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ABSTRACT

The present study was designed to explore the molecular mechanism at the 
early stage of hepatocarcinoma (HCC) and identify the candidate genes and pathways 
changed significantly. We downloaded the gene expression file dataset GSE6764 from 
GEO, adopted the Robust Multi-array Average (RMA) algorithm to preprocess the raw 
file. 797 differentially expressed genes (DEGs) were screened out based on the SAM 
method using R language. Ingenuity Pathway Analysis (IPA) was used to perform 
canonical pathway analysis in order to calculate the most significantly changed 
pathways and predict the upstream regulators. In order to confirm the results from 
the DEGs which based on the individual gene level, the gene set enrichment analysis 
(GSEA) was done from the gene set level and the leading edge analysis was performed 
to find out the most appeared genes in several gene sets. The PPI network was built 
using GeneMANIA and the key genes were calculated using cytoHubba plugin based 
on cytoscape 3.4.0. We found that the Cell Cycle: G2/M DNA damage checkpoint 
regulation is the top-ranked pathways at the early stage of HCC by IPA. The high 
expression of several genes including CCNB1, CDC25B, XPO1, GMPS, KPNA2 and MELK 
is correlated with high risk, poor prognosis and shorter overall survival time in HCC 
patients by use of Kaplan-Meier Survival analysis. Taken together, our study showed 
that the G2/M checkpoint plays a vital role at the early HCC and the genes participate 
in the process may serve as biomarkers for the diagnosis and prognosis.

INTRODUCTION

Hepatocellular carcinoma (HCC) is the fifth most 
common cause of cancer and responsible for a third of 
the cancer-related deaths worldwide. The occurrence of 
HCC comprises many changes such as gene mutations, 
chromosomal aberrations and molecular pathways which 
always accompanied by cell cycle dysregulation, evasion 
of apoptosis [1]. So far, the best therapeutic approach 
for the HCC patients is liver transplantation which can 
eliminate HCC. However, recurrence rates remain high. 
Methods for early HCC detection are often evaluated on 

specificity and sensitivity [2] and many guidelines have 
been established for the early liver cancer diagnosis [3].

To identify potentially useful biomarkers and 
targets for the early diagnosis of HCC, the molecular 
mechanism of the cancer has been studied intensely 
especially the onset of HCC [4-8]. SPRTN could decrease 
DNA replication stress in DNA replication and G2/M-
checkpoint regulation and the mutation of SPRTN could 
cause early onset of hepatocellular carcinoma [9]. In order 
to determine candidate genes and the most significant 
pathways associated with the early stage of HCC, we 
performed the individual and gene set level analysis by 

www.impactjournals.com/oncotarget/              Oncotarget, 2017, Vol. 8, (No. 44), pp: 76305-76317

                                                             Research Paper



Oncotarget76306www.impactjournals.com/oncotarget

use of a series of bioinformatics approaches. Especially, 
the differential expressed genes (DEGs) were screened 
out using the SAM method and the pathways enrichment 
was performed using Ingenuity Pathway Analysis (IPA). 
Furthermore, in order to avoid the drawback of individual 
gene analysis, GSEA was performed to verify the former 
result. Then, we built the PPI network from DEGs to 
identify the key genes using cytoHubba plugin. And then 
the co-expression network was built from the key genes by 
use of the geneMANIA plugin based on Cytoscape.

RESULTS

Microarray analysis and data pre-processing

In order to guarantee the quality of every chip before 
the next analysis, we performed quality control (QC) for 
every raw file. The results of QC plot and box plot before 
and after normalization were shown in Figure 1.

Identification of DEGs

A total of 981probes were screened out at the delta 
= 2.44 with the FDR<0.1% (Figure 2A) (Supplementary 
Table 1). The minimum FDR value was reserved if 
several probes corresponded the same gene. At last, 797 
DEGs between the early HCC and normal controls were 
screened out using SAM, including 421 up-regulated and 

376 down-regulated genes (Supplementary Table 1). All of 
these DEGs are classed into 14 types according to IPA as 
shown in Figure 2B.

According to the classification, enzymes, TFs, 
transporter, kinase composed most of the DEGs.

