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ABSTRACT:
The microenvironment is increasingly recognized as a crucial aspect of cancer. In 

contrast and complement to the field’s focus on biochemical factors and extracellular 
matrix, we characterize a novel aspect of host:tumor interaction – endogenous 
bioelectric signals among non-excitable somatic cells. Extending prior work focused 
on the bioelectric state of cancer cells themselves, we show for the first time that the 
resting potentials of distant cells are critical for oncogene-dependent tumorigenesis. 
In the Xenopus laevis tadpole model, we used human oncogenes such as mutant KRAS 
to drive formation of tumor-like structures that exhibited overproliferation, increased 
nuclear size, hypoxia, acidity, and leukocyte attraction. Remarkably, misexpression 
of hyperpolarizing ion channels at distant sites within the tadpole significantly 
reduced the incidence of these tumors. The suppression of tumorigenesis could also 
be achieved by hyperpolarization using native CLIC1 chloride channels, suggesting a 
treatment modality not requiring gene therapy. Using a dominant negative approach, 
we implicate HDAC1 as the mechanism by which resting potential changes affect 
downstream cell behaviors. Based on published data on the voltage-mediated changes 
of butyrate flux through the SLC5A8 transporter, we present a model linking resting 
potentials of host cells to the ability of oncogenes to initiate tumorigenesis. Antibiotic 
data suggest that the relevant butyrate is generated by a native bacterial species, 
identifying a novel link between the microbiome and cancer that is mediated by 
alterations in bioelectric signaling. 

INTRODUCTION

Normal embryonic development, as well as 
repair and dynamic maintenance of complex structures 
throughout the lifespan, both depends upon a set of signals 
that keeps individual cell activities orchestrated toward the 
large-scale anatomical goals of the host. Morphogenesis 
and remodeling can be challenged by cancer, which can 
be viewed as a process in which cells escape or become 
isolated from the normally tight morphogenetic control 
of the organism [1-6]. To achieve robust development, 
signaling pathways need to affect their target cells with 
sufficient spatiotemporal resolution to integrate organ 
sculpting, anatomical polarity, tissue identity, and growth 
rates appropriate to the large-scale order maintenance 

within the body. In the context of cancer, it has been well 
documented that healthy neighboring cells help to stabilize 
aberrant cell behavior [7-9] to control tumorigenesis 
by tissue-level organization that adheres to the proper 
patterning needs of the host [10-14]. Indeed, fascinating 
classical and recent data show that actively patterning 
environments, such as embryos and regenerating 
amphibian limbs, can normalize and reprogram tumors 
[15-31]. Thus, in addition to any cell-autonomous 
properties that may have gone awry in cancer cells, it is 
crucial to understand the non-cell-autonomous patterning 
signals that may be exploited to prevent and treat cancer. 

Endogenous bioelectric signaling among all 
(not just excitable) cell types is one component of 
the microenvironment, and is now known to mediate 
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instructive information for large-scale pattern formation 
[32, 33]. Bioelectrical processes, such as extracellular 
electric fields and transmembrane resting potentials 
produced by ion channel and pump proteins, regulate cell 
activity [34-36]. In particular, proliferation, differentiation, 
migration, and apoptosis are all important cell behaviors 
relevant to cancer that are guided partly by bioelectric 
signals, such as resting voltage potential (Vmem) in non-
excitable cells [37-39]. It was recognized long ago that 
the electrical properties of mature tumors differ from that 
of healthy tissue [40-42], and we recently showed that 
monitoring of a distinctly depolarized resting potential 
allows early detection of tumors in vivo. Moreover, forced 
hyperpolarization via a number of different channels 
prevents those cells from forming tumors [43], revealing 
resting potential as an instructive cue and not merely 
a marker [39]. Indeed, a number of ion channels are 
now known to be bona fide oncogenes [44-54], and ion 
channel blockers are an important area for cancer drug 
development [55-58]. 

However, it is important to note that ion channels 
are not simply molecular markers or targets within the 
cancer cells themselves. Gradients of resting potential are 
a long-range, global system for exerting patterning control, 
and thus a tractable candidate for manipulation of the 
crosstalk by which microenvironment suppresses aberrant 
cell behavior [59]. For example, selective depolarization 
of glycine-gated chloride channel-expressing cells in 
the Xenopus model results in a metastatic conversion of 
melanocytes, which over-proliferate, acquire an arborized 
shape, and invade blood vessels and soft tissues in an 
MMP-dependent manner [46, 60, 61]. This effect occurs 
at considerable distance, via a serotonergic pathway, and 
demonstrates how disruption of long-range endogenous 
physiological signaling can activate a cancer phenotype in 
the absence of carcinogen exposure or DNA damage. The 
data suggest that bioelectric gradients are a fascinating 
new aspect of cancer:host interaction, and that the notion 
of microenvironment may need to be expanded to account 
for long-range interactions mediated by Vmem changes 
throughout tissues.

The existing literature on roles of ionic signaling in 
cancer leaves open a number of fundamental questions. 
What role might remote Vmem modulation play in 
oncogene-induced carcinogenesis? While distant changes 
of resting potential can trigger a metastatic conversion [60, 
61], it is not known whether or how such signaling plays 
a role when canonical oncogenes initiate tumorigenesis. A 
better understanding of the microenvironment and long-
range aspects of aberrant growth control by endogenous 
developmental patterning mechanisms would have 
significant implications for design of novel therapeutic 
approaches to prevent and reprogram cancer.

Here, we use mRNA encoding human tumor 
inducers (Gli1, XRel3, KRAS) in Xenopus laevis embryos 

to initiate growth of tumor like structures (ITLS) that 
highly resemble classic tumors. Remarkably, forced 
hyperpolarization (by misexpression of specific ion 
channels) is able to suppress ITLS formation, despite high 
levels of oncogene protein, even when the hyperpolarized 
cells are at a considerable distance from the oncogene-
expressing tumor site. The suppression effect can also be 
exerted by native chloride intracellular channel 1 (CLIC1)-
mediated hyperpolarization, revealing an endogenous 
target for bioelectric control of abnormal growth that 
does not require transgene expression. We show that 
the suppression effects of distant hyperpolarization are 
mediated by voltage control of a butyrate and histone 
deacetylase mechanism. Together, these data reveal the 
first mechanistic details of Vmem as a powerful, tractable 
regulator of long-range signaling between cancer cells 
and the host and suggest several new entry points for 
biomedical strategies.

