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ABSTRACT
Molecular and clinical heterogeneity critically hinders better treatment outcome 

for glioblastomas (GBMs); integrative analysis of genomic and epigenomic data may 
provide useful information for improving personalized medicine. By applying training-
validation approach, we identified a novel hypomethylation signature comprising of 
three CpGs at non-CpG island (CGI) open sea regions for GBMs. The hypomethylation 
signature consistently predicted poor prognosis of GBMs in a series of discovery and 
validation datasets. It was demonstrated as an independent prognostic indicator, 
and showed interrelationships with known molecular marks such as MGMT promoter 
methylation status, and glioma CpG island methylator phenotype (G-CIMP) or IDH1 
mutations. Bioinformatic analysis found that the hypomethylation signature was 
closely associated with the transcriptional status of an EGFR/VEGFA/ANXA1-centered 
gene network. The integrative molecular analysis finally revealed that the gene 
network defined two distinct clinically relevant molecular subtypes reminiscent of 
different immature neuroglial lineages in GBMs. The novel hypomethylation signature 
and relevant gene network may provide new insights into prognostic classification, 
molecular characterization, and treatment development for GBMs.

INTRODUCTION

Glioblastomas (GBMs) are the most frequent 
and devastating subtype of all gliomas and present as 
clinically and molecularly heterogeneous groups of 
diseases [1, 2]. Conventional prognostic classification 

based on histological features only provided limited 
clinical value as outcomes usually varied among patients 
with histologically similar tumors [3]. Like other 
cancers, GBMs are driven by a plethora of molecular 
alterations that may be characteristic of distinct biological 
phenotypes, clinical features, and treatment responses 
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[4–7]. Comprehensive molecular profiling of clinically 
well-described GBM cohorts may provide additional 
information for improving patient management [8].  

Genome-wide epignetic studies have showed that 
cancers are commonly featured by global hypomethylation 
of gene-poor DNA repeats and large hypomethylated 
blocks of gene regions concurrent with relevant CpG 
island (CGI) hypermethylation [9–11]. Those epigenetic 
aberrations may have crucial roles in tumor genesis and 
progression via the regulation of gene expression and 
chromatin structure [9]. Early efforts with candidate-gene 
approach have been directed towards searching powerful 
DNA methylation biomarkers with a focus on promoter-
specific CGI hypermethylation [9, 12]. In GBMs, promoter 
hypermethylation in key genes (e.g., MGMT, TIMP3, 
RASSF1A and p16INK4a) have been identified as potential 
biomarker candidates, which may be helpful for improving 
risk classification or guiding treatment choice [13]. More 
recently, with the increasing popularity of high-throughput 
molecular detection technology [14], comprehensive 
assessment on GBM epigenome may greatly expand our 
knowledge on current epigenetic biomarker discovery, and 
be useful for improving personalized medicine.

In this study, by anlyzing high-throughput 
DNA methylation micorarray data, we report a novel 
prognostic signature based on DNA hypomethylation 
of three CpGs at non-CGI open sea regions for GBMs. 
Bioinformatic analysis of gene expression data shows that 
the hypomethylation signature is closely associated with 
the transcriptional status of an EGFR/VEGFA/ANXA1-
centered gene network, which may biologically explain 
the observed survival difference of each risk subgroup, 
and provide new insights into the molecular and clinical 
understanding of GBMs. 

RESULTS

Discovery and validation of a DNA 
hypomethylation signature for poor prognosis of 
GBMs 

The included datasets and study workflow are 
schematically shown in Figure 1A–1B, and patient 
characteristics are summarized in Supplementary 
Table 1. By employing a multi-step selection criterion, 
we identify a novel hypomethylation signature for 
GBM prognostication, which comprises of three CpGs 
interrogated on both Infinium 27 k and 450 k platforms: 
cg23855093 (GPR128), cg13997435 (S100A2) and 
cg10106284 (FAM49A) (Figure 1C). Interestingly, the 
CpGs are all located at non-CGI open sea regions (≥ 4000 
bp far from relevant CGIs), and are all hypomethylated in 
GBMs. Losses of DNA methylation at those CpGs are all 
correlated with poorer prognosis as their Cox coefficients 
are all negative (Figure 1C). Regarding CpGs-specific 
gene expression, S100A2 and FAM49A are differentially 

expressed in GBMs, and the expression levels of S100A2 
and GPR128 are moderately correlated with open sea 
DNA methylation (Pearson r coefficients range from -0.3 
to –0.2; P < 0.0001; Figure 1D).