Canonical pathway analysis

We compared the early HCC group with the control 
group using IPA tool. 78 canonical pathways were 
identified with a p-value<0.05 and the top 26 pathways 
associated with the onset of HCC are shown in Figure 3. 
Cell Cycle: G2/M DNA Damage Checkpoint Regulation, 
LXR/RXR Activation, Folate Transformations I, 
Interferon Signaling, Superpathway of Serine and Glycine 
Biosynthesis I, Role of NFAT in Regulation of the Immune 
Response are the most significant changed pathways in 
HCC. Notably, 11 genes participated in G2/M DNA 
damage checkpoint regulation are all up-regulated.

The upstream regulator analysis

The upstream regulator analysis was performed by 
IPA and 7 transcription factors (TFs) were predicted to be 
activated and 6TFs be inhibited as shown in Table 1. The 
7 predicted activated TFs and their target genes are shown 
in Figure 4. The DEGs regulated by FOXO1 participate in 
cell cycle mainly.

Figure 1: The QC plot and box plot before and after normalization. (A) The quality control (QC) plot analysis of the raw data. 
(B) The box plot for the data before normalization. (C) The box plot for the data after normalization.
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Figure 2: (A) Plot of the observed d-values vs. the ordered expected d-values. Each gene is represented by a dot, and the differentially 
expressed genes are colored in green. Compared to control group, there are 421 genes being significantly up-regulated (green dots above) 
and 376 genes being significantly down-regulated in HCC (green dots below) at an FDR of 0.1%. (B) Plot of the number of significant genes 
vs. types identified from DEGs from IPA.

Figure 3: The most representative canonical pathways associated with the early stage of HCC are shown from Ingenuity 
Pathway Analysis (IPA). The number of DEGs are shown in the figure. Red represents the up-regulated genes, the green 
represents the down-regulated genes and the grey represents the no overlap genes with dataset. The significance (-log p value) 
of every pathway is indicated in parenthesis.
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Gene set enrichment analysis confirmed the 
enrichment of G2/M checkpoint at the early 
stage of HCC

The results from IPA showed that G2/M checkpoint 
regulation was the most significantly changed biological 
process which relates to cell proliferation closely. So we 
selected 14 gene sets related to the G2/M checkpoint from 
all 15142 gene sets in GSEA to confirm the enrichment 
of G2/M checkpoint or related process (Supplementary 
Table 2). We set the number of permutations was 1000, 
the permutation type was gene-set, the max and min size 
of gene sets selected was 500 and 10 respectively with the 
other parameters were default. As a result, 13/14 genes 
sets were up-regulated in HCC with 7 gene sets were 
significantly enriched at FDR<25% and one gene set was 
enriched at nominal p-value<0.05. 1/14 gene sets was up-
regulated in the control group (BHATI_G2M_ARREST_
BY_2METHOXYESTRADIOL_DN). The enrichment 
plot of 8 up-regulated gene sets are shown in Figure 5.

Leading edge analysis

In order to determine which genes appeared frequently 
in 8 genes sets associated with G2/M checkpoint and explore 
the genes that have the highest impact on G2/M checkpoint, 8 

gene sets were dedicated to perform the leading edge analysis 
as shown in Figure 6. Three terms from GO overlapped 
mostly. CCNA2 appeared in 7 gene sets, CDC25B appeared 
in 6 gene sets, and NEK2,NBN,CCNB1,CDC7,ATM,XPO1,
MRE11A,CENPF,TAOK3 appeared in 3 gene sets.

PPI network construction and analysis from all 
DEGs

From the 797 DEGs, a network with 721 nodes and 
30900 edges was constructed using GeneMANIA plugin. 
And eleven scoring methods including the newly developed 
algorithms MCC were performed by use of cytoHubba 
plugin. At last, 15 genes were screened out according 
to local-based method MCC and global-based method 
bottleneck and stress. The co-expression network from the 
15 top-ranked genes was constructed as shown in Figure 
7. 14 out 15 genes were up regulated and only C8A down 
regulated. 6 out of 20 top related genes were DEGs and were 
all up regulated. Most of these genes related to cell cycle.

