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ABSTRACT

NSC67657 is a new steroid drug that induces monocytic differentiation of acute 
myeloid leukemia cells. Here, we demonstrate that NSC67657 has opposing effects 
on expression of downstream targets of inhibitor of β-catenin and TCF (ICAT) and 
Wnt signaling in HL60 cells. ICAT binds to β-catenin, and this interaction is further 
increased in NSC67657-differentiated cells. ICAT overexpression decreases expression 
of Wnt downstream targets and increases sensitivity of HL60 cells to NSC67657, 
while ICAT silencing increases Wnt signaling and delays the NSC67657-induced cell 
differentiation. In addition, pharmacological inhibition of Wnt/β-catenin signaling 
increases the NSC67657-induced cell differentiation, while activation of Wnt/β-catenin 
signaling inhibits the differentiation, indicating Wnt/β-catenin signaling inhibits 
NSC67657-induced monocytic differentiation of HL60 cells. Our data demonstrate 
the opposing roles of ICAT and Wnt signaling in the NSC67657-induced monocytic 
differentiation, and suggest that ICAT and Wnt signaling may serve as therapeutic 
targets for leukemia chemotherapy.

INTRODUCTION

Therapeutic strategies inducing cell differentiation 
offer conceptually elegant approaches to eradicate 
neoplastic cells from the human body. Successful 
induction of cell differentiation was first achieved with the 
introduction of retinoids for treating acute promyelocytic 
leukemia [1–3]. Harris et al. reported that sterol mesylate 
(NSC67657) was a potent activator of CCAAT enhancer 
binding protein alpha (C/EBPα) and could induce 
differentiation of HL60 cells into mature monocytes 
instead of granulocytes [4]; however, the responsible 
signaling pathways remain unclear.

All-trans retinoic acid and NSC67657 have 
been used to induce differentiation of HL60 cells to 
granulocytes and monocytes, respectively. Comparative 
proteomics studies identified the differentiation-specific 

protein ICAT and demonstrated its increased expression 
in differentiated HL60 monocytic cells [5]. ICAT is an 
81 amino acid protein previously identified in a yeast 
two-hybrid screen, using the armadillo repeat region of 
β-catenin as a bait. ICAT inhibits β-catenin binding to 
T cell factor-4 (TCF-4), disrupts β-catenin/Tcf/DNA 
complexes, and decreases reporter gene activation by the 
β-catenin/ TCF-4 complex [6, 7].

β-catenin, a central protein in the Wnt pathway [8], 
plays essential roles in cell–cell adhesion and nuclear gene 
expression [9]. The canonical Wnt signaling is critical 
throughout vertebrate development, since it activates 
target genes that determine cell fate [8, 10]. Excessive 
β-catenin signaling has been implicated in various human 
cancers [11]. Gene activation is ultimately controlled by 
a transcriptional complex containing the DNA binding 
factor T cell factor (TCF) and β-catenin. In this complex, 
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the COOH-terminal region of β-catenin serves as a 
transcriptional coactivator by recruiting components of the 
general transcriptional machinery, including TATA binding 
protein, proteins involved in chromatin modification, 
such as the histone acetyltransferase p300/cAMP binding 
protein, and a component of the SWI/SNF chromatin 
remodeling machinery, BRG-1 [6, 7, 12].

In hematopoiesis, β-catenin is involved in stem 
cell self-renewal and differentiation [13, 14]. It is 
expressed in primary human CD34+ progenitor cells 
and downregulated during myeloid differentiation, so 
that CD33+CD34- cells at the myeloblast stage have 
undetectable β-catenin levels. Primary acute myeloid 
leukemia (AML) blasts have a range of expression levels 
of β-catenin, apparently not correlating with CD34 
expression, indicating that the link between β-catenin 
downregulation and myeloid differentiation is uncoupled 
in leukemia. In addition, β-catenin is detectable in the 
nuclear fraction of AML blasts, suggesting its involvement 
in transcriptional activation [15]. It is unclear whether 
ICAT and β-catenin are involved in differentiation of acute 
myeloid leukemia cells.

