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ABSTRACT

Avian-origin H5N1 and H7N9 influenza A viruses are capable of causing lethal 
infection in humans, with serious lung pathology and leading to acute respiratory 
distress syndrome. The contribution of host response associated with the poor 
prognosis of H5N1 and H7N9 infections remains unclear. The aim of this study was 
to identify the host factors involved in the high pathogenicity of H5N1 and H7N9 by 
a systematical meta-analysis. The RNA-seq datasets related to H5N1, H7N9, and 
H1N1 infections with time series were retrieved from GEO. After merging the data 
from different series, ComBat was used to adjust the known variances from different 
batches. The transcription factors binding the genes in each cluster were predicted by 
PASTAA. We figured out the genes that were differentially expressed at any time point 
in samples infected with H5N1, H7N9, or H1N1. The analysis of biological function 
showed that genes related with cytokine were up-regulated in all three viruses. 
However, genes associated with carbon metabolism were found exclusively down-
regulated in H7N9 and the extracellular matrix pathway were only enriched in H5N1 
and H7N9. To summary, our study suggested that the extracellular matrix might be 
associated with the high fatality of H5N1 and H7N9 viruses in humans.

INTRODUCTION

Avian influenza, the infections of birds with avian 
influenza type A viruses (IAVs), occurred naturally among 
wild aquatic birds worldwide. Avian influenza viruses 
do not commonly infect humans, but human infections 
are reported sporadically. Recently, outbreaks of human 
infections after contact with infected birds or their 
secretion or through limited person-to-person transmission 
caused the attention of the public. Following the first 
appearance of the H5N1 in 1997, the H7N9, H10N8, 

and H5N6 subtypes of influenza A virus were detected 
following under the ongoing surveillance efforts, which 
have all caused severe infections [1].

Among all avian IAVs, H7N9 and H5N1 have been 
responsible for most human infections worldwide to date, 
including the most serious illnesses and deaths. Since the 
first recognized human case of H5N1 infection in 1997, 
the World Health Organization (WHO) has reported 854 
confirmed human infection cases as of July 2016, with a 
fatality rate of about 66% [1, 2]. Besides, a total of 1307 
laboratory-confirmed human infections with the H7N9 has 
been reported through the notification of the International 
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Health Regulations (IHR) since early 2013 with a fatality 
rate of 40.4% [1, 3]. More than 400 additional laboratory-
confirmed cases of human infection have been reported 
to WHO from China in the recent months since 2017 [4]. 
Fortunately, both H5N1 and H7N9 were reported to have 
limited potential for human-to-human transmission, but it 
might gain the ability to spread between people through 
the antigenic shift or antigenic drift. Such risk urged us to 
prevent and cure the infection of H5N1 and H7N9.

Unlike the common seasonal flu, H5N1 and 
H7N9 viruses were highly pathogenic. H5N1 was highly 
pathogenic in both human beings and birds [5], while 
H7N9 seemed to exhibit low pathogenicity in birds with the 
severe disease that occurs in human [6]. There was more 
H7N9 human infections than H5N1, partly because of 
asymptomatic infection of H7N9 caused by the transmission 
through direct contact with seemingly healthy but infected 
birds [7]. FDA approved the first monovalent adjuvanted 
vaccine for prevention of H5N1 avian influenza in 2013 [8]. 
This vaccine could be used in the event that the H5N1 avian 
influenza virus develops the capability of efficient human-
human transmission. However, there currently is no publicly 
available vaccine to protect against H7N9 virus infection [9].

For H5N1 and H7N9, the exact contribution of 
individual viral effect to pathogenicity at the molecular 
level is still largely unknown, which is certainly helpful to 
decrease the fatality. Microarray is a useful tool to understand 
their infection at the level of transcriptional regulation in the 
host cells which is important for the interpretation of these 
complex genetic changes [10]. However, a lot of studies 
have reported that findings of microarray data were not 
reproducible or were sensitive to the data perturbations [11, 
12]. Moreover, microarray used over 10 thousand probes on 
tens or hundreds of samples, which exacerbated the accuracy 
of the potential predictors. As a result, a meta-analysis was 
used to increase the reliability and generalizability of results.