Based on the three CpGs, a risk-score formula 
that is the sum of DNA methylation levels of each CpGs 
weighted by its Cox regression coefficients is constructed 
as follows: risk score = (–4.235 × β value of cg23855093 
+ (–4.765 × β value of cg10106284) + (–3.542 × β value 
of cg13997435). Using the cutoff calculated by maxstat 
R package (–5.047), the hypomethylation signature could 
assign each patient to a low-risk (with lower scores) or a 
high-risk (with higher scores) group from both training 
sets, TCGA [7] and GSE22891 [15], where low-risk 
patients are associated with significantly longer OS 
than high-risk ones (Figure 2A). The hypomethylation 
signature is further validated in the testing set (GSE50923 
[16]), and in three independent validation set (GSE36278 
[17], GSE60274 [18, 19], and Rennes cohort) by yielding 
apparent difference in OS between the assigned risk 
subgroups (Figure 2B–2C).

The hypomethylation signature is an independent 
prognostic factor and has interrelationships with 
known molecular biomarkers

Univariate Cox regression analysis with all Rennes 
patients (GSE22891 [15] and Rennes cohort collectively) 
shows that age, glioma-CpGs island methylator phenotype 
(G-CIMP) status, TCGA gene expression subtypes, MGMT 
methylation status, and the hypomethylation signature are 
all significantly correlated with OS (Table 1). Multivariate 
Cox model further demonstrates the hypomethylation 
signature as an independent prognosticator (Table 1). 
Cox regression analysis yields similar results by using 
all available patients, which also indicates the treatment-
independent prognostic nature of the hypomethylation 
signature (Supplementary Table 2). 

The hypomethylation signature also shows 
correlations with known molecular marks; the assigned 
low-risk groups had a higher frequency of MGMT 
methylated tumors (Fisher’s exact test, P = 0.0004). 
Meta-analysis at individual-patient and dataset levels both 
shows that, among patients treated with radiation (RT) 
and temozolomide (TMZ), the hypomethylation signature 
has significant prognostic ability within subgroups of 
each MGMT status (Figure 2D). Moreover, we find that 
G-CIMP GBMs, a distinct epigenetic subgroup with 
favorable prognosis [6], are nearly exclusive in the low-
risk groups, but the hypomethylation signature still has 
robust prognostic value in the subset of G-CIMP-negative 
tumors (Figure 2D). Finally, somatic mutations in IDH1 
(Fisher’s exact test, P < 0.0001) and ATRX (Fisher’s exact 
test, P = 0.0002) are significantly enriched in the low-
risk tumors, while the unfavorable mesenchymal subtype 
appears to be evenly distributed among the risk tumors 
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(Fisher’s exact test, P = 0.5906). The hypomethylation 
signature also shows prognostic values among tumors with 
wild type IDH1 or ATRX, as well as the subpopulations 
of mesenchymal and non-mesenchymal subtypes 
(Supplementary Figure 1).   

The hypomethylation signature is closely 
associated with the transcriptional status of an 
EGFR/VEGFA/ANXA1-centered gene network  

Based on TCGA gene expression data, gene 
set enrichment analysis (GSEA) shows that high-
risk tumors are enriched with many cancer-promoting 
gene sets relating to activation of NF-kB signaling, 
immune response, and pro-angiogenic signaling 
(Figure 3A and Supplementary Table 3). To explore 
the core network of transcriptional changes that may 
underlie the hypomethylation signature, we calculate the 
differentially expressed genes (DEGs) between the TCGA 
risk subgroups, and subject the top ten percent DEGs 
(699 genes, ranked by their log2 fold change values) to 
STRING database. The bioinformatic tool identifies an 
EGFR/VEGFA/ANXA1-centered gene interaction network, 
which comprises of an up-regulated gene set (55 genes) 
and a down-regulated gene set (33 genes) (Figure 3B 
and Supplementary Table 4). DAVID annotation analysis 
shows that the network genes mostly have roles in 
cancer-relevant (e.g., angiogenesis, extracellular matrix 
organization, and cell proliferation/migration) or neural 
cell developmental processes (e.g., neuron development; 
Figure 3B). Interestingly, we find that hierarchical 
clustering based on the gene network expression data 
could clearly distinguish murine immature astrocytes 
(IAs) from immature oligodendrocytes (IOs), which 
also suggest its relevance to neuroglial developmental 
processes (Figure 3B).

To confirm the correlations between the 
hypomethylation signature and the gene network, 
Pearson correlation analysis of two-level molecular data 
is performed on samples from Rennes, TCGA and Gene 
expression omnibus (GEO), which reveals the strong 
and positive correlation between the expression scores 
of the gene network (defined by single-sample GSEA; 
see in Materials and Methods) and the risk scores of the 
hypomethylation signature (Figure 3C). Similarly, GSEA 
shows the differential enrichment status of the down-
regulated and up-regulated gene sets within each risk 
subgroups across each dataset (Supplementary Table 5).  