Kaplan-Meier survival analysis

In order to find the relationship between the key 
genes and survival of the HCC patients, we performed 
the Kaplan-Meier Survival analysis. The data showed 

Figure 4: Upstream regulator analysis of differentially expressed genes at the early stage of HCC. 7 TFs which was 
predicted to be activated as determined by IPA.
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the High expression of XPO1, KPNA2, GMPS, MELK 
were correlated with high risk, poor prognosis and shorter 
overall survival time significantly as shown in Figure 8. 
Kaplan-Meier survival curves indicated the patients in 
high risk group had obviously shorter OS time than those 
in low risk(p<0.05).

DISCUSSION

In order to explore the most significantly dysregulated 
pathways and key genes which play roles at the early stage 
of HCC and gain an insight into the onset of HCC which 

Table 1: Upstream regulator analysis of differentially expressed genes in the early stage of HCC

Upstream 
regulator

Predicted 
activation 

state

Activation 
z-score

p-Value of 
overlap

Target molecules in dataset

IRF3 Activated 2.248 0.0000463
ADAR,APOBEC3B,CLIC4,HLA-F,IFI27,IFI44,IFI6,IFIT2,ISG15
,OASL,PARP12,PLAC8,PNP,STAT1,STAT2,TAP1,TDRD7,TLR4,

TSLP

IRF7 Activated 2.367 0.0000635 ADAR,BCL2L13,IFI44,IFI6,IFIT2,IL33,ISG15,MICB,MX1,OASL
,PARP12,PLAC8,STAT1,STAT2,TAP1,TDRD7,TLR4

NLRC5 Activated 2.182 0.000528 HLA-A,HLA-B,HLA-C,HLA-F,TAP1

HOXA10 Activated 2.335 0.00442 ALPL,BCHE,CDKN2B,COL15A1,HSP90AA1,IGFBP3,MYCN,N
DRG2,PEG3,PHGDH,PROS1,SOS1,XDH,YWHAG

IRF5 Activated 2.607 0.0105 IFI44,IFIT2,ISG15,OASL,PARP12,STAT1,STAT2

SATB1 Activated 2.373 0.0316 DSTYK,FERMT2,FOXJ3,HSP90AA1,LRRN3,NCOR1,PTGS2,TA
OK1,TSLP,ZKSCAN8,ZNF287

FOXO1 Activated 2.005 0.0357
ANLN,APOA5,ASPM,BCL2L13,CASP2,CCNA2,CCNB1,CCNB
2,CDKN2B,CENPF,DLGAP5,EBF1,EGR1,FOS,GPD1,KLF7,NEK

2,PRC1,STAT2

TP53 Inhibited -2.388 1.93E-09

ABAT,ACAA2,ADGRB3,ALB,ANLN,AQP3,ASPM,ATAD2,AUR
KA,BMX,CAMLG,CARHSP1,CASP2,CCNA2,CCNB1,CCNB2,C

D82,CDKN2A,CDKN3,
CENPF,CKAP2,CLIC4,CLU,COL4A1,COMT,CXCL12,DLGAP5,
DNM1L,DUT,EDIL3,EGR1,EIF4G3,ELK4,ESR1,EZH2,FAT1,FE

RMT2,FOS,GMNN,GNA14,H2AFY,HLA-B,HMMR,
HSP90AA1,IGFBP3,ISG15,KPNA2,MAP2K1,MDM4,MELK,MX

1,MYBL1,NDC80,NDRG2,NEK2,NPNT,ORM2,PDGFA,
PDLIM5,PEG3,PHGDH,PIK3R3,PLPBP,PODXL,PPFIBP1,PRC1,
PRKAB1,PTGS2,PTTG1,PURA,PVT1,RACGAP1,RALBP1,RFW