Through this meta-analysis, we aimed to obtain 
a more precise set of differentially expressed genes and 
analyze their biological functions. In this study, we utilized 
the 6 and 2 available public microarray datasets from Gene 
Expression Omnibus (GEO) repository [13] for H5N1 and 
H7N9, respectively, to figure out the genes which were 
differentially expressed in cell lines infected with influenza 
virus and control. Another two datasets of H1N1 were 
analyzed as a comparison, so that we were able to figure out 
the possible cause of the high pathogenicity of H5N1 and 
H7N9 and point out the direction to clinical treatment.

RESULTS

The data pre-processing for microarray meta-
analysis

As the basis for the meta-analysis, there were totally 
6 and 2 GEO datasets with time series available for H5N1 
and H7N9 respectively and we also selected another 2 
datasets from H1N1 to compare the avian influenza with 

the 2009 pandemic flu in order to figure out why H5N1 
and H7N9 were so pathogenic (Table 1).

Because it was generally agreed that microarray data 
from distinct experimental platforms, often using distinct 
reference samples, are not directly comparable, we used 
some strategies to overcome it. After background correction 
and quantile normalization, the expression level of each 
gene was estimated by the median of the expression levels 
of all the probes mapped to it. Next, ComBat was utilized 
to adjust the known dataset differences with an empirical 
Bayesian framework. The hierarchical clustering of the 
expression profiles before and after adjustment indicated that 
our strategies worked for meta-analysis. Before adjustment, 
the samples from the same datasets were clustered together 
(Figure 1A, 1C). But after adjustment, the samples from the 
same time points were the closest to each other (Figure 1B, 
1D) with an exception for dataset GEO66597 and the 7h 
time point. Considering its aberrant clustering performance 
and the fact that the cell line used in GEO66597 were 
different from other studies, which meant that they used 
different tissues as a target, we decided to remove it from 
the following studies. The 12h and 24h time points of H5N1 
were clustered together well (Figure 1B), but only 24h time 
point of H7N9 were clustered together. This suggested two 
possibilities: first, the limited datasets for H7N9 constrained 
the performance; and second, the cells might need more time 
to react when infected with H7N9 than H5N1.

The principal component analysis also showed the 
time points were the largest possible variance for H5N1 
where H7N9 were not shown but had similar results as 
H5N1 (Figure 2A).

Identification of differentially expressed genes 
using microarray meta-analysis

First, we calculated the Pearson correlation of each 
time point for H5N1 and H7N9. As expected, the internal 
variance increased as the time passed (Figure 2B, H7N9 
not shown). The differentially expressed genes were 
identified for each time point of H5N1, H7N9, and H1N1. 
The count of genes significantly up-regulated or down-
regulated in every group were plotted as Figure 2C.

The KEGG pathways were enriched for the up-
regulated or down-regulated genes in H5N1, H7N9, and 
H1N1 virus strain. Figure 3 showed the enriched pathways 
for H5N1 and the pathways enriched for H7N9 and 
H1N1 were available in Table 2. The Cytokine-cytokine 
receptor interaction, Toll-like receptor signaling pathway, 
Cytosolic DNA-sensing pathway and Influenza A pathway 
were all up-regulated in cells infected with three virus 
strains. These results suggested that the cells were using 
chemokine and cytokines to defense the virus. But the 
down-regulated genes of the three viruses had different 
patterns. There were no down-regulated genes available 
for H1N1, and no enriched pathway for H5N1, while 
the down-regulated genes in H7N9 were associated with 
metabolism.
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Table 1: The information of the GEO datasets analyzed in this study

Straina GEO accession Platform Submission date Pubmed ID Cell Line

H5N1

GSE76599 GPL13497 Jan 06 2016 Calu-3

GSE66597b GPL6480 Mar 06 2015 26008703 U251

GSE49840 GPL17077 Aug 13 2013 24496798 Calu-3

GSE43203 GPL6480 Dec 29 2012 Calu-3

GSE43204 GPL6480 Dec 29 2012 Calu-3

GSE28166 GPL6480 Mar 24 2011 21865398 Calu-3

H7N9
GSE49840 GPL17077 Aug 13 2013 24496798 Calu-3

GSE69026 GPL13497 May 19 2015 Calu-3

H1N1
GSE80697 GPL13497 Apr 26 2016 Calu-3

GSE40844 GPL6480 Sep 12 2012 Calu-3

a The virus strains selected in this study were: A/Vietnam/1203/2004 (H5N1); A/Anhui/01/2013 (H7N9); A/
California/04/2009 (H1N1).
b The dataset annotated was not in the analysis considering it was aberrant after normalization and batch adjustment.