The EGFR/VEGFA/ANXA1-centered gene 
network defines two distinct clinically relevant 
molecular subclusters of GBMs

Consensus k-mean clustering on the gene network 
signature clearly assigns TCGA tumors into two 
main clusters with clustering stability decreasing for  
k = 2 to 6 (Figure 4A and Supplementary Figure 2). The 
boundaries of the two clusters are statistically significant 
(P < 0.0001). Given the potential relevance of the gene 
network to neural cell development, we perform GSEA 
to evaluate the enrichment of signatures characteristic of 
different neuroglial lineages [20, 21] within the clusters. 
GSEA shows that the two clusters are mostly featured 
by IOs and IAs signatures respectively (Supplementary 
Table 6). In addition, the clusters show moderate 
enrichments in signatures of other neural cell types: the 
cluster with IA signature is also enriched in signatures 
of mature astrocytes and neural stem cells whilst the 
cluster with IO signature is enriched in signatures of 
mature oligodendrocytes and neurons (Figure 4A and 
Supplementary Table 6). The clusters and relevant 
features are also observed in non-TCGA samples 

Table 1: Results of Cox regression analyses in rennes cohorts 

Variables
Univariate Cox model  Multivariate Cox model

HR 95%CI P value  HR 95%CI P value

Rennes cohorts (n = 106)a

Patient age 1.026 1.005–1.049 0.016 1.031 1.007–1.056 0.011

KPS 1.000 0.986–1.013 0.942

Three-CpGs signature 0.354 0.209–0.601 < 0.001 0.381 0.220–0.662 0.001

MGMT methylation status 2.567 1.650–3.994 < 0.001 2.835 1.756–4.576 < 0.001

G-CIMP status  4.901 0.681–35.261 0.114

TCGA gene expression subtypesb 1.149 0.943–1.400 0.167

Gender 0.866 0.558–1.343 0.519

Extent of surgery (total/partial/biopsy) 0.642 0.437–0.944 0.024 0.549 0.358–0.841 0.006

HR = hazard ratio; CI = confidence interval; KPS = Karnofsky performance score; G-CIMP =  gliomaCpG island methylator phenotype. 
aRennes cohorts included GSE22891 and Rennes cohort (n = 106).
bTCGA gene expression subtypes includes mesenchymal, classical, proneural, and neural subtypes. 
In bold type were reported statistically significant results.
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(Supplementary Figure 2 and Supplementary Table 6). 
The overlap of some gene classifiers and the correlation 
to specific neural cell types may result in the similarity 
of the gene network clusters to the gene expression 
subtypes by Verhaak et al. [4]: the proneural and neural 
subtypes and the classical and mesenchymal subtypes 
were respectively enriched in each cluster (Figure 4A). 
However the gene network signature could identify 
tumors with different states of immature neural cell 
signatures within each Verhaak subtype (Supplementary 
Figure 3). We therefore name the clusters in accordance 
with their neuroglial genesis activity respectively: the IO-
like and the IA-like subtypes. 

To characterize the two clusters, a comprehensive 
integrative analysis of clinical and molecular data from 
TCGA is performed: 

Transcriptional level 

GSEA shows the differential functional profiles 
between the clusters: the IA-like cluster is enriched 
in cancer-promoting signatures relating to immune 
response, NF-kB activation, pro-angiogenic signaling 
and proliferative pathways, whilst the IO-like cluster 
is enriched in signatures of chromatin remodeling and 
normal brain development (Figure 4B and Supplementary 

Figure 1: Identification of the novel three-CpGs signature for glioblastomas (GBMs). (A) all patient cohorts and molecular 
data sets that were included for the study. (B) schematic diagram of the entire workflow for the study. (C) characteristics of the three-CpGs 
panel; Cox coefficients were calculated within the training set – GSE22891. (D) the effects of DNA methylation on locus-specific gene 
expression across tumors (left) and expression levels between GBMs and non-tumor brain tissues (right) for each CpGs; molecular data of 
GBMs (n=386) and controls (n = 10) were obtained from TCGA.
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Table 7). The functional features are also observed 
in non-TCGA samples (Supplementary Figure 4 and  
Supplementary Table 7). 

Genetic level 

MutSigCV analysis shows the differential 
mutational profiles between the clusters: 301 and 473 
genes respectively are significantly mutated in the  
IO-like and IA-like clusters, and 25% and 52% are cluster-
specific (Supplementary Table 8). Among them, mutations 
in EGFR and ARHGAP5 are significantly enriched within 
the IA-like cluster (Fisher’ exact test, P < 0.05) whilst 
mutations in 53 genes including IDH1, ATRX, TP53 and 
ZNF594 are enriched within the IO-like cluster (Fisher’ 

exact test, P ≤ 0.0001; Figure 4A). The gene network 
clusters also exhibit distinct chromosomal alterations: gain 
of Chr7 and loss of Chr10 are more frequently seen in 
the IA-like cluster, whilst loss of Chr11, Chr13q, Chr14q 
and Chr15q are more frequently seen in the IO-like cluster 
(Figure 4A and Supplementary Figure 5). Moreover, gain 
of Chr19 and Chr20 are found to be nearly exclusive 
in the IA-like cluster (Figure 4A). The cluster-specific 
chromosomal features are also seen in REMBRANDT 
samples (Supplementary Figures 4–5).