RESULTS

Induced tumor-like structures (ITLS) exhibit 
striking key similarities to human tumors

To study the role of bioelectric events to oncogene-
mediated tumorigenesis, we took advantage of Xenopus 
laevis embryos – a model system that is ideal for 
molecular biophysics approaches and also has been 
increasingly used for cancer research[43, 61-66]. We 
injected mRNAs encoding Xrel3 and human KRASG12D into 
Xenopus embryos; these oncogenes are known to cause 
morphologically apparent ITLS in up to 50% of injected 
embryos without any other developmental defects. ITLS 
have previously been characterized as having some of 
the hallmarks of human tumors – increased proliferation, 
vasculature attraction, lack of differentiation, invasiveness 
and transplantability to healthy recipients [43, 67-69]. 
We began by further investigating the pathology of the 
affected tissue to confirm and expand the relevance of 
Xenopus as a medically-relevant cancer model.

Clinically-relevant tumors exhibit a surplus of 
proliferative capacity [70]. To characterize the cell 
proliferation dynamics in ITLS loci, we monitored 
dynamic patterns of cell cycle progression in ITLS 
and unaffected regions using FUCCI (fluorescent 
ubiquitination-based cell cycle indicator) pair: mKO2-
Cdt1 and mAG-Geminin [71, 72]. The accumulation of 
these two cell cycle regulators – in nuclei of transfected 
cells – in a mutually exclusive manner between G1(Cdt1) 
and G2/S/M (Geminin) phases, allowed us to monitor 
spatial dynamics of cell cycle progression: while the 
number of ITLS cells in G1 and control cells in G1 
and G2/S/M phases are statistically the same, twice as 
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many cells in G2/S/M phases were present in ITLS by 
comparison (N=8 per category, ANOVA, P<0.001) (Fig. 
1A). 

Next, we examined the extent of hypoxia within 
ITLS loci, since hypoxia is known to be present in tumors 
[73-75]. Treatment of ITLS bearing embryos (N=7) with 
the hypoxia marker pimonidazole revealed a 12-fold 
increase (t-test; p<0.0001) for immunoperoxidase staining 
for hypoxia (Fig. 1B). This is consistent with data obtained 
from pimonidazole-based qualitative and quantitative 
assessment of tumor hypoxia, where an increase in the 
frequency of detecting pimonidazole adducts is reported 
[76-78]. 

We next examined histological features of the 
ITLS using hematoxylin and eosin (H&E) [79]. Cells 
within the ITLS exhibited disorganized growth patterns, 
including misplaced mesodermal and endodermal cells, 

and mesodermal cells that were larger than those present 
in unperturbed regions, revealing features consistent with 
neoplasia (Fig. 1C).

We next examined a change in nuclear size, which 
is another well-known aspect of tumor tissue [80, 81]. 
Computer-aided image analysis of the area of 2371 nuclei 
each from 16 ITLS and 16 control regions of oncogene-
injected tadpoles showed on average a 10% increase in 
nuclear size of ITLS, mirroring similar phenomenon 
observed between different stages of human breast cancer 

Figure 1: Induced tumor-like structures (ITLS) exhibit 
characteristics reminiscent of human tumors. (A) Rates 
of proliferation were analyzed in vivo in fluorescent cell cycle 
indicators (FUCCI pair: mKO2-zCdt1 and mAG-zGeminin) 
injected, ITLS-bearing embryos at stage 34. ITLS regions 
(black bars) have >65% more cells that are in G2/S/M phase 
(green insert, mAG-zGeminin) than there are in G1 phase (red 
insert, mKO2-zCdt1). Unperturbed regions (grey bars) showed 
no difference between the number of cells in G1 (red insert) 
and G2/S/M (green insert) phases. N=8 for all four categories. 
P<0.001, one-way ANOVA, tukey’s post hoc analysis; different 
letters indicate statistically significant difference; scale bar = 250 
µm.(B) Immunoperoxidase analysis of hypoxia using detection 
of pimonidazole protein adducts (black arrowhead) in cells 
reveals a 12 fold increase for immunoperoxidase staining for 
hypoxia per unit area in ITLS (yellow traces) than in surrounding 
healthy tissue. N=7; *P<0.0001 Student’s t-test; scale bar = 
500 µm.(C) H&E staining of KRASG12D ITLS sections (yellow 
circular trace, 40X) for evidence of features of neoplasia reveals 
disorganized growth patterns, including misplaced mesodermal 
and endodermal cells, and mesodermal cells that are larger than 
those present in unperturbed regions. (D) Automated analysis of 
the size of Hoechst Blue stained nuclei reveals a 10% increase 
in the size of tumor nuclei compared to nuclei from unaffected 
cells. A change in morpholology of the nuclei that includes a 
progressive increase in nucleus size has been documented in 
human breast cancer cells [82]. N=16 (2371 nuclei) for both 
ITLS and unaffected regions.(E) Intracellular pH measurements 
in ITLS and Control regions were made using the fluorescent 
pH reporter dye BCECF. (I) A decreased fluorescence is 
observed in ITLS cells (T) compared to a normal region (N). 
(II) Upon quantification, levels of fluorescence correspond to 
pH values of 6.6 in ITLS and 7.41 in control regions. N=8 for 
both treatments; *P<0.05 Student’s t-test; scale bar = 1mm in 
tail fragment; 150 µm in magnified inserts.(F) The response of 
innate immunity to ITLS formation was investigated using anti-
XL2 immunohistochemistry to mark the presence of leukocytes: 
leukocytes are primarily present around ITLS (white circular 
trace) and 1-3 grid (300 µM) away from ITLSs. N=12; P<0.01, 
one-way ANOVA, Tukey’s post hoc analysis; different letters 
indicate statistically significant difference; scale bar = 500 µm. 
Error bars indicate ± 1 s.e.m in A, B, E, F.
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cells [82] (Fig. 1D). Another marker of tumorigenesis 
is the abnormal acidity of tumor tissue [83, 84]. Using 
BCECF, a dual excitation pH indicator, fluorescence 
intensity ratios at two different wavelengths of ITLS and 
control regions revealed that ITLS have a more acidic (pH 
6.6) intracellular environment compared to that of control 
regions, which have a pH average of 7.41 (N=8 for both 
treatments, t-test, P<0.05) (Fig. 1E). 