D2,RLIM,ROBO1,RRM2,SFRP1,SON,STAT1,STEAP3,
TAP1,TFPI2,TINAGL1,TJP1,TOP2A,TP53BP2,TPD52L1,TRIO,U

SP14,WNT2,XPO1,ZEB2

HNF1A Inhibited -2.256 0.0000157

ABCC9,ADH6,ALB,ANKS4B,APOH,AQP3,C8A,C8B,CYP1A2,
F11,FOXJ3,HPX,IFNAR1,LCAT,LEF1,LY6E,MT1H,MT1X,NBR

1,NPC1L1,
NR1H4,PAMR1,PKHD1,PNO1,PPP1R1A,PZP,SLC12A7,SLC17A

2,SLC38A4,SLC7A2,SUPV3L1,TMEM27,TROVE2,ZNF502

HMGA1 Inhibited -2.206 0.000605 ALPL,COL4A1,EGR1,ESR1,FOS,GHR,IDI1,IER2,IGFALS,IGFB
P3,LY6E,MAPT,PTGS2,PTH1R

TRIM24 Inhibited -2.525 0.00217 IFI44,IFIT2,ISG15,OASL,PARP12,PLAC8,SAMHD1,STAT1,STA
T2,TAP1

IRF4 Inhibited -2.975 0.0322 ALPL,CCNB1,CDKN2A,ENTPD1,IL33,ISG15,PDCD6,SMARCA
4,STAT1,STAT2

ELK1 Inhibited -2.146 0.0329 CDKN2A,EGR1,FOS,PTGS2,TPD52L1
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Figure 6: Set-to-set and gene in subsets from the leading edge analysis. The left graph showed the overlap between 8 subsets: 
the darker the color, the greater the overlap between the subsets. The intensity of the cell A and B corresponds to an X/Y ratio which is the 
number of leading edge genes from set A and Y is the union of leading edge genes in sets A and B. The right graph shows each gene and 
the number of subsets in which it appears.

Figure 5: Gene expression profiling identifies pathways upregulated at the early stage of HCC. (A-H) The 7 significantly 
enriched gene sets in HCC. The normalized enrichment score, the false discovery rates (FDR) and the nominal p-value score(NES) are 
indicated for each gene set. Each bar at the bottom of each panel represents a member gene of the respective pathway from plot A-H and 
(I) shows its relative location in the ranked list of genes.
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could be applied to the early diagnosis and therapy, a series 
of bioinformatics methods were performed. According to 
our studies, the Cell Cycle: G2/M checkpoint regulation 
was the most dysregulated pathways with 11 DEGs are 
all up regulated. As the second checkpoint within the cell 
cycle, G2/M checkpoint prevents cells with damaged DNA 
from entering the M phase so that these DNAs could be 
repaired. This kind of regulation is critical to prevent cells 
from going through malignant transformation.

The deficiency of p53 in most human cancers make G1 
checkpoint defective. The S-phase checkpoint slows rather 
than arrest of the cell cycle. So the cancer cell with damaged 
DNA could accelerate through the cell cycle and arrest at 
the G2 checkpoint. All the above makes the G2 checkpoint 
an attractive therapeutic target for anticancer therapy [10]. 
It has been demonstrated that Polo-like kinase (PLK) may 
be an early diagnostic marker for the development of HCC 
by regulating the G2/M checkpoint [11]. lncRNA16 is 
a promising biomarker for early diagnosis of lung cancer 
by promoting the G2/M transition by regulating the 
transcription of cyclin B2. As a promising antitumor agent, 
Isocorydine(ICD) could induce G2/M cycle arrest of HCC 
through activation of GADD45A-p21 pathway [12]. So, we 
inferred the dysregulation of this pathway is very important 
to the onset of HCC.

In order to confirm the result, GSEA was performed 
from the gene set level. GSEA is a computational method 
which determines whether an a priori defined set of genes 

shows statically significant between two biological states 
at the level of gene sets instead of an individual gene. 
GSEA can make up for the deficiency of traditional 
strategies which focused on the DEGs. The result of 13 
gene sets associated with G2/M checkpoint upregulated in 
HCC and 1 upregulated in control confirmed that the G2/M 
checkpoint changed significantly. In order to determine the 
genes which contributed most to the enrichment result of 
13 gene sets, the leading edge analysis was performed. 
11 genes including CCNA2 (DEG), CDC25B, NEK2 
(DEG), NBN, CCNB1(DEG), CDC7, ATM, XPO1(DEG), 
MRE11A, CENPF(DEG), TAOK3 appeared most often in 
several gene sets. The transcriptional factor FOXO1 was 
predicted active and the target genes regulated by it were 
associated with cell cycle most. The crosstalk of genes 
participated in the G2/M checkpoint is shown in Figure 9. 
from the molecular activity predictor(MAP).