Previous studies have indicated that ICAT inhibition 
affects the β-catenin/TCF4 interaction and the downstream 
target genes in other tumor types. However, the ICAT/β-
catenin signaling in acute myeloid leukemia cells remains 
incompletely understood. In addition, it remains unknown 
whether the Wnt/β-catenin signaling participates in the 
NSC67657-induced monocytic differentiation of acute 
promyelocytic leukemia cells.

RESULTS

NSC67657 induces monocytic differentiation of 
HL60 cells

Proliferation of HL60 cells was significantly 
inhibited by treatment with 10 μM NSC67657 for 5 days 
(Figure 1A). The cell size increased, but there was no 
change in cell division and nuclei were irregular, without 
mutations. Alpha naphthol acetate esterase (α-NAE) 
activity was significantly inhibited by fluoride (>50%) 
and the percentage of CD14+ HL60 cells exceeded 90% 
(Figures 1B and 1C). These findings indicated that HL60 
cells differentiated into monocytes. Furthermore, analysis 
of surface phosphatidylserine and ultramicrostructural 
observation showed no signs of apoptosis during cell 
differentiation (Figures 1D and 1E).

NSC67657 increases ICAT expression, but 
inhibits Wnt signaling protein levels

ICAT protein levels in the NSC67657-treated group 
were increased compared to the control group (P=0.002). 
In contrast, expression of target proteins of the Wnt 

signaling pathway, cyclin D1, TCF1, and c-Jun, was 
decreased compared to the control group (P=0.01, P=0.03, 
and P=0.01, respectively). However, NSC67657 did not 
affect expression of β-catenin and TCF-4 proteins (P=0.14 
and P=0.19), as shown in Figure 2.

NSC67657 increases nuclear ICAT levels, 
while decreasing β-catenin, and inducing its 
cytoplasmic aggregation

NSC67657 increased the ICAT nuclear protein 
levels in HL60 cells (P=0.001), while it suppressed 
the protein levels of β-catenin (P=0.001); there was no 
change in the TCF-4 protein levels (P=0.12) (Figure 
3). Immunofluorescence microscopy revealed an 
increased nuclear and cytoplasmic ICAT (red) staining 
in NSC67657-treated cells, while nuclear staining 
of β-catenin (green) was weak or absent. NSC67657 
treatment also induced a green fluorescent staining of 
cytoplasmic aggregates (Figure 4).

ICAT interacts with β-catenin in HL60 cells

We used β-catenin-coated agarose beads for co-
immunoprecipitation and detection of ICAT. ICAT 
was detected both in NSC67657-differentiated and 
undifferentiated HL60 cells. The ICAT levels in 
differentiated cells were higher than in untreated cells 
(P=0.01), indicating interaction between β-catenin and 
ICAT, and suggesting that the interaction between ICAT 
and β-catenin increases in differentiated cells (Figure 5).

ICAT promotes NSC67657-induced monocytic 
differentiation of HL60 cells

HL60 cells transfected with recombinant plasmid 
pDsRed-ICAT had increased ICAT protein expression 
(P=0.005) (data not shown), while HL60 cells transfected 
with RNAi-ICAT had decreased ICAT levels (suppression 
> 87%), validating our transfection protocol. NSC67657-
treated cells overexpressing ICAT had decreased levels 
of Wnt signaling proteins, cyclin D1, TCF-1, and 
c-Jun (P=0.01). The percentage of CD14+ cells in cells 
overexpressing ICAT was 46.24±6.14%, significantly 
higher than in cells transfected with control plasmid 
(19.08±4.73%, P=0.003). In contrast, NSC67657-treated 
cells with suppressed ICAT expression had increased 
levels of the Wnt proteins (P=0.01). In these ICAT-
silenced, NSC67657-treated cells, the percentage of 
CD14+ cells was 8.33±3.14%, significantly lower than 
in cells transfected with control plasmid (19.08±4.73%, 
P=0.0001). Cell morphology and ultrastructure were 
consistent with the CD14+ expression (Figure 6), and 
indicated that ICAT promotes the NSC67657-induced 
monocytic differentiation of HL60 cells.
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Wnt signaling inhibits NSC67657-induced 
monocytic differentiation of HL60 cells

