancer cell lines, rendering this 
receptor a potential target for molecular therapy [32]. The 
third-ranked gene, NRAS, encodes membrane-associated 
proteins that play a vital role in the transduction of signals 
[33], which has been reported in thyroid cancer [34]. The 
EP300 gene encodes p300, which is significant in the 

Figure 3: The gene modules identified using the top 50 genes and their corresponding interaction partners in KIRC. 
Genes in green ellipse represent the detected driver gene, while genes in blue ellipse represent the driver genes’ interaction partners.
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processes of cell proliferation and differentiation [35]. 
It has altered protein expression in thyroid cancer [36]. 
LYN has been previously reported in thyroid cancer [21]. 
PTPN11 encodes protein-tyrosine phosphatase SHP2, and 
their domains are involved in cellular signaling. Besides, 
PTPN11 was significantly increase expressed in human 
thyroid carcinoma [37]. All told, all the top 5 predicted 
driver genes have evidenced in the literature for their roles 
in THCA.

In HNSC, TP53 was the top ranked driver in our 
analysis. Three (TP53, PIK3CA, and EGFR) of the 
top 5 genes were previously known HNSC genes [38]. 
Daniel Martin and his colleges suggested that EP300 
genomic alternations may promote HNSC initiation and 
progression [39]. It is noted that FADD was ranked 5th 
in our result. FADD can recruit other proteins to active 
NFκB and MAPK pathways [40]. It was overexpressed 
and considered to be a driver gene in HNSC [41].

In KIRC, PBRM1 was the top ranked driver in our 
analysis. PBRM1, SETD2, and BAP1 were previously 
known HNSC genes and recently found to be altered in 
clear cell renal cell carcinoma [23, 42]. They are highly 
mutated (Table 1). SRC was identified as a novel rare gene. 
It is one of the markers for low-grade renal cell carcinoma 
[43]. EP300 is ranked 5th (Table 1) and we observed that 
it is mutated in 6 KIRC samples. It has been reported that 

EP300 behaves as a classical tumor-suppressor gene in 
human cancers [35].

EP300 was identified as a top gene in three datasets 
simultaneously (Table 1). It was 25th-ranked, 14th-ranked, 
and 9th-ranked in THCA, HNSC, and KIRC respectively 
by DawnRank method. In DriverNet, it seems the same 
situation. EP300 was 16th-ranked, 15th-ranked, 19th-
ranked in THCA, HNSC, and KIRC respectively by 
DriverNet method. These results further suggest that the 
important roles of EP300 in cancers.

DISCUSSION

In recent years, various computational approaches 
and tools have been developed to identify drivers, 
however, there are some limitations in detecting driver 
genes, for example, DriverNet has a bias toward long 
mutated genes. In two benchmark datasets, our method 
outperforms DriverNet, MUFFINN and frequency-based 
method in all three cancer types, although the performance 
of DawnRank is slightly higher than that of our approach 
in one of three databases. Our method is simple and 
parameter free. Meanwhile, the result indicates that our 
pipeline shows its ability to detect driver genes, even 
rare driver genes. Two potential reasons may contribute 
to the result. First, we consider the dynamic of network. 