Finally, to investigate host immune response to 
tumor formation, immunohistochemistry with anti-
XL2 (anti-Xenopus leukocytes) was performed on cross 
sections of tissue bearing ITLS. We observed recruitment 
of leukocytes to the site of transformed cells (Fig 1F), 
consistent with the known role of leukocyte migration as 
an anti-tumor immune response [85]. 

Taken together, these characteristics of ITLS are 

consistent with previous findings of increased proliferation 
within ITLS, ability to form in internal tissues (not just 
the epidermis), and propensity to attract vasculature[43], 
and demonstrate the relevance of human oncogene-
induced tumors in Xenopus for understanding the basic 
mechanisms of carcinogenesis in vivo.

Long-range hyperpolarization suppresses the 
formation of ITLS

To test the hypothesis that hyperpolarization 
affects oncogenic transformation of cells located at a 
distance, we performed functional experiments using sets 
of oncogenes and hyperpolarizing reagents. The use of 
multiple oncogenes and hyperpolarizing agents allowed 

Figure 2: Long-range hyperpolarization suppresses the formation ITLSs. (A) To visualize and track ITLSs, mRNA encoding 
a fusion construct of Xrel3 and tdTomato was injected into a single blastomere of 16-cell stage embryos. (I, II) ITLSs resulting from Xrel3-
2A-tdTomato injections were highly fluorescent when visualized under a TRITC filter set. (III) Overlay of bright field (BF) and TRITC 
images shows the co-localization of ITLS and red fluorescent signal, confirming that foci of oncogene expression are the cells that make up 
ITLS. Scale bar = 1 mm.(B) To test whether long-range hyperpolarization suppresses ITLS formation, a potassium based hyperpolarizing 
channel (Kv1.5-GFP3) and Xrel3-2A-tdTomato were injected in distantly separated blastomeres of a 16-cell stage embryo. (I) While 
morphologically-apparent ITLSs were often missing from these embryos, the oncogenic protein was present as evidenced by the tdTomato 
fluorescent signal (II, II). Robust expression of the hyperpolarizing channel protein (Kv1.5-GFP3) was observed in the head and gut regions 
(IV, V), and away from Xrel3-2A-tdTomato expressing cells (VI). Scale bar = 1 mm.(C) Fold change in ITLS formation for oncogene 
injected embryos with hyperpolarized treatments compared to oncogene-only injected embryos. Oncogene-only injected embryos with 
ITLS have a ratio of 1, and ratio values below and above one represent fewer and more embryos with ITLS, respectively. To show the 
effect of ITLS suppression due to change in Vmem, three different oncogenes and hyperpolarizing reagents (based on Cl- and K+) were used. 
When Kv1.5 (K+ hyperpolarizing channel) was introduced non-locally in Xrel3 and Gli1 injected embryos, 39.4% and 29.4% decreases, 
respectively, in ITLS formation were observed. A 37.5% decrease in ITLS formation was also achieved using KRASG12D as an oncogene 
and 70mM Cl- as a hyperpolarizing reagent. N=225-349 embryos for each treatment; *P<0.01 Student’s t-test. Error bars indicate ± 1 s.e.m.
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us to confirm that there is a generalized suppression effect 
due to changes in Vmem, one that is not tied to a particular 
channel protein or ion. We used Xrel3 tagged with 
tdTomato to track the presence of oncogenic protein (Fig. 
2A, I-III). To modulate Vmem, we used Kv1.5 (Potassium 
voltage-gated channel, shaker-related subfamily, member 
5) [86], a well-characterized hyperpolarizing channel, 
whose overexpression in our model system has been used 
to alter developmental patterning [87]. 

To probe the effects of long-range hyperpolarization 
on tumor formation, we injected mRNA’s encoding Xrel3-
tdTomato and Kv1.5-GFP3 in two separate blastomeres 
of 16-cell stage embryos, and scored for the presence of 
ITLS and hyperpolarizing channel/oncogene protein by 
stage 34. Compared to embryos receiving only oncogene 
injections, embryos with a remote hyperpolarized region 
(Fig. 2B, IV&V) often displayed lack of morphologically 
apparent ITLS (Fig. 2B, I) despite strong presence 
Xrel3-2A-tdTomato protein (Fig. 2B, II&III). Kv1.5-
induced long-distance hyperpolarization was also able to 
significantly suppress Xrel3 and Gli1 ITLS formation by 
34.9% (N=225; t-test, P<0.05) and 29.4% (N=292; t-test, 
P<0.05), respectively (Fig. 2C), suggesting the effect 
is not specific for just one type of oncogene. Treatment 
with high chloride (whose uptake by native Cl- channels 
hyperpolarizes cells) resulted in a 37.5% decrease (N=349; 
t-test P<0.05) in KRASG12D ITLS, demonstrating that 
the suppressive effect is not specific for Kv1.5 nor for 
potassium, as mediators of the crucial Vmem change (Fig. 
2C).

Collectively, these data reveal a long-range signal 
that is initiated by hyperpolarization and has influence 
over tumorigenesis at remote sites in the tadpole. 
Moreover, these results demonstrate that ITLS suppression 
through Vmem modulation is possible to achieve by taking 
advantage of endogenous channels that are not necessarily 
located within oncogene expressing cells.

Chloride-dependent hyperpolarization through 
endogenous chloride intracellular channel 1 
(CLIC1) 

Having shown a functional role of long-range 
hyperpolarization in the context of tumorigenesis, we 
proceeded to characterize the native channel responsible 
for chloride-based inhibition of ITLS formation. We 
performed an inverse drug screen [88] with chloride 
channel blockers to see which ones would abrogate the 
chloride-dependent ITLS suppression: Anthracene-9-
Carboxylic Acid (ACA), inadyloxyacetic acid 94 (IAA), 
and 5-Nitro-2-(3-phenylpropylamino) benzoic acid 
(NPPB) [89-92] (Fig. 3A). After the injection of KRASG12D 
and treatment with high chloride (N=164), ITLS incidence 
dropped significantly (χ2, P<0.05) compared to their 
counterparts in a low chloride concentration (N=162). 
This anti-tumor effect of high chloride was completely 
abolished with IAA treatment (N=186; χ2, P<0.05) (Fig 
3B), while the other two inhibitors did not significantly 
affect the rate of ITLS incidence. We then proceeded to 
validate this result using molecular reagents targeting 
IAA-sensitive channels.