Inhibition of Wnt/β-catenin signaling pathway by 
XAV-939 increased the proportion of CD14+ cells from 
20.13±4.85% to 33.99±4.37%, in NSC67657-treated 
cells. In contrast, activation of Wnt/β-catenin signaling 
by LiCl decreased the number of CD14+ cells after 
NSC67657 treatment to 13.17±2.39%, indicating that the 

Wnt/β-catenin signaling inhibits the NSC67657-induced 
monocytic differentiation of HL60 cells.

DISCUSSION

NSC67657 is a highly efficient inducer of monocytic 
differentiation [4]. The NSC67657- induced ICAT levels in 
HL60 cells suggested a link between the tumor suppressive 

Figure 1: NSC67657 induces monocytic differentiation of HL60 cells. (A) HL60 cells (1×105 cells/ml) were incubated at 37°C 
for 5 d, with or without various concentrations of NSC67657. Proliferation of HL60 cells was assessed by the MTT assay. Judging from 
growth and differentiation states of the cells, 10 μM NSC67657 was the optimal drug concentration. (B) After 5 d treatment with NSC67657, 
HL-60 cells exhibited monocytic differentiation, with irregular nuclei and hypochromatic endochylema (arrow) (Wright’s stain, 400×). By 
esterase staining, the percent positive staining in the NSC67657 treated group was as high as 81.75±9.22%. This was decreased to 11.7% 
(inhibition rate > 50%) with NaF treatment (NAE stain, 400×). (C) HL60 cells treated with various differentiation inducers showed a 
time dependent increase in the proportion of differentiated cells. They were regarded as being completely differentiated after continuous 
treatment with selected drug concentrations for 5 d. At this time, the proportion of CD14 positive cells in the NSC67657 treated group was 
greater than 90%. (D) Apoptosis was evaluated by flow cytometry using fluorescein isothiocyanate-labeled annexin V. We found that few 
cells underwent apoptosis during HL60 cell differentiation. (E) Transmission electron micrographs (13,000 ×) of HL60 cells treated with 
NSC67657 (10 μM) or untreated. In untreated cells, chromatin was porous with the development of mitochondria. However, in drug treated 
cells, the heterochromatin was side-concentrated and azurophil granules were widely dispersed throughout the endochylema. Evidence of 
apoptosis, such as karyopycnosis, apoptotic bodies and vacuoles were not observed in any of the electron microscopic fields examined.
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Figure 2: Expression of ICAT and Wnt/β-catenin signaling proteins during NSC67657-induced monocytic 
differentiation. HL60 cells were treated with 10 μm NSC67657 for 5 d, and total protein was extracted and subjected to western blotting. 
In control samples, normal culture medium was added without drug, and total protein was extracted using the same procedures. Expression 
of ICAT protein in the NSC67657 treated group (0.31±0.02) was significantly higher than in the control group (0.09±0.06) (P=0.002). There 
was no difference (P=0.14) between β-catenin protein expression in the treated (0.22±0.03) and control (0.23±0.02) groups. Expression 
of cyclin D1 protein in the treated group (0.38±0.07) was significantly lower than in the control group (0.60±0.06) (P=0.001). Protein 
expression of TCF-1 in the treated group (0.58±0.07) was significantly lower than in the control group (0.74±0.05) (P=0.008). There was 
no difference (P=0.19) in TCF-4 protein expression in the treated (0.07±0.03) and control (0.08±0.02) groups. Protein expression of c-Jun 
in the treated group (0.21±0.05) was significantly lower than in the control group (0.41±0.03) (P=0.009).