As a plugin in cytoscape, cytoHubba provides an 
effective method to identify important nodes in biological 
networks. It could accomplish the computation of eleven 
methods in one stop shopping way including four local-
based methods and seven global-based methods with the 
Maximal Clique Centrality (MCC) is a new method in 
order to increase the sensitivity and specificity. Through 
the combination of MCC, bottleneck and stress, 15 DEGs 
are screened out including SRPK1, XPO1, GMPS, MELK, 
DUT, TCERG1, RAD21, CENPF, PTTG1, EZH2, ANLN, 
KPNA2, RACGAP1, ADAR, C8A. All the above genes 

Figure 7: PPI network of 15 top-ranked DEGs and top 20 most related genes associated with the onset of HCC. The 
genes belong to DEGs colored by their logFC. The network was generated using the GeneMANIA plugin. The networks legend indicates 
the types of interactions between genes.
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Figure 8: The molecular activation prediction (MAP) figure based on IPA.

Figure 9: Kaplan-Meier curves of XPO1 and KPNA2 in TCGA liver cancer dataset (https://tcga-data.nci.nih.gov/
publications/tcga) with SurvExpress (n=381). Censoring samples are shown as “+” marks.Horizontal axis represents time (day) to 
event. Outcome event, time scale, condordance index (CI) and p-value of the log-rank test are shown. Red and green curves represent High 
and Low-risk groups. The number below horizontal axis represents the number of individuals not presenting the event of the corresponding 
risk groups along time. (A) High expression of XPO1 is correlated with high risk, poor prognosis and shorter overall survival time. (B) 
High expression of KPNA2 indicates high risk, poor prognosis and shorter overall survival time. The down panel shows box plot across 
risk groups with the p-value.
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except C8A are upregulated and most of them participate in 
the cell cycle. From the analysis of co-expression network, 
we can find that the co-expressed genes which belong to 
DEGs upreguated too. Notably, XPO1 and CENPF is also 
screened out in the leading edge analysis.

SR (serine/arginine-rich domain) proteins play a 
critical role in many process including nuclear export of 
mature mRNA, polymerase II transcription and nonsense-
mediated mRNA decay. SRPK1 (Serine/threonine-protein 
kinase) can phosphorylate SR proteins through its PKc 
superfamily kinase domain. But, SRPK1 displays pleiotropic 
effects in various cancers and regulates different cellular 
properties which might be related to preferential activation 
of different downstream signaling pathways [13-20].  
Expression of SRPK1 was significantly upregulated 
frequently in HCC cell lines and HCC samples compared 
with the normal tissue sample both at the mRNA and 
protein level [21]. In the study of HCC, SRPK1 may be 
located downstream of AKT and activated AKT may 
induce the autophosphorylation of SRPK1 which lead to 
the phosphorylation of downstream splicing factors [20]. 
SRPK1 may be associated with FAK signaling, MAPK 
signaling, Wnt/β-catenin signaling and angiogenesis [13, 22].  
More research implied that SRPK1 may be a novel target 
for cancer diagnosis and therapy. But the detailed roles and 
mechanisms of SRPK1 in cancer especially in HCC are  
not clear.

KPNA2 (karyopherin alpha 2) may participate in 
carcinogenesis by regulating the translocation of some cargo 
proteins which are involved in cancer. It was demonstrated 
that KPNA2 promotes cell proliferation and tumorigenicity 
in epithelial ovarian carcinoma by regulating c-Myc and 
FOXO3a [23]. The knockdown of KPNA2 could inhibit 
proliferation of several cancer cells including liver and 
lung and KPNA2 may be a useful prognostic biomarker to 
monitor cancer prognosis [24, 25].