Figure 1: The hierarchical clustering of gene expression levels. (A) and (B) showed the clustering of H5N1 datasets before (A) 
and after (B) batch adjustment. (C) and (D) showed the clustering of H7N9 datasets before and after batch adjustment. The different GEO 
series were annotated by different colors and different time points were annotated as different shapes. Hollow and solid symbols represented 
the samples with mock infection and with virus infection.
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Identification of clusters of expression profiles in 
virus strains

The fold changes of genes that were differentially 
expressed in any strain were utilized to decide the clusters 
of the expression profiles (Figure 4). The expression levels 
of most genes were only changed dramatically in 24h time 
point. Moreover, the correlation between H5N1 and H7N9 
at 24h time point (Pearson correlation: 0.82) were higher 
than the correlation between H5N1 and H1N1 (Pearson 
correlation: 0.61) or H7N9 and H1N1(Pearson correlation: 
0.59). It suggested that H5N1 and H7N9, both of which 
were avian influenza viruses, were more similar to each 
other.

Finally, we obtained 10 clusters based on their 
expression profiles in H5N1, H7N9, and H1N1. Based on 
the genes involved in 10 clusters, the involved pathways 
and the enriched transcript factors were summarized in 
Table 3. Some clusters did not have enriched pathway 
or transcript factors, which might by led from a few 
genes involved. The only pathways enriched for up-

regulated clusters were Influenza A pathways and most 
of the transcript factors belonged to interferon regulatory 
transcription factor (IRF) family. It suggested that the up-
regulated genes were highly associated with the interferon 
regulation and were common in both avian influenza and 
pandemic flu. Besides, Sta5a and Sta5b mediate cellular 
responses to the cytokine KITLG/SCF and other growth 
factors, which might help to fight against infection.

However, the down-regulated clusters had different 
performance. First, cells infected H1N1 viruses did not 
have any down-regulated genes in this study surprised but 
it might be caused by the strict criteria for differentially 
expressed genes and the large amount of up-regulated 
genes. Second, the genes only down-regulated in H7N9 
were highly associated with metabolic pathways, while 
the genes down-regulated in both H7N9 and H5N1 were 
related to the extracellular matrix pathway. Though there 
was no pathway enriched for genes only low-expressed in 
H5N1, the transcript factor Creb and Crebβ might have 
an impact.

Figure 2: The correlations between H5N1 expression levels and the differentially expressed genes in infected samples. 
(A) The principal component analysis of H5N1 datasets showed that samples with H5N1 infections after 12h or 24h were specific to 
other samples. (B) The average distances between H5N1-infected samples and time-matched infected or mock samples. The x-axis was 
the Pearson correlation distance and error bars indicated standard deviation. (C) The count of genes which were up-regulated or down-
regulated in H5N1, H7N9 and H1N1 using red and green, respectively.
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DISCUSSION

Influenza viruses can be categorized as either low 
pathogenicity or high pathogenicity based on their ability 
to induce disease in a specific host. A better understanding 
of mechanisms that may lead to severe illness or death 
caused by high pathogenicity H5N1 or H7N9 would 
benefit the treatment of those infections when happens 
in humans. Studies of differences in the host response 
to different virus strains would provide insight into why 
viruses exhibit severe damage to then certain host. In this 
study, we preformed a meta-analysis to evaluate the host 
response to two high pathogenicity H5N1 and H7N9 avain 
influenza viruses with the comparison with the seasonal flu 
H1N1, which have been reported to cause high mortality 
in human infection cases.

As describe in the results, cells infected with 
H5N1, H7N9, and H1N1 shared the similar functions 
of up-regulated genes. They were the cytokine-cytokine 
receptor interaction, Toll-like receptor signaling pathway, 
cytosolic DNA-sensing pathway and influenza A pathway. 
The transcription factors were also similar which were 
associated with the interferon regulatory transcription 
factor (IRF) family. As expected, most of the up-regulated 
genes were associated with the immune system against 
infection. However, the down-regulated genes showed 
various patterns for H5N1 and H7N9, while there were no 
down-regulated genes in H1N1.