Figure 3: Nuclear protein levels of ICAT, β-catenin, and TCF-4 during NSC67657-induced monocytic differentiation. 
HL60 cells were treated with 10 μM NSC67657 for 5 d and nuclear proteins extracted and subjected to western blotting. In control samples, 
normal culture medium was added without drug and nuclear proteins extracted using the same procedures. Nuclear levels of ICAT protein 
in the NSC67657 treated group (0.58±0.05) were significantly higher than in the control group (0.31±0.07) (P=0.001). There was no 
difference (P=0.16) in nuclear TCF-4 protein levels in the treated (0.24±0.04) and control (0.19±0.02) groups. Nuclear β-catenin protein 
levels in the treated group (0.13±0.04) were significantly lower than in the control group (0.68±0.12) (P=0.001).
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effects of NSC67657 and deregulated Wnt signaling [5, 
6]. Mutations involving components of the Wnt signaling 
cascade, especially in APC or β-catenin, are essential for 
initiation of many cancers, including colorectal cancer 
[16]. In the normal intestinal epithelium, these molecules 
are part of a multiprotein complex. In this complex, 
β-catenin is phosphorylated by GSK-3β and targeted 
for degradation by the ubiquitin-proteasomal pathway. 
Mutations in APC or β-catenin lead to dissociation of 

the complex, causing accumulation of unphosphorylated 
β-catenin, which translocates to the nucleus and acts as 
a transcriptional coactivator of TCF transcription factors 
[17, 18]. Activation of the Wnt/β-catenin/TCF signaling 
pathway promotes induction of downstream target genes, 
such as cyclin D1, c-myc, PPARδ, Tcf-1, matrilysin, and 
CD44 [19–23]. Induction of these genes dramatically 
affects cell and tissue development and oncogenesis [24, 
25].

Figure 4: Immunofluorescence staining of ICAT and β-catenin during NSC67657-induced monocytic differentiation. 
The upper left panel shows nuclei stained with DAPI (blue fluorescence). The upper right panel shows ICAT protein bound to TRITC-
labeled secondary antibody (red fluorescence). The lower left panel shows β-catenin bound to FITC-labeled secondary antibody (green 
fluorescence). The lower right panel shows overlaid images for nucleus, ICAT and β-catenin staining in HL60 cells (8000×). The figure 
shows that, after differentiation of HL60 cells was induced by NSC67657, the intensity of ICAT protein staining in the nucleus and 
cytoplasm was increased, and that for β-catenin protein was almost undetectable in the nucleus and was aggregated in the cytoplasm.

Figure 5: ICAT and β-catenin interaction analyzed by co-IP during NSC67657-induced monocytic differentiation. The 
figure shows data from NSC67657 treated and control cells, collected in the logarithmic growth phase with cell concentrations adjusted 
to 1 × 106 cells/ml. The prerequisite for success of this experiment was the presence of target protein in the supernatant of the cell lysates. 
With equivalent protein loading, the extent of protein–protein interaction could be estimated by densitometry. We found that the HL60 
cells treated with NSC67657 had darker ICAT protein bands than the control group. This confirmed the presence of an interaction between 
β-catenin and ICAT proteins and that this interaction was increased with the drug treatment.
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In our study, we found that the NSC67657-induced 
monocytic differentiation of HL60 cells increased ICAT 
protein levels and decreased Wnt/β-catenin signaling 
downstream targets. ICAT can inhibit the Wnt/β-catenin 
signaling pathway by binding to β-catenin and competing 
with its ability to bind the transcription factor TCF [6, 
7]. Our study is the first to demonstrate the interaction 
between ICAT and β-catenin in acute promyelocytic 
leukemia HL60 cells, and show that this binding increases 
during monocytic differentiation. Interestingly, while the 
overall β-catenin levels were not significantly changed 
during NSC67657-induced differentiation, its nuclear 
levels decreased, and cytoplasmic aggregation appeared. 
This suggested that NSC67657 did not inhibit expression 
of the downstream target proteins of the Wnt/β-catenin 
signaling through β-catenin degradation [26]. In addition, 