A known target of IAA is the intracellular chloride 
channel 1 (CLIC1) [93]. Given its pharmacological 
profile and ubiquitous presence during every stage of the 
Xenopus laevis development [94], we focused on CLIC1 
in this study. To test the hypothesis that CLIC1-mediated 

Figure 3: A suppression screen for chloride channels 
is employed to identify a channel responsible for long-
range ITLS suppression. (A) Oncogene injected embryos 
were placed in a high chloride concentration (70mM) solution, 
followed immediately by separate treatments with very well-
known chloride transport blockers: Anthracene-9-Carboxylic 
Acid (ACA), indanyloxyacetic acid (IAA) and 5-Nitro-2-(3-
phenylpropylamino) benzoic acid (NPPB). (B) High chloride 
treatment of oncogene-injected embryos results in ~31%% 
decrease in KRASG12D ITLS incidence. While blocking chloride 
channels using ACA and NPPB did not affect the rate of this 
suppression, IAA treatments in the presence of high Cl- restored 
ITLS incidence back to oncogene-only levels. N=162, 164, 186 
for oncogene only, oncogene + high Cl-, and oncogene + high Cl- 
+ IAA, respectively; *P<0.05, χ2 compared to tumor incidence 
in KRASG12D only injected embryos. 
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hyperpolarization affects oncogenic transformation of 
cells, we performed functional experiments involving 
CLIC1 (wildtype and mutant) and KRASG12D injections. 
Wildtype CLIC1 was tagged with GFP, while a dominant 
negative form of CLIC1 was generated by mutating 
cysteine 24 to serine, in order to form an inactive multimer 
channel [95], and tagged it with tdTomato to track 
localization of the protein product. mRNA’s encoding 
CLIC1-2A-GFP3/KRASG12D-tdTomato (Fig. 4B, I&II) 
and CLIC1C24S-2A-tdTomato/KRASG12D-GFP3 (Fig. 4B, 
III&IV) were injected in two different blastomeres of 
16-cell stage embryos, treated with high Cl-, and scored 
for the presence of ITLS and CLIC1 channel/oncogene 
proteins. As a control to which CLIC injected embryos 
can be compared, KRASG12D-only injected embryos 
were also treated with high Cl- (N=372), resulting in 
31.5% fold decrease in ITLS incidence when compared 
to KRASG12D-only injected embryos (N=341). The rate 
of ITLS suppression was further amplified (44.3% 
suppression) when the wildtype CLIC1 was overexpressed 
non-locally in oncogene-injected embryos that were then 
raised in 70mM Cl- (N=364). In contrast, overexpression 
of the mutant CLIC1 (N=336) effectively blocked ITLS 
suppression despite the presence of high Cl- (Fig 4C). 
Together, these data suggest a role for native CLIC1 in 
mediating hyperpolarization-induced long-range ITLS 
suppression.

Changes in Vmem are transduced via HDAC1-
dependent mechanisms

Bioelectric signals are transduced into 
transcriptional and epigenetics responses via a number 
of second-messenger pathways. In order to determine 
the transduction mechanism by which hyperpolarization 
inhibits tumorigenesis, we conducted a pharmacological 
suppression screen [63] and molecular-genetic loss-of-
function of several well-characterized candidate pathways 
that have been shown to mediate the actions of Vmem 
change in other patterning contexts [96]. Our strategy 
was to block, one at a time, the candidate transduction 
mechanisms and see which ones abrogated the ability of 
hyperpolarization to reduce tumor incidence. Targeted 
pathways include: movement of serotonin through the 

Figure 4: Hyperpolarization by the influx of Cl- through 
CLIC1 mediates long-range ITLS suppression. (A) To 
visualize and track ITLSs, KRASG12D mRNA was co-injected 
with GFP3 (I) and tdTomato (II) into a single blastomere of 
16-cell stage embryos. In both cases, ITLS co-localize with 
the respective fluorescent signals, confirming that oncogene-
expressing cells make up ITLS. Scale bar = 1 mm.(B) When 
mRNA encoding Xenopus wildtype CLIC1-GFP3 was injected 
at a distance from KRASG12D -tdTomato, morphologically-
apparent ITLS formation was often suppressed despite the 
presence of oncogenic protein (III). Whereas overexpression 
of a CLIC1 dominant negative (CLIC1C24S-tdTomato) in non-
oncogene expressing cells prevents ITLS suppression despite 
the presence of high Cl- in the media (IV). Scale bar = 1 mm. (C) 
Changes in ITLS formation incidence for oncogene and CLIC1 
(mutant or wildtype) injected embryos in 70mM Cl- media. 
ITLS incidence from oncogene-only injection was normalized 
to 1 so that it can be used to measure against the effects of other 
treatments. Embryos injected with KRASG12D followed by a 
high Cl- treatment showed a 31.5% decrease in ITLS incidence. 
Overexpression of the wildtype CLIC1 and high Cl- bath also 
lowered the number of embryos with ITLS by 44.3% while 
resulting in smaller ITLS in escapees. Overexpression of the 
mutant CLIC1, which encodes for defective multimer channels, 
appeared to block ITLS suppression by a high Cl- treatment, 
implicating native CLIC1 channels in Vmem mediated, long-
range suppression of ITLS. N= 336-364 embryos for each 
treatment; P=0.01, one-way ANOVA, Tukey’s post hoc analysis; 
different letters indicate statistically significant difference. Error 
bars indicate ± 1 s.e.m. 
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Vmem-dependent serotonin transporter SERT [97] (inhibited 
via 10 µM fluoxetine); Vmem-guided transport of signaling 
molecules through gap junctions [98, 99] (disrupted by 
0.5 ng injection of a dominant negative connexin H7); 
voltage gated calcium channels [100, 101] (blocked 
via 0.1 mM cadmium chloride), and Vmem-modulated 
transport of small molecule inhibitors of histone 
deacetylase 1 [102-104] (targeted by 0.5ng injection 
of mRNA encoding a dominant negative HDAC1) (Fig 
5A). HDAC1 is an especially attractive target because it 
is known to control levels of histone acetylation, which 
determines cell cycle progression, rates of proliferation, 