To date, over 230 kinds of proteins were verified 
as the cargo of XPO1(Chromosome region maintenance 
1,CRM1) including p53, p21, IkB, ribosomal subunits and 
so on [26]. XPO1 plays a vital role in nucleo-cytoplasmic 
transport through RanGTP dependent mechanism. For 
most typical tumor suppressive proteins such as p21, they 
play different functions according to their subcellular 
localization which elucidate that XPO1 plays an vital role 
in the process of cancer and may lead to a new method for 
cancer therapy which associated with cell cycle arrest and 
induction of apoptosis [27-29].

As glutamine amidotransferases involved in de 
novo purine biosynthesis, GMPS (GMP synthetase) was 
shown to have a striking role in cell proliferation. Under 
genomic stress, GMPS plays a vital role in the relay of 
p53 stabilization by TRIM21-GMPS-USP7 molecular 
cascade. The guanine nucleotides is essential for 
nucleotide formation, energy storage and nuclear transport 

which could be provided by guanine biosynthesis pathway 
in cancer cells [30, 31]. Repression of GMPS by p53 
through p21 is a functionally relevant part of the p53-
mediated process in inhibiting tumor cell growth in liver 
cancer [32].

It is supposed that MELK (maternal embryonic 
leucine zipper kinase) plays critical roles in many aspects 
including cell cycle, cell proliferation, embryogenesis and 
oncogenesis due to its overexpression in many kinds of 
cancers. MELK is associated with early HCC recurrence 
and poor patients’ survival but the mechanism has not 
been elucidated [33]. MELK knockdown or deletion in 
GC (gastric cancer) and ovarian cancer cells activates 
G2/M arrest and enhances apoptosis [34, 35].

Previous studies have revealed that amplified CENPF 
(centromere protein F) may play a role as common cancer-
driver genes in human cancers. CENPF contains many 
leucine zipper motifs and is regulated in a cell cycle-
dependent manner [36]. It amplified and overexpressed not 
only in HCC but also in many other types of human cancer 
including breast cancer, colorectal cancer, prostate cancer 
[37, 38]. Silence of CENPF arrests HCC cells at the G2/M 
transition with the accumulation of MPF (mature promoting 
factor) and CCNB1/CDC2 complex [39]. In consistence 
with these studies, the present study found that CENPF 
is identified as a key gene not only in DEGs but also in 
leading edge analysis which based on gene set level.

As the single down regulated one in all the key 
genes, C8A (complement component alpha) involves in 
the complement system and participates in the formation 
of MAC (membrane attack complex) combined with other 
complement proteins such as C5b, C6, C7, C8 and C9. 
In addition, the expression of several other complement 
components or subunits are all down regulated ,including 
C1S, C2, C5, C6, C7, C8B, C8G, C9. Obviously, it is not 
coincidence. That is to say, the activity of complement 
system down regulated at the early stage of HCC. The 
transcription of C8A and C5 is regulated by HNF1α 
(hepatocyte nuclear factor 1 alpha) both are essential 
components of MAC [40]. The relationship between C8A 
and cancer is not clear yet.

G2/M checkpoint provides an opportunity for 
DNA repair by increasing the time for repair and by 
transcriptionally inducing gene expression and stopping 
the proliferation of damaged cells [41]. To the best of 
our knowledge, G2/M checkpoint transition activated at 
the early stage of HCC was provided for the first time 
through the microarray analysis. The negligent G2/M 
checkpoint enhanced the possibility for DSB (double 
strand breakage). And the unrepaired DSBs before mitosis 
will pose a higher risk for genomic instability and tumor 
cell development [42]. So, the defect of G2/M checkpoint 
may play a critical role at the onset of HCC.
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MATERIALS AND METHODS

Data source

The gene expression dataset GSE6764 were 
downloaded from the Gene Expression Omnibus (GEO) 
database by Wurmbach E et.al (https://www.ncbi.nlm.
nih.gov/geo/). 75 tissue samples obtained from patients 
undergoing resection or liver transplantation were divided 
into 8 groups from pre-neoplastic lesions to HCC and 
normal liver were used as control (http://www.ncbi.nlm.
nih.gov/geo/). We combined very early and early HCC to 
the case group including 18 tissue samples altogether, and 
the control group, with 10 normal liver tissue. All tissue 
samples are hybridized on the human U133 plus 2.0 array 
(Affymetrix).