these findings indicated that NSC67657 decreased 
the nuclear import of β-catenin, thus preventing its 
interaction with the TCF/LEF transcription factor family, 
and transcription of Wnt target genes [27]. However, 
β-catenin may be involved in monocytic differentiation, 
since myelomonocytic differentiation was impaired when 
mutant β-catenin was retrovirally transfected into normal 
progenitor cells [28]. Previous studies have demonstrated 
β-catenin nuclear translocation in mesenchymal ST2 cells, 
where JNK2 promotes nuclear translocation of β-catenin 
by phosphorylation at Ser-191 and Ser-605 [29, 30]. In 
APC mutant tumor cells, Pygo serves as a nuclear anchor 
protein that binds with BCL-1 and drives the nuclear entry 
of β-catenin [31, 32]. APC and axin can bind to β-catenin 
and transfer it to the cytoplasm via the nuclear membrane 
CRM1 receptor [33–36]. Cby, Lzts2, and other proteins 

Figure 6: Effect of ICAT on NSC67657-induced monocytic differentiation. The figure shows untreated HL60 cells (Control), 
NSC67657 treated cells (N), NSC67657 treated ICAT-overexpressing cells (O/N) and NSC67657 treated ICAT-silenced cells (R/N). (A) 
After 24 h drug treatment, levels of proteins related to the Wnt signaling pathway were lower in ICAT overexpressing models (P=0.02), 
but higher in ICAT-silenced models, compared to drug-treated normal cells (P=0.01). (B) Cellular morphology of drug treatment groups 
were observed using Wright's staining. The cytoplasm of drug treated normal HL60 cells was shallow, with protuberant pseudopodia 
and irregular edges and the nucleus was kidney-shaped. In ICAT-overexpressing HL60 cells, however, there were large cell bodies and 
more cytoplasm and a visibly irregular nuclear morphology, compared with in other treatment groups. In ICAT-silenced HL60 cells, the 
cytoplasm had a darker color and the nuclei were not significantly changed, but still immature. (C) Various groups of HL60 cells were 
treated with 10 μM NSC67657 for 24 h and ultrastructural observation (10,000×) conducted. Chromatin thickening and margination 
occurred in all drug-treated groups. Obvious azurophilic granules were present in ICAT-overexpressing cells, and there were also irregular 
nuclei, heterochromatic margination and swollen mitochondria. In addition, these cells showed significantly inhibited proliferation and a 
trend toward myeloid differentiation.
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are also involved in β-catenin cytoplasmic transport 
[37–39]. However, the mechanism of NSC67657-induced 
β-catenin cytoplasmic aggregation is unclear.

Our results indicate that ICAT inhibits the Wnt/β-
catenin signaling during NSC67657-induced monocytic 
differentiation. ICAT may act as a bridge between 
NSC67657 and the Wnt/β-catenin pathway. Since 
modulation of the Wnt/β-catenin signaling affected 
the NSC67657-induced cell differentiation, these data 
indicate that the Wnt/β-catenin signaling is involved in 
the NSC67657-induced monocytic differentiation, even 
though additional mechanisms are likely to be involved. 
This is supported by our observation that, when either 
ICAT expression or the Wnt/β-catenin signaling was 
inhibited, HL60 cells were still partially differentiated, 
though their differentiation efficiency was greatly 
decreased. Future studies should determine whether ICAT 
is the only factor regulating the Wnt/β-catenin signaling 
during NSC67567-induced monocytic differentiation.

In conclusion, our study demonstrates that 
ICAT expression increases during NSC67657-induced 
monocytic differentiation, and indicates that while ICAT 
promotes the differentiation, Wnt signaling inhibits the 
NSC67657-induced monocytic differentiation. Together, 
our data suggest that ICAT and Wnt signaling may serve 
as therapeutic targets to modulate the differentiation of 
acute myeloid leukemia cells.