apoptosis and differentiation of cancer cells [105-107]. 
Administering oncogene, hyperpolarizing agent, and 
Vmem-sensing pathway disruptors (Fig 5B) showed that 
blocking HDAC1 activity had the most significant effect 
(χ2, P<0.05) on CLIC1-mediated suppression of tumors: 
the rate of ITLS formation in DN-HDAC1 injected 
embryos in high Cl- was similar to that of oncogene-only 
injected embryos - introducing DN-HDAC1 non-locally to 
the site of KRASG12D increased ITLS formation incidence 
by 35.6% (χ2, P<0.05) (Fig. 5C), suggesting a role for 
histone deacetylase 1 activity controlling cell behavior at 
a distance.

Figure 5: Long-range suppression of ITLS by hyperpolarization is HDAC1-dependent. (A)Hyperpolarization can be 
transduced into transcriptional pathways by processes that include Vmem-dependent transport of signaling molecules (e.g. serotonin transport 
through SERT), electrophoresis of morphogenes through gap junctions (GJC), calcium signaling via voltage-gated Ca++ channels (VGCC), 
and voltage dependent butyrate transport that results in HDAC inhibition. To identify the responsible transduction mechanism, each process 
was independently blocked: 10 µM fluoxetine shuts down SERT; H7, a dominant connexin disrupts the transport function of endogenous gap 
junctions; 0.1 mM cadmium chloride effectively blocks VGCCs; and a dominant negative 0.5 ng HDAC1 injection inactivates endogenous 
HDAC1. (B) In each case, a treatment used to probe a given transduction mechanism was targeted non-local to KRASG12D injected cells. 
KRASG12D injections and treatments were administered at the 16-cell stage, and embryos were then raised to stage 34 before scoring the 
presence of ITLS.(C) When analyzing ITLS incidences compared to oncogene only injected embryos – DN-HDAC1blocks the effects of 
CLIC1 mediated hyperpolarization, thus brining ITLS formation to the level of oncogene-only injection. Introducing DN-HDAC1 at a 
distance from KRASG12D without hyperpolarization increases ITLS incidence by 35.6%, implicating a role for HDAC1 in long-range ITLS 
suppression. N=164-251 embryos; *P<0.05, χ2 compared to tumor incidence in KrasG12D only injected embryos. 
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Having previously identified butyrate as an 
endogenous HDAC inhibitor involved in local ITLS 
suppression [43], we sought to identify the source of 
butyrate in this system. Reasoning that it would be 
produced by native bacteria, we conducted a screen for 
antibiotics that target butyrate producing bacteria. We 
first tested novobiocin, which has been shown to be 
effective against gram-positive bacteria [108]. At 78 μM, 
novobiocin sodium salt treatment significantly increased 
ITLS incidence by 32.1% (χ2, P<0.01) (Fig. 6). It has been 
determined in other studies that the mechanism of action 
for novobiocin involves the inhibition of the bacterial 
DNA gyrase [109, 110]. Given also nalidixic acid’s 
well-known inhibition of DNA gyrase [111], we tested 
its effect (at 43 μM) on ITLS incidence. While an 8.2% 
increase in ITLS was observed, it was not statistically 
significantly different from ITLS incidence in oncogene-

only injected embryos (Fig. 6). Finally, a cocktail of 
antibiotics (gentamicin, metrodinazole, vancomycin 
hydrochloride, and clindamycin hydrochloride, all at 
20 μM concentration) targeting gram-positive bacteria 
resulted in a significant increase in ITLS incidence by 
26.2% (χ2, P<0.05) (Fig. 6). Bulk analysis of embryos 
exposed to this cocktail of antibiotics does indeed show 
a significant drop in total butyrate concentration (data not 
shown). 

Together, these data suggest that the control of 
tumorigenesis by Vmem is mediated by HDAC1, via 
butyrate derived from gram-positive bacteria.

DISCUSSION

It has been well-documented that bioelectric 

Figure 6: Targeted killing of butyrate producing Bacteria increases ITLS incidence To determine the source of butyrate, 
which is responsible for ITLS suppression through HDAC inhibition, variety of antibiotics were used to target butyrate-
producing Bacteria. Compared to KRASG12D-only injected embryos, novobiocin and antibiotic cocktail (gentamicin, metrodinazole, 
vancomycin, and clindamycin) treatments significantly increased ITLS formation by 32.1% and 26.8%, respectively. Adding nalidixic acid, 
which works by inhibiting DNA gyrase as novobiocin does, did not significantly alter ITLS formation, showing only an 8.2% increase 
in ITLS incidence. N=537, 318, 431, 117 for KRASG12D, KRASG12D + Nalidiixic Acid, KRASG12D + Novobiocin, KRASG12D + antibiotics 
cocktail; *P<0.05, **P<0.01, χ2 compared to ITLS incidence in KRASG12D-only injected embryos.
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properties control individual cell behaviors that are highly 
relevant to the processes of cancer [35, 36, 96, 112, 
113]. For example, electric fields generated by voltage-
gated sodium channels (VGSC) provide motility cues 
to highly metastatic rat prostate cells [114], and many 
cancer cells are galvanotactic [115-119]. Distinct from 
extracellular electric fields, resting membrane potentials 
established by ion channels and pumps control cell 
proliferation, transformation, and growth in number of 
tumor forming cells [120-125]. Moreover, the actions of 
these translocators have allowed for the development of 
predictive physiological markers [43, 61, 125] and control 
of proliferative and metastatic behaviors [39, 46, 60, 126]. 
Here, we show for the first time that resting potentials in 
remote cells have a profound influence on whether or not 
a cell expressing human oncogenes will go on to form a 
tumor in vivo. 