We failed in obtaining the enriched pathway for the 
genes that were only down-regulated in H5N1. In order to 
understand their function in another way, we also utilized 
STRING v10 as an alternative to look at their network 
status and GO enrichment [14]. It showed that these genes 
were significantly related with positive regulation of cell 
migration and negative regulation of cell differentiation. 
And also these genes seemed to have significantly more 
interactions than expected, which indicated that the genes 
were at least partially biologically connected as a group. 
As a result, we could conclude that the low-expression 
of these genes would increase cell differentiation and 
decrease cell migration, which in further might be related 
with virus-elicited inflammatory and immune reactions.

The cluster with genes only down-regulated in 
H7N9 was associated with metabolic pathways, especially 
the carbon metabolism. Qin, Zhang [15] also reported 
that H7N9 infection could be linked to saccharide or 
polysaccharide metabolism. It also reported that central 
metabolism could be strongly affected by virus infections 
[16]. Besides, biosynthesis of amino acid was also 
enriched. Thus, the carbon synthesis and amino acid 
synthesis might be essential to the virus replication of 
H7N9.

Finally, the down-regulated genes shared by H5N1 
and H7N9 were related with the extracellular matrix. 
The KEGG pathway, the extracellular matrix (ECM), 
was defined as a complex mixture of structural and 
functional macromolecules and serving an important 

Figure 3: The pathway enrichment for differentially expressed genes in H5N1. (A) and (B) showed the fold change and 
negative logarithm of Bonferroni as x-axis and y-axis. And the size of point indicated the genes involved in this pathway. (C) The details 
of significant pathways.
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Table 2: Enriched pathways for up and down-regulated genes

Category Term Count P Value Genes List 
total Pop hits Fold 

enrichment Bonferroni FDR

h7n9 up

KEGG_
PATHWAY

hsa01100:Metabolic 
pathways

63 2.63E-
08

LDHA, ALG1, HEXB, 
HLCS, ALG8, AUH, 
FDFT1, AKR1C3, 
MTHFD1, PIGK, 
IDH3G, RPN1, 

SUCLA2, DHCR24, 
PTDSS2, PLD1, 

ACO1, ALDH5A1, 
PFKP, NADSYN1, 

DPAGT1, PIGT, 
PFKM, GMPS, PIGO, 

GNS, MAN2A1, 
PLCE1, PGM1, 

RRM1, PCCB, EXT2, 
ALDOA, GALNT2, 
NAGLU, GANAB, 
CYP51A1, POLA2, 
HADHA, ISYNA1, 
STT3A, DHCR7, 

PEMT, IDH2, FASN, 
B3GNT3, ACSL4, 

PAPSS2, GBA, ENO1, 
FH, DGKQ, MAOB, 
TKT, ACSM3, MPI, 

MTR, PHGDH, 
ALDH2, ALOX5, 

PGK1, CBS, PYGB

170 1158 1.964309662 5.93E-06 3.36E-05

KEGG_
PATHWAY

hsa01130:Biosynthesis 
of antibiotics

22 1.08E-
07

ALDOA, LDHA, 
ACO1, CYP51A1, 

PFKP, TKT, PFKM, 
HADHA, FDFT1, 
ISYNA1, IDH3G, 
PGM1, PHGDH, 

ALDH2, IDH2, PGK1, 
SUCLA2, PAPSS2, 
PCCB, CBS, ENO1, 

FH

170 201 3.951887621 2.45E-05 1.38E-04

KEGG_
PATHWAY

hsa01230:Biosynthesis 
of amino acids

12 2.27E-
06

ALDOA, IDH3G, 
ACO1, MTR, 

PHGDH, IDH2, PFKP, 
TKT, PFKM, PGK1, 

CBS, ENO1

170 69 6.279283887 5.14E-04 0.00290813

KEGG_
PATHWAY

hsa01200:Carbon 
metabolism

14 6.98E-
06

ALDOA, ACO1, 
PFKP, TKT, PFKM, 
HADHA, IDH3G, 
PHGDH, IDH2, 

PGK1, SUCLA2, 
PCCB, FH, ENO1

170 108 4.680392157 0.0015757 0.0089203

h7n9 down

KEGG_
PATHWAY

hsa05168:Herpes 
simplex infection

15 1.49E-
06

IL6, TNF, SP100, 
CREBBP, NFKBIA, 
OAS1, OAS2, CFP, 
IFIT1, IFNB1, IRF7, 
JUN, IFNA4, SRSF8, 

IFNA8

110 170 4.923529412 2.53E-04 0.00181355

(Continued )
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Category Term Count P Value Genes List 
total Pop hits Fold 