MATERIALS AND METHODS

Cell culture

Human promyelocytic leukemia HL60 cells were 
from the American Type Culture Collection (Manassas, 
VA, USA) and were maintained in Dulbecco's Modified 
Eagle's medium (DMEM) supplemented with 10% fetal 
calf serum (Invitrogen, Carlsbad, CA, USA), 2 mM 
glutamine and antibiotics (100 U/ml penicillin and 100 
μg/ml streptomycin) at 37°C. The monocytic inducer 
NSC67657 was a kind gift from the National Cancer 
Institute (Bethesda, MD, USA). Cells (2.0×105 cells/
ml) were treated with 10 μM NSC67657. On day 3, 
cell cultures were split (1:2), NSC67657 was added to 
maintain its concentration, and cells were incubated for 
another 2 days.

Cellular differentiation and apoptosis detection

3-(4, 5-dimethyl-thiazolyl-2)-2, 5-diphenyl 
tetrazolium bromide (MTT) assay was used to analyze 
cell proliferation, and cytochemical staining (Wright's 
and α-naphthl acetate esterase) was used to assess cell 
differentiation. The level of cellular differentiation was 
determined by detecting the cell surface CD14 antigen 
(Santa Cruz, CA, USA) with a fluorescence-activated 

cell-sorter (FACS) EPICSXL-MCL (Beckman/Coulter, 
Paris, France). Cell apoptosis was analyzed by flow 
cytometry using fluorescein isothiocyanate-labeled 
annexin V (TaKaRa, Kyoto, Japan). Ultra-microstructure 
was observed under a transmission electron microscope 
(Hitachi-7650, Tokyo, Japan).

Western blotting

Whole cell extracts from HL60 cells were prepared, 
and protein concentration was quantified with the Bradford 
method. Samples containing 100 μg of protein were 
separated by 15% SDS-PAGE gel electrophoresis, and 
transferred to PVDF membrane. Membranes were blocked 
and incubated with primary antibodies, as indicated for 
each target protein, at 4°C overnight. Next, membranes 
were washed and incubated with horseradish peroxidase 
(HRP) labeled secondary antibodies, then developed 
with an ECL kit (Pierce, MA, USA), following the 
manufacturer's instructions. Quantity One 4.6.2 software 
was used for gray-value analysis of the electrophoresis 
bands in each group, to compare differential levels of 
ICAT, β-catenin and TCF-4 proteins and the Wnt signaling 
pathway downstream target proteins TCF-1, cyclin D1 and 
c-Jun. Rabbit anti-human β-catenin antibody was from 
Abcam (Cambridge, England), goat anti-human ICAT, 
α-tubulin, TCF4, cyclinD1, c-Jun and TCF1 antibodies 
were from Santa Cruz Biotechnology (Santa Cruz, CA, 
USA).

Nuclear extract preparation and 
immunofluorescence microscopy

Nuclear proteins were extracted with the EpiQuik 
Nuclear Extraction Kit (Epigentek, CA, USA). Pre-cooled 
buffer, provided in the kit, was added in accordance with 
the packed cell volume, mixed and centrifuged. Pre-cooled 
nuclear protein extracting solution (1001 μl) was added 
to each pellet, representing the nuclear material and the 
samples were incubated in an ice bath for 30 min. After 
intermittent shaking, samples were centrifuged at 40 000g 
for 10 min at 4°C. The supernatant protein samples were 
then collected for further analysis. Using these methods, 
ICAT, β-catenin and TCF-4 proteins were analyzed.