Epigenetic level

Correlation with DNA methylation clusters by 
Noushmehr et al. [6] shows that the IO-like and IA-

Figure 2: The survival correlation of the three-CpGs signature in each dataset. (A) the hypomethylation signature predicted 
overall survival (OS) in two training sets – GSE22891 and TCGA. (B) It was also correlated with different OS in the testing test – GSE50923. 
(C) The three-CpGs signature was further validated in three independent validation cohorts, by yielding apparent OS difference in GSE36278 
and Rennes cohort, and a trend for significance in GSE60274. (D) The three-CpGs signature was also able to identify patients with different 
prognoses within MGMT methylated tumors (left), unmethylated tumors (middle), and G-CIMP-negative tumors (right) among all available 
patients; the prognostic abilities were also confirmed by dataset-level meta-analysis, which was shown aside in a manner of forest plot.
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like clusters are respectively enriched with G-CIMP 
and cluster#2 GBMs whilst cluster#3 tumors are evenly 
distributed across the clusters (Figure 4A). The IO-like 
cluster has a higher frequency of methylated MGMT 
promoter (Fisher’s exact test, P = 0.0121; Figure 4A). 
Using TCGA miRNA Microarray data, we identify 218 
differentially expressed microRNA (DEmiRs; 110 up- and 
108 down-regulated) between the clusters (Supplementary 
Table 9). The IA-like tumors are featured by up-regulation 
of oncogenic and pro-angiogenic microRNAs (e.g.,  
mir-222/221, mir-21, and mir-155) [22–24] and immune-
modulating microRNAs (e.g., mir-34a, mir-27a, and mir-
146b) [25–27] whilst the IO-like tumors are enriched with 

tumor suppressor microRNAs (e.g., mir-124a, mir-219, 
and mir-338), some of which also have roles in neural cell 
differentiation [28–31] (Figure 4C). 

Protein level 

The gene network clusters also exhibit distinct 
downstream protein alterations; 43 and 43 proteins were 
up- and down- regulated in the IA-like vs. IO-like tumors 
(Figure 4D, and Supplementary Table 10). The IO-like 
tumors show elevation of a pro-oncogene (c-Kit) and 
activation of known signaling pathways such as MAPK 
(e.g., B-Raf, K-Ras, MEK1, JNK, Tau, and Stathmin 1), 

Figure 3: Functional relevance of the hypomethylation signature. (A) GSEA enrichment plots for representative functional 
gene sets enriched in low-risk and high-risk tumors from TCGA. (B) based on the top differentially expressed genes (699 genes) between 
the risk groups in TCGA, a novel 88-gene interaction network was constructed by STRING database, which was centered on EGFR (25 
connection nodes), VEGFA (16 connection nodes), and ANXA1 (12 connection nodes; left); the top featured functional groups for the gene 
network classifiers were identified by DAVID database, showing that those genes were mostly involved in biological processes related to 
cancer and neural cell development (middle); each bar was indicated by the most representative annotations (with the smallest P value) for 
each functional groups, and was ordered by group enrichment score, that was the geometric mean of member’s p-values in a corresponding 
annotation cluster; hierarchical clustering on the gene network classifiers clearly separated signatures of immature oligodendrocytes (IO) 
including non-myelinated oligodendrocytes and oligodendrocyte progenitor cells, from immature astroctyes (IA) (postnatal 1 to 8 days), 
also suggesting the relevance of the gene network to neural cell development (right). (C) Pearson correlation analysis showed that the 
risk scores of the hypomethylation signature were consistently and strongly in positive correlation with the expression scores of the gene 
network not only in the deriving TCGA, but also in two independent databases – Rennes (GSE22891 and Rennes cohort collectively) 
and GEO (GSE36278 and GSE60274 collectively); only samples with corresponding DNA methylation and gene expression data were 
analyzed. 
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PI3K/Akt/mTOR (e.g., Tuberin, GSK-3β, p70S6K, 4EBP1, 
and p27), and P53 (e.g., cyclin B1, cyclin D1, cyclin E1, 
p53, cleaved-caspase-9, and Chk2). Regarding the IA-
like tumors, phospho- and/or total protein levels of EGFR 
and ANXA1 are increased as anticipated, as well as focal 
adhesion (e.g., IGF-1R-β, Caveolin-1, HER2, Collagen VI, 
FAK, and fibronection) and VEGF signaling pathway (e.g., 
VEGFR2, MAPK, paxillin, Src, p38, and Cox-2). 