enrichment Bonferroni FDR

KEGG_
PATHWAY

hsa05164:Influenza A 14 4.52E-
06

IL6, TNF, CREBBP, 
NFKBIA, OAS1, 
OAS2, CXCL10, 

IFNB1, TNFRSF10D, 
IRF7, JUN, IFNA4, 

IFNA8, MX1

110 161 4.852173913 7.69E-04 0.0055202

KEGG_
PATHWAY

hsa04620:Toll-like 
receptor signaling 

pathway

11 7.12E-
06

IL6, TNF, LY96, 
IFNB1, JUN, IRF7, 
IFNA4, NFKBIA, 

IFNA8, CD14, 
CXCL10

110 97 6.327835052 0.00121 0.00868811

KEGG_
PATHWAY

hsa05162:Measles 12 1.33E-
05

IL6, TNFRSF10D, 
IFNB1, IRF7, IFNA4, 

NFKBIA, IL13, 
OAS1, OAS2, IFNA8, 

MX1, TNFAIP3

110 127 5.272440945 0.0022503 0.01616612

KEGG_
PATHWAY

hsa04622:RIG-I-like 
receptor signaling 

pathway

9 1.66E-
05

TNF, ISG15, IFNB1, 
IRF7, IFNA4, 

NFKBIA, IFNA8, 
DHX58, CXCL10

110 65 7.726153846 0.0028259 0.02030615

KEGG_
PATHWAY

hsa04060:Cytokine-
cytokine receptor 

interaction

15 2.83E-
05

CSF2, IL6, TNF, 
PDGFA, IL13, IL11, 

CXCL10, CCR7, 
IL23A, IL20RB, 
IFNB1, IFNA4, 

CX3CR1, IFNA8, LTB

110 219 3.821917808 0.0048037 0.03455014

KEGG_
PATHWAY

hsa04623:Cytosolic 
DNA-sensing pathway

8 5.20E-
05

IL6, IFNB1, IRF7, 
IFNA4, NFKBIA, 
IFNA8, CXCL10, 

ZBP1

110 56 7.971428571 0.0088 0.06341132

h1n1 down

KEGG_
PATHWAY

hsa05164:Influenza A 12 3.38E-
10

IL6, IFIH1, IRF7, 
OAS3, RSAD2, 

OAS1, OAS2, CCL5, 
MX1, STAT1, IL1A, 

CXCL10

34 161 13.45560833 2.64E-08 3.58E-07

KEGG_
PATHWAY

hsa05168:Herpes 
simplex infection

10 1.69E-
07

IFIT1, IL6, IFIH1, 
IRF7, TAP1, OAS3, 

OAS1, OAS2, CCL5, 
STAT1

34 170 10.61937716 1.32E-05 1.79E-04

KEGG_
PATHWAY

hsa05162:Measles 9 2.42E-
07

IL6, IFIH1, IRF7, 
OAS3, OAS1, OAS2, 
MX1, STAT1, IL1A

34 127 12.79342288 1.89E-05 2.56E-04

KEGG_
PATHWAY

hsa04620:Toll-like 
receptor signaling 

pathway

6 1.49E-
04

IL6, IRF7, CCL5, 
CXCL11, STAT1, 

CXCL10

34 97 11.16676774 0.0115197 0.15700528

KEGG_
PATHWAY

hsa04623:Cytosolic 
DNA-sensing pathway

5 2.09E-
04

IL6, IRF7, CCL5, 
ZBP1, CXCL10

34 56 16.11869748 0.0161644 0.22075685

KEGG_
PATHWAY

hsa04668:TNF 
signaling pathway

6 2.26E-
04

CXCL1, CSF2, IL6, 
CXCL2, CCL5, 

CXCL10

34 106 10.21864595 0.0174505 0.2384561

KEGG_
PATHWAY

hsa04062:Chemokine 
signaling pathway

7 3.35E-
04

CXCL1, CCR7, 
CXCL2, CCL5, 

CXCL11, STAT1, 
CXCL10

34 180 7.020588235 0.0258013 0.35386457

KEGG_
PATHWAY hsa05160:Hepatitis C 6 4.18E-

04
IFIT1, IRF7, OAS3, 

OAS1, OAS2, STAT1 34 121 8.951871658 0.0320867 0.44129508
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Figure 4: The heatmap of differentially expressed genes in H1N1, H5N1 or H7N9 datasets. Each column represented one 
virus strain at a time point and each row represented one differentially expressed genes. The distance of the trace line from the center of each 
color-cell is proportional to the size of the measurement. Different clustering of genes were separated by the solid black lines.

role in tissue and organ morphogenesis and in the 
maintenance of cell and tissue structure and function 
[17]. The functional macromolecules in the extracellular 
matrix contained proteoglycans, non-proteoglycan 
polysaccharide, collagens, fibronectin and laminin and 