Figure 4: Overlap of the known cancer genes identified for three cancers. Venn diagram represents the overlap between each 
cancer-specific driver genes and CGC. 572 known cancer genes were obtained from the CGC database, 49, 28, 52 of which appear in HNSC 
drivers, THCA drivers, and KIRC drivers respectively.
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Second, we construct a bipartite graph, which represents 
the relationship between the DCGs and the functional 
genes impacted by them in network. If a DCG impacts 
the more functional genes, the more likely it may be the 
driver. Our method has the following advantages. Firstly, 
this approach detects common and known drivers with a 
better performance than previous method. Secondly, it can 
filter out long genes with a higher mutation rate, such as 
the TTN gene which can’t contribute to cancer. Thirdly, 
it can find some potential co-expression gene pairs, for 
instance, PTPN6 and GRB2 in KIRC. Our benchmarking 
analysis suggests that our algorithm is robust to noise 
and works well in three TCGA cancer types, making 
it general to different cancer types if the mutation data 
and gene expression data are available. In essence, the 
approach demands information on the context of the DCG 
(differentially coexpressed gene) of interest, functional 
gene set that constitute known cancer related pathways, 
and the connections between genes in the global network. 
There are also, however, limitations. One of the limitations 
is that HPRD is not large enough, DCGs or functional 
genes not in the PPI were filtered out and it may ignore 
some candidates. This can be improved with the growth 
of the database of HPRD in the future. Another limitation 
is that the network used in our method is not patient-
specific or cancer-specific. Therefore, perturbations 
specific to patient may be obscured by this pipeline. 
The last limitation is that our approach detects potential 
drivers rely on the common effect of DCGs altering the 
functional gene. However, this may not be the case for 
all drivers. As more and more efforts are being devoted 
into understanding cancer genomes, we expect that our 
method’s ability to detect drivers would also improve.

Taken together, we developed a practical analysis 
pipeline to predict potential driver genes in cancer. Although 
this study focuses on THCA, KIRC and HNSC, the method 
is broadly applicable to any other cancer types for which 
mutation and expression data are available. In addition, our 
results demonstrate the efficiency of integrative analysis 
across three cancer types, not only the known cancer genes 
were identified, but also the potential rare drivers were 
detected. In future, we will combine the gene expression, 
copy number variation, and methylation data to construct a 
heterogeneous network. In addition, we will apply machine 
learning method to improve the performance. We expect this 
approach can generalize well to perform the future studies, 
including determine the optimal treatment tactics for each 
patient through integrating patient-specific omics data.

MATERIALS AND METHODS

Datasets and pre-processing

The RNASeqV2 data (level three), gene mutation 
data (level two) and CNV data were downloaded from 
TCGA data portal. RNAseq expression levels, available 
as RSEM (RNAseq by Expectation Maximization) 
were transformed to log2 (RSEM+1). The GISTIC 
(version 2) was applied to the DNA copy number data. 
The information of three cancer types used in our method 
was provided in Table 2. For gene expression dataset, NA 
values were replaced by mean value.

Mutation matrix

Mutation matrix combined somatic mutation data 
and CNV data by extracting genes from deleted and 
amplified fragments in CNV data. The common samples 
between the mutation data and CNV data were retained. 
Mutation matrix (i, j) is a binary matrix where M (i, j) =1 
indicates sample j have a gene i mutated and M (i, j) =0 
indicates sample j don’t have a gene i mutated.

Differentially coexpressed genes

Differential co-expression analysis is designed to 
examine the alternation in gene expression correlation 
between the tumor samples and the normal samples, which 
is developed as a complementary approach to traditional 
differential expression analysis [44]. DCGs were obtained 
by using Differential coexpression profile (DCp)function 
in DCGL (differentially coexpressed genes and links) 
package [44]. We used the Pearson Correlation Coefficient 
(PCC) to measure the relationships between the expression 
profiles of all gene pairs and calculated the false discovery 
rate (FDR) by Benjamini–Hochberg method to adjust the 
raw p values [45]. Gene with threshold of FDR less than 
0.25 were selected as DCGs [46].

Network construction and functional gene sets

The network is an undirected graph G (V, E) where 
V stands for the genes and edges (i, j) E  are weighted 
by PCC. Protein interaction network was sourced from 
HPRD (http://www.hprd.org) database and protein self-
interactions were removed, resulting in 39240 interactions 
among 9616 proteins. Functional gene sets (FGS) were 

Table 2: Overview of the number of samples for three cancer types with gene expression and mutation data

Cancer type Tumor expression samples Normal expression samples Somatic mutation samples

KIRC 534 72 417

HNSC 522 44 509

THCA 513 59 435
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obtained from [47], which contain all of the KEGG 
pathways [48] and 15 GO terms [49], which could be 
related to hallmarks of tumor [50]. Then a matrix was 
used to leverage to DCGs to their consequent effect on 
functional gene. The associations between DCGs and 
functional genes were built using a bipartite graph where 
left nodes represent DCGs and right nodes stand for 
functional genes. We formulate the network with DCGs = 
{g1,g2,…gn}, functional genes = {g1,g2,…gm}. Nodes gn in 
the left partition and nodes gm in the right interact have an 
edge, if gg is DCG, gm is a member of functional gene set, 
and gn and gm interact according to known PPI network.