Clinical level 

Besides the distinct molecular features, the gene 
network clusters show strong clinical correlations. In 
TCGA, the IA-like tumors are significantly associated 
with shorter OS than the IO-like ones (Figure 4E). 
Multivariate Cox model shows the gene network clusters 
as an independent prognosticator in the context of age, 
G-CIMP status, MGMT methylation status, and treatments 
(Supplementary Table 11). Interestingly, the concurrent 
gain of Chr19/20, a newly identified favorable genetic 
marker for non-G-CIMP tumors [5], is found to be nearly 
exclusive in the unfavorable IA-like cluster (104 of 114; 
Figure 4A). The incorporation of the genetic marker to the 
gene network clusters further identifies a more unfavorable 
subgroup of IA-like tumors without co-gain of Chr19/20 
(Figure 4E). The clinical features are also seen in non-
TCGA datasets (Supplementary Figure 4). 

Of note, the integrative analysis reveals apparent 
and concordant activation of pro-angiogenic signaling at 
multiple molecular levels in the IA-like cluster. Therefore 
it is reasonable that the clusters may have differential 
responses to anti-angiogentic therapy. Using the TCGA 
drug data, we find that, among patients with RT/TMZ, the 
addition of bevacizumab (either first-line or at recurrence; 
a humanized monoclonal antibody against VEGFA  
[32, 33]) do confer a clear OS benefit to patients within the 
IA-like cluster, but is associated with similar OS within 
the IO-like cluster (Figure 4F). Of note, the results are not 
conclusive, and should be validated within prospective 
trials. 

DISCUSSION

Epigenetic marks and DNA methylation in particular 
have been the leading candidates for biomarker discovery 
as they have advantages over genetic- or expression-
based information: reliable DNA samples, stable altering 
patterns, multilevel biological information, and drug-
induced reversibility [34]. There have been precedents of 
DNA methylation marks and especially those at promoter-
specific CGI regions as more powerful parameters than 
other molecular information for cancer diagnosis and 
prognosis, among which MGMT hypermethylation 
for better outcome to TMZ is the most remarkable one 
[12]. The clinical value of DNA methylation aberrations 
outside the CGI-relevant gene regions however has been 

largely overlooked due to the long-standing focus on 
cancer-linked CGI hypermethylation [9]. In this study, 
we report the first epigenetic biomarker of non-CGI open 
sea hypomethylation for GBM prognostication. The risk-
score based epigenetic classifier shows robust prognostic 
value as it has been validated in different GBM cohorts. 
Moreover, the hypomethylation signature shows good 
interrelationships with the current widely-used biomarkers 
such as G-CIMP status (or IDH1 mutations) and MGMT 
methylation status. Therefore, the incorporation of 
the hypomethylation signature into current molecular 
classification could be logically practical and be helpful 
for optimizing risk stratification of GBM patients. 
Although it is of promising value, there still have technical 
issues to be solved before its application in clinical 
routine testing. The risk-score signature is developed 
based on DNA methylation microarray data, which 
however could not be easily available for routine practice. 
Quantitative pyrosequencing is a well-established and 
widely used method for DNA methylation detection [35]. 
Comparative study has showed very good congruence of 
DNA methylation data from Illumina DNA methylation 
array with pyrosequencing data [35]. The conventional 
technique may thus represent an alternative for the three-
CpGs methylation profiling in clinical setting. Independent 
validation study will be required for adjusting the 
microarray-based signature to a pyrosequencing-based 
one because that inconsistence of DNA methylation data 
for individual loci between the two methods really exists. 

By far limited data have been explored for biological 
and clinical impacts of gene hypomethylation in cancers. 
Early studies focusing on cancer-linked hypomethylation 
at gene-poor DNA repeats suggested that those DNA 
methylation aberrations may lead to instability of 
chromatin structure, reactivation of transposable elements, 
and in trans modification of relevant gene expressions 
[36]. Within gene regions, about 40% of all human genes 
have no CGIs at their promoters [37]. Recent genome-
wide epigenetic studies of common solid tumors [11, 38] 
showed that tumor-specific hypomethylated loci favor non-
CGI promoters and open sea regions in particular, and are 
usually associated with large-scale hypomethylated blocks 
[11]. Like CGI hypermethylation, DNA hypomethylation 
may contribute to tumors via affecting individual 
gene expression (e.g., re-expression of pro-oncogenic 
genes) [36]. However, studies have showed that DNA 
methylation has overall limited control for non-CGI 
promoters, and the expression levels of hypomethylated 
genes are much variable, as a result of the spatial and 
temporal balance of various transcription regulatory 
activators and repressors [11, 37] . For blocks of multiple 
hypomethylated loci, they may have a broader effect by 
affecting heterochromatin structures in normal cells, and 
making them become euchromatic in cancer cells, as well 
as leading to loss of epigenetic regulation, and resulting in 
hyper-variability of gene expression [38]. In our study, we 
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find that the three open sea CpGs showed limited impact 
on individual gene expression, which may be unlikely to 
fully explain the robust survival difference conferred by 
the hypomethylation signature. Actually, the three open 
sea CpGs are all located within the large hypomethylated 
blocks reported by Timp et al. [11]. It is reasonable to 
assume that the three-CpGs panel may be part of GBM-
specific large hypomethylated blocks, which may have 
wide influences on tumor transcriptome, and its clinical and 

biological impacts may be associated with the expression 
of sets of functionally interacted genes, not limited to 
locus-specific gene expression. Following the assumption, 
we identify an 88-gene core network centered by EGFR, 
VEGFA and ANXA1 that are closely associated with the 
hypomethylation signature. Most of the network genes have 
been shown to have roles in key biological processes of 
glioma and neural cell development (Supplementary Table 
4). Clustering based on the gene network expression data 