HL60 cells, treated with NSC67657 for 5 d or 
untreated, were collected, fixed with cold acetone for 
30 min then blocked with 150 μl/ml fetal bovine serum. 
After washed with PBS, samples were incubated with 
the appropriate primary antibodies overnight at 4°C. 
After washing again, appropriate RBITC or FITC labeled 
secondary antibodies and DAPI dye (Invitrogen, CA, 
USA) were added, with incubation times of 30 and 3 min, 
respectively, prior to observation under a confocal laser 
scanning microscope.
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Co-immunoprecipitation (co-IP)

HL60 cells, treated with NSC67657 for 5 d or 
untreated, were collected and cell lysis buffer and cell 
protease inhibitor Phenylmethanesulfonyl fluoride (PMSF) 
were added. After cells were lysed, 8 μg anti-β-catenin 
antibody was added and samples incubated, with slow 
shaking, overnight at 4°C. Protein A agarose beads (100 
μl) were added to the samples with primary antibody in 
lysis buffer and tubes were incubated at 4°C, with slow 
shaking, for 2–4 h, enabling binding of the antibody 
and Protein A beads. Beads were then collected by 
centrifugation and washed at 4°C. Finally, 2× SDS sample 
loading buffer was added and samples boiled for 5 min, 
then centrifuged to obtain the supernatants. An anti-ICAT 
antibody was used to determine levels of ICAT by western 
blotting. Colon cancer cell associated SW480 protein was 
used as the positive control.

Cell transfections

The pDsRed-ICAT recombinant plasmid was used, 
along with the following synthetic primers: sense 5'-GGG
AATTCATGAACCGCGAGGGAGCAC-3' and antisense 
5'-GGGGATCCCAGCTACTGGCCTCCGGTCTTCCGT
CTC-3'. Lentiviral vector (GV248, hU6-MCS-ubiquitin-
EGFP-IRES-puromycin) was provided by Shanghai Gene 
Chemistry Company. The interference target sequence was 
TCCGGAGGAGATGTACATT. The RNAi framework 
building synthetic sequence was sense 5'-ccggagTCCGG
AGGAGATGTACATTctcgagAATGTACATCTCCTCCG
GActtttttg-3' and antisense 5'-aattcaaaaaagTCCGGAGGA
GATGTACATTctcgagAATGTACATCTCCTCCGGAct-3'. 
Recombinant plasmids (pDsRED-ICAT), which has been 
constructed before, was transferred into HL60 cells using 
electroporation technique. LV-ICAT-RNAi vector, which 
was firstly packaged and concentrated, then transfect HL60 
cells. The transfection and interference efficiencies were 
identified. In HL60 cells, NSC67657 was used to produce 
ICAT overexpression and ICAT-RNAi to decrease ICAT 
expression. After 24 h of these treatments, expression of 
Wnt pathway downstream target proteins was analyzed 
and cell surface differentiation antigen CD14 expression, 
cell morphology and ultrastructure examined, before and 
after the drug treatments. This enabled assessment of the 
role of ICAT in NSC67657-induced cell differentiation.

Modulation of Wnt signaling in NSC67657-
treated HL60 cells

HL60 cells were harvested during the logarithmic 
growth phase. A portion of the cells was treated with10 
μM NSC67657 for 24 h and then cells were harvested 
again by centrifugation. Another portion was treated 
with 20 μM XAV-939 (MCE, NJ, USA) for 3 d and cells 
were harvested again by centrifugation. In these cells, 
the supernatant was removed and 10 μM NSC67657 was 

added, followed by incubation for 24 h. A third portion 
of cells was treated with 20 mM LiCl for 24 h and cells 
collected by centrifugation. These were then treated with 
10 μM NSC67657 for 24 h. For the control group, culture 
medium with no further additions was used, and cells 
were incubated for the same time periods under equivalent 
culture conditions. CD14 expression in all cells was 
detected with an upflow cell meter.

Statistical analyses

Statistical analysis was performed using the program 
SAS9.4 (version 9.4; SAS Institute, Cary, NC). P-values < 
0.05 were considered statistically significant. Differences 
in expression of cell surface differentiation antigens and 
other proteins, before and after HL60 cell treatments, were 
compared using a t-test.
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