The induced tumor like structures (ITLS) were 
shown to exhibit striking similarities with classic 
tumors, including increased proliferation as monitored 
by visualizing the cell cycle dynamics, disorganization 
of the normal developmental architecture revealed by 
H&E stains, increased hypoxia, increased nuclear size, 
acidic intracellular microenvironment, and ability to 
illicit innate immune response (Fig. 1A-F). Given the 
increased recognition of bioelectric signals as endogenous 
patterning cues that keep cellular activities orchestrated 
towards anatomical goals [32, 33, 127], our data confirm 
Xenopus embryos as a tractable model system in which 
to investigate the role of bioelectric signals in host:cancer 
interaction, and in which to ask fundamental questions 
about cancer as a disorder of developmental cues [5, 6, 
10, 12, 128, 129].

Long-range control of tumorigenic process by 
Vmem

The spatial distance over which carcinogenesis 
can be predicted and controlled have been addressed in 
a few studies. One example is illustrated by the ability 
to assess cancer risk of readily-inaccessible organs using 
accessible surrogate sites – functionally or anatomically 
similar, but not necessarily contiguous with the target 
organ – that make up the cancer field [130-132]. Another 
is the activation of melanoma-like transformation in the 
melanocyte population [60] by Vmem modulation of even 
a few instructor cells at considerable distance from the 
melanocytes themselves [61]. However, to our knowledge 
this is the first time that modulation of distant cells’ 
resting potentials has been shown to impact the formation 
of discrete tumor foci. It is tempting to speculate that the 
long-range connections are bi-directional: not only does 
remote electrical state of tissue matter for tumor growth, 
but perhaps tumors also emit bioelectrical information 
that could be detectable at a distance. This is compatible 

with classical data [131, 133-135] and will be tested using 
molecular reagents in the future.

In our previous work [43], we showed that 
hyperpolarized cells were themselves resistant to 
transformation [136-138]. To analyze long-range effects 
of hyperpolarization, we established an assay in which 
Xenopus 16-cell embryos were injected with oncogene 
in one blastomere and subjected to a hyperpolarizing 
treatment, non-locally, via ectopic-expression of 
hyperpolarization channel or manipulation of ionic 
contents of the media. Remarkably, the data show that 
hyperpolarization significantly suppresses the formation 
of ITLS, regardless of which oncogene was used (Fig. 2B, 
C), even when the oncogene-bearing cells and the cells 
that have been hyperpolarized are on opposite ends of the 
body. Complete suppression of ITLS was not achieved, 
because our reagents had to be tittered down to avoid 
perturbing the normal developmental processes of the 
organism. Future work is needed to refine the strategy for 
optimal management of the bioelectric crosstalk that goes 
awry in cancer; it is likely that a more nuanced strategy, 
which manages spatial relationships at higher resolution, 
will be required in clinical practice. Another important 
area for future investigation is slow time-dependent 
variability of Vmem, as we only explored continuously-
acting reagents and it is possible that important patterning 
information is encoded in the time profile of slowly-
changing bioelectrical states [37, 139-142]. Optogenetics 
– the use of light to regulate ion channels with high spatio-
temporal specificity - [143, 144] is a promising technology 
for both of these directions.

Resting potential changes can result from genomic, 
transcriptional, or post-translation control of ion channels 
and pumps. Importantly, we obtained tumor suppression 
using either Cl- or K+-based hyperpolarization, just as we 
showed previously for cell-autonomous tumorigenesis 
and metastatic activation by depolarization [43, 46, 
60, 61]. This rules out signaling pathways triggered 
by specific ion channels or even limited to specific ion 
types. Thus, in complement to the gene-focused idea of 
specific ion channels being intrinsic oncogenes or tumor 
suppressors [44, 48, 145], we suggest that a systems-
level physiological property – resting potential – can be a 
powerful causal factor in regulating these processes.

CLIC1-dependent hyperpolarization: a native 
target underlying suppression 

A large body of literature reveals differential ion 
channel and transporter expression between tumor cells 
and their untransformed counterparts [146-150]. These 
native ion translocators are important not only as markers 
[52, 145, 151-153] but also as targets for interventions 
designed to manage the bioelectric state of cancer and 
surrounding tissue without needing gene therapy with 
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heterologous channels. Exploiting native channels may 
allow manipulation of bioelectric signals merely by 
changing ionic composition of the cellular environment; 
indeed, we observed that hyperpolarization by high Cl- 
reduces ITLS incidences (Fig. 3B) without additional 
channel misexpression. The alteration of tumorigenic 
transformation by ionic conditions in the medium is 
consistent with previous data showing an association 
between the (depolarizing) level of sodium and cancer 
[154-156], the control of cell differentiation by sodium 
levels [157-159] and pH [160], and more recent work on 
stem cell reprogramming by acid baths and streptolysin-
mediated membrane permeability change [161]. 
Reprogramming of cell state by physiological cues is 
certainly of relevance to cancer [162-165]. However, two 
important novel aspects of our data are the focus on Vmem 
per se, not specific ions as obligate signals, and the non-
local nature of the suppression mechanism.

A pharmacological loss-of-function experiment 
using chloride channel blockers (Fig. 3A) and a gene-
specific dominant negative (Fig. 4) implicated chloride 
intracellular chloride channel 1 (CLIC1) as a likely 
candidate for the channel required for hyperpolarization 
in the long-range ITLS suppression. Roles for CLIC1 
in carcinogenesis – albeit cell autonomous – have been 
shown previously in several studies. A search for ion 
channels in the cancer profiling database, Oncomine, 
turns up CLIC1 as one of the most upregulated genes 
[166], and chloride current associated with increased 
CLIC1 expression is present in progenitor cells isolated 
from human glioblastomas, and is responsible for 
promoting proliferation, clonogenicity, and tumorigenic 
capacity [167]. Channels like this are of high interest as 
a therapeutic modality [56], but it should be noted that 
it is not enough to look for blockers (a standard loss-of-
function genetic strategy) – the key is to modulate Vmem, 
which may mean opening or closing specific channels 
depending on the cells’ surrounding milieu and its ion 
gradients. An understanding of Vmem as a regulatory agent 
may also explain the anti-cancer activity of a number of 
agents such as ivermectin [57], bafilomycin [168, 169], 
and salinomycin [170].