Figure 4: Molecular and clinical characterization of the two distinct subtypes of GBMs defined by the EGFR/VEGFA/
ANXA1-centerred gene network using TCGA multi-dimensional data. (A) the heat maps of K-means (k = 2) clustering on the 
gene network signature; each row represented a gene which was ordered according to the log2 fold change value calculated from TCGA; 
each column represented a sample; for each sample (n = 561), subgroup correlation, multi-level molecular features, and enrichment levels 
for signatures specific to distinct neural cell lineages were indicated; P values for Fisher’ exact test, Chi-square test, and GSEA were 
accordingly shown; (B) representative functional gene sets enriched in each subtype were also shown in a manner of enrichment plot;  
(C–D) the volcano plots of the differentially expressed microRNAs and proteins between the subtypes; the top-ranked ones (absolute log2 
fold change > 0.5) were indicated; (E) the subtypes showed strong clinical correlations: the IO-like tumors were significantly associated 
with longer overall survival (OS) than the IA-like ones (left); incorporation of concurrent gain of chr.19/20 further identified a subgroup 
with more unfavorable prognosis within the IA-like tumors (right); (F) among TCGA patients treated with radiation (RT) and temozolomide 
(TMZ), the use of bevacizumab (either first-line or at progression) did confer a clear OS benefit to those with the IA-like tumors but was 
associated with similar OS among the IO-like tumors; recurrent, secondary or previously treated cases were excluded in this interaction 
analysis.
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could stratify GBMs into two distinct clusters of tumors 
with similar gene network expression patterns. Integrative 
analysis demonstrates the distinct molecular and clinical 
features of the defined clusters at multi-platform levels. The 
reproducibility of the clusters and relevant features across 
each dataset suggests that it is unlikely that the new clusters 
are a spurious finding due to technical artifact or sample 
bias. All the data support that the gene network may have 
important roles in GBM biology and prognosis. Therefore, 
it is reasonable to believe that the core gene network may 
be key molecular effectors that could biologically explain 
the survival impact of the hypomethylation signature in 
GBMs. However, it should be noted that our study only 
demonstrates the close correlation between the two-level 
molecular signatures, the causality, or their exact molecular 
interaction, remains further investigation. 

The characterization of the gene network clusters 
provides novel insights into the understanding of 
molecular heterogeneity of GBMs. Rather than specifically 
correlating to neuroglial lineages at mature stage, which 
has been shown in the Verhaak subtypes [4], the expression 
patterns of the gene network could identify subsets of 
GBMs reminiscent of distinct immature neural cell types. 
The clusters may be more consilient with the hypothesis 
that GBMs are likely to be derived from neural progenitor 
cells. Moreover, instead of a purely data-driven approach, 
the gene network is constructed by a bioinformatics-
based approach, which takes advantages of validated 
molecular data from STRING database [39]. The gene 
network is actually a collection of functionally relevant 
genes that may collaboratively have roles in determining 
tumor phenotypes. The expression patterns of the whole 
gene network can serve as a more reliable indicator than 
individual gene expressions to predict such phenotype. 
In our study, we find that the two clusters exhibit stable 
but distinct functional features across different datasets: 
the IA-like tumors appear to be more aggressive and 
less differentiated as they are featured by activation of 
NF-kB signaling, immune response, and pro-angiogenic 
signaling, and down-regulation of neural developmental 
signatures. It is believed that those cluster-specific features 
may serve as potential therapeutic targets for differential 
treatment towards GBMs, among which the abnormal 
activation of pro-angiogenic pathways represents the 
most promising one. Within TCGA samples, we observe 
differential treatment outcomes of bevacizumab-contained 
therapy within the gene network clusters, supporting its 
implication in guiding anti-angiogenic therapy for GBMs. 
The finding is encouraging especially after the disclosure 
of two Phase III trials failing to justify the survival benefits 
of bevacizumab for unselected primary GBM patients 
[32, 33]. Of note the result should be conservatively 
interpreted due to apparent study limitations (e.g., 
incomplete drug data, second-line bevacizumab in most 
cases, and retrospective design). Prospective validation in 

randomized trials of first-line bevacizumab is needed for 
final conclusion. 