Microarray data analysis and identification of 
differentially expressed genes (DEGs) using 
SAM

Robust Multi-array Average (RMA) algorithm 
including background correction, normalization and 
summarization was performed to convert the .CEL raw file 
to expression data which based on R language [43]. The 
simpleaffy package was utilized to perform the quality 
control. Once the signal value for each probe set calculated 
in every microarray, the t-test based significance analysis 
of microarrays (SAM) which make use of permutations 
to simulate for every gene a situation in which there is 
no difference between the two groups was utilized to 
determine the DEGs. SAM method adjusts the p-value 
to false discovery rate (FDR) to reduce the false-positive 
through multiple testing. A <0.1% False discovery rate 
(FDR) cut-off was used for all differential expression 
calculations [44].

Ingenuity pathway analysis

Ingenuity Pathway Analysis (IPA) is a functional 
analysis tool (Ingenuity Systems, Mountain view, 
CA, USA). We use IPA to identify the most significant 
pathways (including 302 metabolic pathways and 360 
signaling pathways) and construct molecular interaction 
networks from the DEGs. In brief, we uploaded the DEGs 
list file containing gene symbols, FC, p-values to IPA and 
performed the core analysis. In general settings, the node 
types, data sources, confidence, species, tissues & cell 
lines and mutation were specified.

The IPA upstream transcriptional regulator 
analysis

In order to explain the biological activities due 
to the DEGs, we identified the cascade of upstream 

transcriptional regulators with p-value of overlap <0.05 
and the absolute activation z-score>2.

Gene set enrichment analysis (GSEA) and 
leading edge analysis

GSEA is a kind of gene enrichment method 
considering the full list of genes different from single 
gene method [45]. In GSEA, genes are ranked by their 
correlation with phenotype and every enrichment gene set 
will get an enrichment score (ES). In this study, 2000 gene 
permutations were used to generate a null distribution 
for ES, then each pathway will attain a normalization 
enrichment score(NES). Gene sets with considered 
significantly enriched with a relatively relax p-value 
and FDR<0.25. A leading edge analysis was performed 
to elucidate key genes associated with the early stage of 
HCC, especially the G2/M checkpoint regulation [46].

Construction of PPI network from all DEGs and 
the screening of key genes

In order to comprehend the specific molecular 
mechanism of early HCC, we constructed the PPI network 
based on GeneMANIA plugin and calculated the key 
DEGs using cytoHubba plugin [47, 48]. At last, we built 
the co-expression network of top-ranked genes from all 
DEGs and performed the visualization and analysis by use 
of Cytoscape 3.4.0(http://cytoscape.org/).

Kaplan-Meier survival analysis

SurvExpress(http://bioinformatica.mty.itesm.
mx:8080/Biomatec/SurvivaX.jsp) was employed to 
perform the survival analysis in the datasets TCGA-liver 
cancer containing 422 samples provided by SruvExpress 
using the key genes as an input. For the duplicated genes, 
all probe sets/records will be averaged per sample using 
the original (Quantile-Normalized) data. The maximum 
risk groups were selected for the cox survival analysis. 
This method uses an optimization algorithm from the 
ordered PI to produce risk groups as described in the 
tutorial provided in SurvExpress website [49].

CONCLUSION

The combinatorial effect of the GSEA, DEGs, and 
leading edge analysis output shed a light on the elucidating 
of key pathways and genes which genetically dysregulated 
at the early stage of HCC. The study unveiled that the 
G2/M checkpoint plays a vital role at the onset of HCC. 
And the genes SRPK1, XPO1, GMPS, MELK, DUT, 
TCERG1, RAD21, CENPF, PTTG1, EZH2, ANLN, 
KPNA2, RACGAP1, ADAR, C8A could be considered as 
critical genes for this process. These findings contributed 
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to a better understanding of the onset of HCC. Further 
studies were required to elucidate the mechanism of the 
process.
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