In Xenopus, CLIC1 is expressed throughout 
development, with progressive increase in expression from 
mid-blastula transition to the tadpole stages; spatially, 
CLIC1 transcripts are present primarily in the ectoderm 
and ectodermally-originated organs [94]. Interestingly, 
CLIC1 expression is missing from the gut region where we 
frequently observe ITLS on the ectoderm. Thus, CLIC1 
proteins are located at a distance from oncogene-induced 
foci, showing that they can act like the overexpressed 
potassium channels – in long-range hyperpolarization. 
By overexpressing wildtype Xenopus CLIC1 and raising 
extracellular chloride levels, we are able to achieve higher 
suppression of oncogenic transformation of cells located 
at a distance. Moreover, this suppression can be blocked 

– despite the presence of high extracellular chloride levels 
– by introducing a dominant negative chloride channel 
mutant away from oncogene-expressing cells (Fig. 4). 
Interestingly, another study from our lab has documented 
the endogenous presence of glycine-gated channels: 
though not present in melanocytes their depolarization 
confers highly proliferative and metastatic phenotype 
in melanocytes in a long-range, serotonergic signaling 
pathway [60, 61]. 

Transducing hyperpolarization into cell 
responses: HDAC1 inhibition

How do resting potential changes such as 
hyperpolarization impact on the transcriptional and 
epigenetic pathways of cancer? Recent studies have 
identified several mechanisms that transduce bioelectric 
signals at the cell membrane into biochemical responses 
(reviewed in [63, 104, 171]. Using a pharmacological 
suppression and molecular loss of function (Fig. 
5A, B), we identified possible roles for gap junction 
communication (to be reported in a forthcoming study) 
and HDAC1 inhibition as signaling elements required 
for the long-range ITLS suppression. The introduction 
of a dominant negative HDAC1 mRNA [102] in a 
long-range manner was able to significantly increase 
neoplastic conversions of oncogene-expressing distant 
cells. The results are surprising relative to the well-
known function of HDAC inhibitors as having antitumor 
activities, including reduced proliferation [172], increased 
differentiation/apoptosis [173], and that a number of 
them are on the clinical development pipeline for anti-
cancer therapeutics [174-177]. In fact, variants of well-
known HDAC inhibitors, such as vorinostat, (Merck) 
and romidepsin (Celgene) have already been developed 
and approved by the Food and Drug Administration for 
treating cutaneous T-cell lymphoma [178, 179]. However, 
consistent with our data, HDAC1 knock-down promotes 
early tumorigenesis in oncogene expressing cells [180], 
and genomic instability in a given cell can have a system-
wide effect mediated by the immune system and other 
factors [181, 182]. Overall, this is consistent with our 
proposal that what is disrupted in cancer is a specific 
and highly modulated pattern of resting potentials - it 
is likely that the desired signaling cannot be achieved 
by universally increasing “anti-cancer” gene products. 
Depending on other factors that vary widely in different 
systems (such as ion concentrations, butyrate availability, 
and spatial arrangement of tumor and tissue), disbalance 
of voltage-dependent signaling in either direction could 
promote or suppress tumorigenesis. 

We sought to understand how Vmem changes and 
acetylation state of chromatins could control tumor growth 
in a non-cell autonomous manner. Given the link between 
Vmem-guided butyrate transport and HDAC activities the 
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control cell behavior during regeneration [62] and local 
tumorigenesis [43], we tested the effect of targeting 
butyrate-producing bacteria on ITLS formation. Both 
novobiocin, an antibiotic against gram-positive bacteria, 
and a cocktail of antibiotics (gentamicin, metrodinazole, 
vancomycin, and clindamycin, data not shown) that have 
been verified to reduce levels of butyrate, significantly 
increased the rate of ITLS formation (Fig. 6). Our data 
are consistent with, and provide a novel mechanism 
explaining, several studies that investigated the effects 
of antibiotics on the gut microbiota, including butyrate-
producing bacteria species, and their subsequent 
implications in increased cancer risks and incidences [183-
186]. 

Our analysis was limited in two main ways: the 
lack of a technology for monitoring location of butyrate 
in vivo, and the inability to isolate and culture butyrate 
producing bacteria (which are highly anaerobic and do 
not grow under standard culture conditions [187]). Future 

work using GFP-expressing strains of appropriately 
engineered bacterial model species will further refine our 
understanding of the role of native microbiota on cancer 
progression and bioelectric signaling. 

Collectively, the data presented here suggest a 
possible model (Fig. 7). Pharmacologically/molecular-
genetically hyperpolarized cells have membrane that is 
negative on the inside, which creates a positively-charged 
cell surface environment. While bacteria – whether gram-
positive or gram-negative – readily attach to a positively-
charged surface, their viability is greatly diminished due 
to strong electrostatic interaction [188, 189]. As a result, 
distribution of butyrate producing-bacteria is skewed 
away from hyperpolarized cells in favor of oncogene-
expressing cells, which are known to be depolarized pre-
neoplastic transformation [43]. Availability of butyrate to 
these prospective tumor sites leads to HDAC inhibition 
and increased hyperacetylation of histones, which promote 
cell cycle arrest, leading to reduced rates of proliferation, 

Figure 7: A model for Vmem – mediated, HDAC1-dependent, long-range control of cell dynamics during neoplastic 
transformation It is known that HDAC1 inhibition leads to the altered transcriptional of regulation of several ion channel 
genes including NaV 1.2 [197] – a voltage gated sodium channel encoding gene. One model consistent with our data is that the 
resulting Na+ gradient (more positive charge) would attract butyrate producing bacteria away from oncogene expressing cells (illustrated 
using Escherichia coli in Supp. Fig 1). Gram-positive bacteria are necessary for the production of butyrate, which gets imported into cells 
via SLC5A8 to reduce proliferation rate by inducing cell cycle arrest in tumor cells. Driving these bacteria away from ITLS cells would 
reduce the number of butyrate molecules available near oncogene cells, thus blocking ITLS suppression. 
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apoptosis, and differentiation of cancer cells lines [105-
107]. 