so forth. Several studies have reported the relationship 
between ECM and viral infections. For example, 
ECM and interacting proteins involved in the entry 
of various viruses like gamma-retrovirus, hepatitis B 
virus and rhabdovirus [18, 19]. Leung, Li [20] reported 
that treating cells with anti-fibronectin antibodies or 
fibronectin-specific small interfering RNA inhibited the 
H1N1 replication, but did not inhibit the H5N1 viruses. 
Moreover, H3N2 virus was able to use intercellular 
connections to spread to neighboring cells [21]. These 
reports indicated that H5N1 and H1N1 replicated with 
the help of the extracellular matrix in a different manner 
and the extracellular matrix helped the virus entry, 

replication, and spread. And according to the functional 
analysis, H7N9 should be similar to H5N1 in this aspect. 
Additionally, Chen, Zhou [22] also reported that EMC 
pathway was involved in H7N9 infection. On the other 
hand, Chen, Cui [23] found that higher plasma levels 
of hydrolysis of fibronectin and collagens IV related 
proteins in survivors of severe H7N9 infection and 
they hinted the ongoing tissue remodeling after severe 
H7N9 infection. Thus, the perturbed extracellular matrix 
pathway in cells might also hint the damaged tissue 
remodeling of cells, which devastated the fatality.

To summary, we performed a systematic meta-
analysis to evaluate the expression profiles in samples 
infected with H5N1 and H7N9 and we suggested that the 
extracellular matrix worked positively in the high fatality 
of H5N1 and H7N9 through affecting viral replication and 
spread and reducing tissue modeling.
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MATERIALS AND METHODS

Data selection and characteristics

“H5N1”, “H7N9”, and “H1N1” were used, 
respectively, as keyword when search GEO series (https://
www.ncbi.nlm.nih.gov/geo/). The Homo Sapiens and 
expression profiling by array were used as filtering for the 
organism and series type. A total of 9 series were available 
for H5N1, among which 6 series (GSE76599, GSE66597 
[24], GSE49840 [25], GSE43203, GSE43204, and 
GSE28166 [26]) had time series data and were included in 
this study. Only 2 series (GSE49840 [25] and GSE69026) 
of H7N9 datasets met our criteria. To compare the host 
response of highly pathogenic avian influenza with the 

pandemic H1N1 flu, 2 series of H1N1datasets (GSE80697 
and GSE40844) were randomly selected using the same 
criteria. The virus strains selected in this study were: A/
Vietnam/1203/2004 (H5N1); A/Anhui/01/2013 (H7N9); 
A/California/04/2009 (H1N1). The detail characteristics of 
the GEO data series were listed in Table 1. All the datasets 
were generated with the Agilent platform. To prevent the 
differences introduced by different methods used in data 
preprocessing of these series, we downloaded the raw 
data and processed them using the same procedures. The 
R package GEOquery [27] was utilized to download the 
raw Cel files and also the information of each sample. The 
platform information of every series was retrieved directly 
from the GEO website.