Accumulating studies including ours have 
highlighted the high relevance of gene hypomethylation 
to cancer biology and prognosis [36]. Those findings may 
raise new concerns against the current demethylation 
agents for anti-cancer therapy as they may have adverse 
therapeutic effects by exacerbating cancer-linked gene 
hypomethylation. Therefore novel epigenetic modifiers 
that have reversed effects on DNA hypomethylation may 
be promising therapeutic agents in combination with 
current demethylation drugs.

In summary, our study takes advantage of the current 
high-throughput DNA methylation detection platform, and 
provides initial data on molecular and clinical relevance of 
gene hypomethylation in GBMs. 

MATERIALS AND METHODS

Rennes cohorts

Totally fifty six adult patients (aged ≥ 18 years 
old) with newly diagnosed GBMs were collected from 
the Neurosurgery Departments of Rennes and Angers 
University Hospitals between 2004 and 2010 (Rennes 
cohort). All patients were homogenously treated 
with Stupp regimen [40]. Snap-frozen samples were 
collected, following informed consent, in accordance 
with the French regulations and the Helsinki Declaration. 
DNA was extracted using the NucleoSpin TissueKit 
(Macherey Nagel). The quality of DNA samples 
was assessed by electrophoresis in a 1% agarose gel. 
DNA methylation profiling was done with Infinium 
HumanMethylation450 k platform (Illumina Inc.). 
The novel BMIQ (Beta MIxtureQuantile dilation) 
algorithm was used for intra-array adjustment [41]. 
Methylation level of each interrogated CpGs locus is 
summarized as β value which provides a continuous and 
quantitative measurement of DNA methylation, ranging 
from 0 (completely unmethylated) to 1 (completely 
methylated). Gene expression profiling was done with 
the Agilent Whole HumanGenome 8 × 60 K Microarray 
Kit (Agilent Technologies). Microarray data were log2 
transformed, and normalized (scale 50th percentile 
and baseline transformation) within GeneSpring GX 
software (Agilent Technologies). The genomic region 
spanning wild-type R132 of IDH1was analyzed by direct 
sequencing as previously described [15]. A published 
cohort of fifty newly diagnosed GBMs (Stupp regimen) 
from the Neurosurgery Departments of Rennes and 
Angers University Hospitals was also included with 
available genome-wide DNA methylation (GSE22891; 
Infinium27k platform, Illumina Inc.) and gene expression 
data (GSE22891; Agilent 4 × 44 K Microarray Kit, Agilent 
Technologies) [15].  
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Public datasets

The cancer genome atlas (TCGA)

Multi-platform molecular and clinical data from 570 
GBM samples were downloaded from TCGA data portal 
[7]. Multi-level data sets included 1) level 3 customized 
AgilentG4502A_07 Microarray data for gene expression; 
2) level 3 Infinium 27 k or 450 k Array data for DNA 
methylation; 3) level 2 Whole Exome Sequencing data 
for somatic mutation; 4) level 3 Affymetrix Genome-wide 
Human SNP6.0 Array data for copy number; 5) level 3 
Agilent 8x15K Human miRNA Microarray data for 
microRNA, and 6) level 3 Reverse Phase Protein Array 
data for protein targets. In addition, gene expression 
data from ten non-tumor brain samples were obtained as 
controls [7].   

Repository of molecular brain neoplasia data 
(REMBRANDT)   

A total of 177 GBM samples were retrieved from 
REMBRANDT [42]. Two-level data sets included 1) 
Affymetrix Human Genome Plus2.0 Microarray data for 
gene expression; and 2) Affymetrix100K SNP Array data 
for copy number data.   

Gene expression omnibus (GEO)

Four datasets of GBMs were also obtained 
from GEO, including a Switzerland cohort (n = 79; 
GSE60274 for DNA methylation and GSE7696 for gene 
expression; recurrent samples were excluded; ref. [18, 
19]), a Germany cohort (n = 57; GSE36278 for DNA 
methylation and GSE36245 for gene expression; tumors 
harboring mutations in H3F3A and those from TCGA 
were excluded; ref. [17]), a American cohort (n = 52) with 
only DNA methylation data (GSE50923; ref. [16]) and a 
European cohort (n = 144) with only gene expression data 
(GSE16011; ref. [3]).

Of note, among the heterogeneous datasets of 
gliomas of all grades and ages, only patients with age over 
18 years old, and a histological diagnosis of GBMs, were 
included in this study. Patients with a follow-up data ≥ one 
month were included for survival analysis, to reduce the 
bias caused by non-cancer death. 

Across-dataset (or platform) microarray data 
processing   

For DNA methylation data, batch effects caused by 
different datasets and different platforms were adjusted 
by a non-parametric empirical Bayes approach (ber 
package) [43]. For gene expression data, expression 
values represented by multiple probes (or probe sets) 

were collapsed by taking the mean value of the set of 
probes (or probe sets). Gene expression datasets were 
standardized independently by z-score transformation, in 
which expression values of each gene were transformed 
to have a mean of zero and a standard deviation (SD) of 
one [17]. Missing values were imputed by impute package 
within R software.     