Details of our algorithm

In this study, we developed a pipeline to identify 
drivers. Figure 5 shows the schematic overview of 
approaches used in our study. Firstly, using the DCp 
function in DCGL package, we picked out DCGs. 
To improve statistical confidence, DCGs must have 
FDR<0.25. Secondly, we computed the DCGs score 
(Z-score) as:

=
−µ
σ

d
z ,AF AF

AF

where dAF is the total score of weighted network 
between genes in the DCGs and the FGS, μAF is the 
expected mean of dAF, and σAF is the standard deviation of 
dAF. Thirdly, in order to improve the accuracy of detecting 
driver genes, mutation information was combined. 
Therefore, we calculated the number of each mutated gene 
in mutation matrix. We normalized it and got the mutated 
gene Z-score. Finally, the driver gene score was assigned 
by summing the corresponding DCG Z-score and mutated 
gene Z-score. We only considered genes with driver gene 
score ≥2 as potential driver genes.

Performance benchmarking analysis of our 
method

In order to metric the efficiency of our results, we 
took CGC (http://cancer.sanger.ac.uk/cancergenome/
projects/census/) as a benchmark to evaluate the effect 

Figure 5: Identification of cancer related genes based on protein-protein interactions (PPIs). 
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of our method. In practice, the gold standard of known 
drivers is impractical in the absence of ground truth. 
However, well-studied CGC provides an approximate 
benchmark of known drivers [12, 13]. Besides, we 
consider additional dataset to assess the method. As 
defined by the 20/20 rule, only 138 driver genes have 
been discovered to date. Both of these datasets were used 
to assess the accuracy of our method. We compared our 
method with the DriverNet, DawnRank, frequency-based 
method and MUFFINN method.

In accordance with both approaches mentioned 
above, we used the same datasets to perform the analysis 
and restricted the comparisons to three tumor types only 
(HNSC, KIRC, and THCA). We adopted three measures 
(Precision, Recall and F1 score) as follows:

( ) ( )
( )=

∩
Precision

#Mutated genes inCGC #Genes found inourmethod
#Genes found inourmethod

( ) ( )
( )=

∩
Recall

#Mutated genes inCGC #Genes found inourmethod
#Mutated genes inCGC ,

F1score 2 Precision Recall
Precision Recall

= × ×
+ .

Significance estimation of the potential driver 
genes

In order to evaluate the significance of the identified 
driver genes, we performed a hypergeometric test to 
calculate the probability of a random overlap:

∑( )≥ = −

−
−

=

−

P X x 1

M
k

N M
n k

N
n

,
k 0

x 1

.

where N is the total number of genes, M and n are 
the number of genes in two sets, and k is the number of the 
overlapped genes of the two sets.

Functional enrichment analysis of driver genes 
and recognition modules

In order to annotate driver genes detected in our 
result, we used the online DAVID [51] website and 
observed significant enrichment of these genes in the 
term of KEGG pathway. Briefly, KEGG pathway terms 
were annotated to statistical significance in the gene set. 
Enrichment was calculated through the hyper-geometric 
test using a FDR less than 0.05. Molecular Complex 
Detection (MCODE) [52] that detects densely connected 
regions in large protein interaction networks were used to 
recognize modules. MCODE weights all nodes depended 

on their local network density by setting the highest k-core 
of the vertex neighborhood. We set the highest k-core is 2.
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