Table 3: The biological function analysis of genes in each cluster generated by fold change of expression levels in 
virus-infected samples and controls

Clustea Gene Attributes Enriched pathway TFb

1 258 down-regulated in 
H7N9

Metabolic pathways

Pax-5 Sp1
Egr-1 Egr-2 Hif-1α

Ap-2γ

Biosynthesis of antibiotics

Carbon metabolism

Biosynthesis of amino acids

Glycolysis/Gluconeogenesis

N-Glycan biosynthesis

Protein processing in endoplasmic reticulum

2 171 down-regulated in 
H5N1 NA

Creb

Crebβ

3 70 down-regulated in 
H5N1 and H7N9 ECM-receptor interaction NA

4 167 up-regulated in H7N9 NA NA

5 46 up-regulated in H5N1 NA NA

6 39 up-regulated in H1N1 Influenza A Irf-7a Irf-1 Irf-10 Irf-
8 Stat5a Stat5b

7 6 up-regulated in H1N1 
and H5N1 NA NA

8 15 up-regulated in H1N1 
and H7N9 Influenza A Irf-1 Irf-10

9 92 up-regulated in H5N1 
and H7N9 NA NA

10 20 up-regulated in all NA Irf-1 Irf-10 Irf-7a 
Irf-2 Irf-8

a The adjusted p-values by Benjamini method of enriched pathway was lower than 0.05.
b TF: transcriptional factors, the association scores of PASTAA was larger than six.
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Microarray data pre-processing

The data pre-procession were carried out with the 
help of the limma package in R software [28]. All the 
included microarray data used single-channel Agilent 
platform, so only the intensities of the green channel 
were extracted. The medians of the foreground and 
background pixels were calculated as the estimated 
foreground and background signals. Next, we adjusted 
the foreground adaptively for the background intensities 
based on convolution model using the method called 
‘normexp’, which was preferable to background 
subtraction when assessing differential expressions 
[29]. Finally, quantile-normalization was applied to the 
data. Only the mock-infected samples and the samples 
infected with the targeted influenza were kept into the 
next step.

Data merge and batch adjustment

The gene names were mapped to the probes based 
on the platform information. The expression level of each 
gene was calculated using the median value of the probes 
that were mapped to it. The data from different series 
were merged together according to the gene symbol and 
any genes missing in any series were excluded. The batch 
adjustment between different GEO series was completed 
using package SVA in R software [30]. ComBat function 
was effective to adjust for known batches using an 
empirical Bayesian framework [31].

In order to confirm the effects of batch adjustment 
and also the prerequisite of this meta-analysis study, 
the expression levels before and after adjustment were 
visualized using hierarchy clustering and principal 
component analysis. One series (GSE66597) seemed to 
be an outlier and was removed in the following study.

Differentially expressed genes identification

The differentially expressed genes on each 
time point of all three H5N1, H7N9, and H1N1 were 
identified through limma package by comparing the 
samples with virus infections and with mock infection 
[28, 32]. Linear models were fitted and empirical Bayes 
method was used for statistical analysis and assessing 
differential expression. The obtained p-values were 
adjusted by false discovery rate (FDR). The genes with 
FDR less than 0.01 and absolute log2-fold-change larger 
than 2 were considered as significantly differentially 
expressed genes.

The genes that were differentially expressed in 
any virus strain were extracted and they were clustered 
based on their logarithm of fold change on three time 
points in different strains and 10 different clusters were 
found.

Biological function analysis

The KEGG pathways were enriched using DAVID 
Bioinformatics Resources v6.8 [33, 34] for genes up-
regulated or down-regulated in samples infected with 
any influenza and for genes belonging to different 
clusters. HumanGenome in Agilent Backgrounds was 
selected as population background, considering that 
all the datasets used Agilent platform. For genes up-
regulated or down-regulated in H5N1, H7N9 or H1N1, 
the p-values were adjusted using Bonferroni methods. 
However, due to the limited genes in each cluster, the 
p-values of enriched pathways for different clusters 
were adjusted using Benjamini method, which is looser 
than Bonferroni.

The transcription factors binding the genes in 
each cluster were predicted by PASTAA [35]. Only the 
transcription factors with an association score larger than 
6 were considered as an enriched transcription factor for 
each cluster.
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