While the spatial dynamics of butyrate and 
bacteria remain to be investigated, our data reveal a 
novel long-range pathway regulating oncogene-mediated 
tumorigenesis at a distance. We do not yet know the 
maximum extent, in a large organism, of such long-range 
signaling by hyperpolarization. Future work must also 
examine the roles of remote endogenous bioelectric states 
in mammalian cancer models; if conserved, these data 
suggest a number of detection and treatment modalities 
focused on Vmem modulation. Because such strategies 
could be designed using ion channel drugs [190, 191] 
already approved for human use (as anti-epileptic agents), 
exciting opportunities for biomedicine may be presented 
by investigations of bioelectric signaling in cancer at a 
level beyond that of single cells.

MATERIALS AND METHODS

Animal Husbandry 

Xenopus laevis embryos were collected and 
fertilized in vitro according to standard protocols [192], in 
0.1X Modified Marc’s Ringers (MMR; pH 7.8) with 0.1% 
Gentamicin. Xenopus embryos were housed at 14-18°C 
and staged according to Nieuwkoop and Faber [193]. All 
experimental procedures involving the use of animals for 
experimental purposes were approved by the Institutional 
Animal Care and Use Committees (IACUC) and Tufts 
University Department of Lab Animal Medicine (DLAM) 
under the protocol number M2011-70. 

Microinjection

Fertilized Xenopus embryos were transferred into 
mesh-bottomed dishes with 3% Ficoll and injected with 
capped, synthetic mRNAs (made using the Ambion 
Message Machine kit) dissolved in water at the stages 
indicated. 2 hours post injection, embryos were transferred 
into 0.75x MMR for 45 minutes before they were washed 
and cultured in 0.1X MMR until desired stage was 
reached. Constructs used included: FUCCI (fluorescent 
ubiquitination-based cell cycle indicator) pair: mKO2-
Cdt1 and mAG-Geminin [71, 72]; Gli1 [68], Xrel3 [194], 
KRASG12D [69], and Kv1.5 [86]; CLIC1-2A-GFP3 and 
CLIC1C24S-tdTomato; DN-HDAC1 [102].

Drug treatments 

Embryos were exposed in 0.1× MMR for the 
stages indicated to: Anthracene-9-Carboxylic Acid 
(ACA) 67 μM; indanyloxyacetic acid (IAA-94), 55 μM; 

5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB, 
Tocaris Bioscience, Bristol, UK), 8.5 nM; nalidixic acid 
43 μM; novobiocin sodium salt 78 μM; gentamicin, 20 
μM; metrodinazole, 20 μM; vancomycin hydrochloride 
(Santacruz Biotechnology, Texas, USA) 20 μM; Choline 
chloride, 70mM and clindamycin hydrochloride, 20 μM. 
All compounds were obtained from Sigma-Aldrich, St. 
Louis, MO unless otherwise noted.

Immunohistochemistry

Spatial analysis of leukocyte presence was 
performed by immunohistochemistry in paraffin sections, 
using an anti-XL2 antibody [195]. Briefly, embryos were 
fixed overnight in MEMFA [192], embedded in paraffin 
and sectioned at 5 μm using a Leica microtome. After 
deparaffinizing and rehydrating, tissue sections were 
permeabilized in phosphate buffered saline (PBS) + 0.1X 
Triton X-100 for 30 minutes, blocked with 10% goat 
serum in PBS + 0.1% tween-20 for 1 hour, and incubated 
at 40C overnight with anti-XL2 primary antibody. Sections 
were then washed six times with PBST (30 minutes 
each at room temperature) and incubated with Alexa-
Fluor-555-conjugated secondary antibody at 1:1000 in 
PBST + 10% goat serum overnight at 40C. After five 
30-minute washes in PBST, sections were mounted on a 
slide and photographed using the TRITC filter set on an 
Olympus BX61 spinning-disk confocal microscope with 
Hamamatsu ORCA digital CCD camera.

Hypoxia detection

Immunochemical detection of tissue hypoxia was 
performed by immunoperoxidase reaction in paraffin 
sections, using the HypoxyTM-1 Plus Kit (Hypoxyprobe, 
Inc, MA, USA). St.34 embryos with KRASG12D ITLS 
were incubated in 300 µM of pimonidazol HCl 
(HypoxyprobeTM-1). Paraffin sections were prepared 
for immunostaining as described above. Tissue sections 
were then incubated using 1:50 dilution of FITC-MAB1, 
which binds to protein adducts of pimonidazole in 
hypoxic regions, and counterstained with 1:50 dilution of 
horseradish peroxidase conjugated anti-FITC secondary. 

pH measurements 

pH measurements were calculated from 
BCECF fluorescent signals as described previously 
in [196]. Briefly, embryos were incubated in a 5 µM 
BCECF, AM (2’,7’-Bis-(2-Carboxyethyl)-5-(and-
6)-Carboxyfluorescein, Acetoxymethyl Ester (Life 
Technologies, NY, USA ) solution. Excess dye was 
washed out, and embryos were anesthetized with MS222. 
To image BCECF, a dual excitation dye, filters were EX 
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450/20, D 460, EM 535/30 (the isobestic point) and EX 
500/20, D 515, EM 535/30. To calibrate BCECF in our 
system, a prototonophore, CCCP, and NaOH were used to 
drive pH values to 4 (limiting minimum) and 9 (limiting 
maximum), respectively, by observing gradual decrease 
and increase of fluorescence. A plot profile of pixel 
intensities was then taken from ITLS and control regions, 
and conversions to pH values were made as described in 
[196] 

Nuclear morphometry

Sections taken through ITLS and control regions 
were stained with Hoechst Blue (Life Technologies, 
NY, USA), imaged using the DAPI filter set on an 
Olympus BX61 spinning-disk confocal microscope with 
Hamamatsu ORCA digital CCD camera, and analyzed by 
using ImageJ. The threshold and analyze particle tools in 
ImageJ were used to interactively outline each nucleus and 
determine its size and shape. 

Statistical analysis

All statistical analyses were performed using 
GraphPad InStat v. 3.10 (GraphPad Software, La Jolla, 
CA, USA). Data were expressed as the mean unless 
otherwise noted. Error bars represent standard error. The 
differences between treatment groups were analyzed using 
Student’s t-test, Chi-squared test or One-way ANOVA, 
(tukey’s post hoc comparisons), and the null hypothesis 
was rejected at the 0.05 level.
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