Construction of a risk-score signature from 
reported differentially methylated CpGs in 
GBMs  

The list of 1548 differentially methylated CpGs 
between GBMs and non-tumor brain tissues from both 
TCGA and GSE50923 (1548 CpGs) reported by Lai et al 
[16] was downloaded as GBM-specific CpGs candidates. 
After removal of those targeting the sex chromosomes, 
those containing a single-nucleotide polymorphism 
within five base pairs or the targeted loci, and those 
not interrogated on both the 27 k and 450 k platforms, 
1176 CpGs were kept for subsequent analysis. The 
training-validation approach was employed to construct 
a prognostic signature. First, univariate Cox regression 
analysis with permutation correction was performed using 
methylation levels of the GBM-specific loci and overall 
survival (OS) from the first training set – GSE22891. The 
top significant prognostic loci (5 CpGs; P < 0.0001) were 
then subjected to Cox regression model within the second 
training set – TCGA. Three of the five loci remained 
significant in TCGA (P < 0.05), and were then combined 
using a risk-score model. Cox regression coefficients 
of each CpGs were calculated from the clinically 
homogeneous set - GSE22891. The optimal cutoff to 
stratify different risk tumors was determined by maxstat 
package within the both training sets [44]. Bioinformatic 
analysis 

GSEA was run to evaluate functional profiles 
between defined subgroups on reported gene sets from 
Molecular Signature Database (MSigDB) [45], with 
nominal P value ≤ 0.05 for significance. DEGs were 
computed by two-sample t test with a parametric P value 
≤ 0.05 being significant. STRING database [39] was run 
to construct gene interaction network from the top DEGs, 
with the input options “experiment”, “co-expression”, 
“database”, “textmining” and “high confidence (0.700)”. 
The correlation of the hypomethylated signature and gene 
network was assessed by Pearson correlation analysis, 
with the risk scores of the hypomethylated signature and 
the expression scores of the gene network as variables 
[4]. The expression scores were defined as the z-score 
transformed ssGSEA projections of the up-regulated gene 
set minus the z-score transformed ssGSEA projections of 
the down-regulated gene set in each dataset [4]. DAVID 
database was run to provide functional annotations for 
input gene list [46].   
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Integrative analysis of multi-dimensional 
molecular data

Unsupervised clustering was performed on the EGFR/
VEGFA/ANXA-centered gene network. Increasing values 
of k (2 to 6) were used to identify optimal segregation. 
Cluster significance was evaluated using sigclust package 
[47]. Multi-level data sets were analyzed by the following 
statistical models: 1) copy number data were analyzed by 
GISTIC2.0 [48], with amplitude threshold being ± 0.2, and 
others being default; 2) somatic mutations were analyzed 
by MutSigCV [49] with false discovery rate (FDR) q-value 
≤ 0.05 for significance; and 3) differentially expressed 
microRNAs and proteins (DEPs) were computed by two-
sample t test. Both GSEA and ssGSEA were performed 
to assess the enrichment of signatures characteristic 
of different neuroglial lineages: classifiers of neurons, 
(immature) astrocytes and (immature) oligodendrocytes 
were generated from a mouse central nervous system 
developmental dataset (GSE9566; ref. [20]); classifiers 
of neural stem cells were retrieved from a co-expression 
gene module in the adult human subventricular zone [21]. 
The TCGA gene expression subtypes were predicted by 
Binary tree classification prediction using the 840 classifiers 
reported by Verhaak et al [4]. G-CIMP and relevant 
methylation clusters were determined by k-means (k = 3) 
clustering on the 1503 probes reported by Noushmehr et 
al [6]. MGMT promoter methylation status was determined 
by a logistic regression model based on two CpGs, i.e., 
cg12434587 and cg12981137 [50]. 

Statistical analysis

Pearson correlation analysis was performed to 
evaluate the correlation between DNA methylation 
and gene expression. Hierarchical clustering analysis 
was performed within GenePattern (http://software.
broadinstitute.org/). The distributions of known molecular 
features with respect to each subgroup were tested by 
Fisher’s exact or Chi-square test. OS were estimated by 
the Kaplan-Meier Method, and compared by log-rank test. 
Multivariate Cox regression analysis was used to evaluate 
the independence of potential prognosticators, only 
incorporating variables that are significant in univariate 
Cox model. Pooled analysis of hazard ratios (HR) at 
dataset level was done by the inverse-variance method. 
The application of either fixed- or random-effect models 
was based on the intra-dataset heterogeneity which was 
calculated by I-square statistic with I-square > 50% being 
significant. All the calculations were done within SPSS and 
R software and P values ≤ 0.05 for significance were used.
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