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ABSTRACT
Previous diffusion tensor imaging (DTI) studies have detected white matter 

(WM) integrity abnormalities in some specific fibre bundles in acute lymphoblastic 
leukaemia (ALL) patients with chemotherapy. However, little is known about 
the changes in the topological organization of the WM structural network in ALL 
patients with chemotherapy. In the present study, we acquired DTI datasets from 
28 ALL patients (mean age: 40.71 ± 8.58 years, years since diagnosis: 7–38) with 
chemotherapy and 20 matched healthy controls (mean age: 42.95 ± 6.39 years) 
and performed WM network analysis using a deterministic fibre-tracking approach. 
Graph theoretical analysis was used to compare the topological parameters of the WM 
networks between the two groups. Both ALL patients with chemotherapy and healthy 
controls had small-worldness in their WM networks. ALL patients showed significantly 
reduced global network efficiency, as indicated by the abnormally decreased clustering 
coefficient Cp and the normalized clustering coefficient γ and increased shortest path 
length Lp compared with healthy controls. Moreover, hubs were located more in 
parietal regions of healthy controls and in temporal regions in the ALL patients. We 
revealed the abnormal topological organization of the WM networks of ALL patients 
with chemotherapy, which may improve our understanding of the neural mechanism 
of chemotherapy in ALL from a WM topological organization level.

INTRODUCTION

Acute lymphoblastic leukaemia (ALL) is the 
most common cancer among children, accounting for 
74% of all leukaemias and 18% of all cancers [1, 2]. 
ALL survivors suffer from long-term neurocognitive 
impairment and poor health-related quality of life 
(QoL) [3]. The historical treatment of central nervous 
system (CNS)-directed therapy has resulted in a 5-year 
event-free survival rate of approximately 80% [4]. CNS-
directed therapies mainly consist of cranial irradiation, 
chemotherapy, and combinations of these two methods. 

Among these CNS-directed therapies, cranial irradiation 
has been implicated as the cause of neurocognitive 
impairments [5, 6]. However, neurocognitive outcomes 
after chemotherapy treatment without cranial irradiation 
are inconsistent. Candidate mechanisms for cognitive 
impairment include direct neurotoxic effects causing 
atrophy of grey matter (GM) and/or demyelination of the 
white matter (WM), secondary immunologic responses 
leading to inflammatory reactions, microvascular damage, 
and genetic vulnerabilities [7–9].

In the past decades, the advent of neuroimaging 
techniques has provided insights into the anatomic 
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substrates of potentially toxic treatment effects. Studies 
on brain structural and functional alterations (including 
WM integrity [10–12], GM volume [13–15], resting-
state magnetic resonance imaging (MRI) [16], task-state 
MRI [17–19], and cortical thickness [20, 21]) related to 
ALL patients who take chemotherapy treatment has been 
accumulating in recent years. However, these studies 
have only focussed on regional brain changes, and little is 
known about global topological alterations specific to ALL 
with chemotherapy. 

Currently, growing amounts of brain network studies 
have aimed to reconstruct whole-brain WM connectivity 
with diffusion tensor imaging (DTI) tractography based 
on graph theory [22, 23]. Graph theoretical analysis 
provides a powerful tool for quantifying the organization 
of network connectivity by defining a graph as a set of 
nodes (brain regions) and edges (structural connections) 
[23–25]. These methods have revealed many important 
topological properties, such as small-world, which is 
characterized by a high global integration and a high local 
specialization between brain regions [26–30], and the 
network efficiency that characterizes the fault tolerance 
of the network [31]. However, no studies have reported 
ALL with chemotherapy changes in WM brain networks 
or have investigated the topological differences between 
ALL patients and healthy controls. 

In the present study, we used DTI tractography and 
graph theory to construct the WM structural networks in 
ALL patients with chemotherapy and healthy controls. 
Then, small-world properties and global parameters were 
compared between these two groups. We hypothesized 
that the network topographical structure might have 
been disrupted in ALL patients and hope to provide new 
insights into the mechanisms of chemotherapy-induced 
brain impairment.

RESULTS

Demographics

There were no significant differences in terms of 
age (two sample t-test, t = 1.433, p = 0.159) and gender 
(chi-square test, χ2 = 1.067, p = 0.302) between the ALL 
patients and healthy controls (Table 1).

Small-worldness

At the threshold of three fibres, the structural networks 
of the ALL patients and healthy controls had higher 
normalized clustering coefficients (γALL = 4.462 ± 0.055, 
γHC = 4.744 ± 0.088) but almost identical normalized shortest 
path lengths (λALL = 1.152 ± 0.011, λHC=1.185 ± 0.024) 
relative to matched random networks, which suggested that 
the two groups exhibited typical small-world organizations 
in their structural networks. Statistical analysis indicated 
that ALL patients had a significant increase in the shortest 

path length Lp (P < 0.01) and significant decreases in the 
clustering coefficient Cp (P < 0.01) and the normalized 
clustering coefficients γ (P < 0.01). No group differences 
were found for normalized shortest path length λ and small-
world σ (Figure 1 and Supplementary Table 1).

Network efficiency

We found significantly lower global efficiency Eg 
(P < 0.01) for ALL patients relative to healthy controls 
(Figure 1). No group difference was found for local 
efficiency Eloc (Figure 1).

Hubs

The regions were defined as network hubs if their 
nodal betweenness centrality was one standard deviation 
(SD) greater than the average of the network. The study 
identified 9 hub nodes of the WM structural networks in 
the healthy control group and 12 hub nodes in the ALL 
group. In both groups, 2 brain regions were identified 
as hubs in common, including the right precentral 
gyrus (PreCG.R) and the right middle frontal gyrus 
(MFG.R). In addition, some brain regions, including 
the left supplementary motor area (SMA.L), the right 
insula (INS.R), the left middle occipital gyrus (MOG.L), 
the bilateral putamen (PUT), the left precentral gyrus 
(PreCG.L), the right superior frontal gyrus_orbital 
(SFGorb.R), the right hippocampus (HIP.R), the right 
superior temporal gyrus (STG.R), and the left middle 
temporal gyrus (MTG.L) were identified as hubs in the 
ALL group but not in the healthy control group. Seven 
brain regions, including the right supplementary motor 
area (SMA.R), the left superior frontal gyrus_orbital 
(SFGorb.L), the left middle frontal gyrus (MFG.L), the 
left superior frontal gyrus_dorsolateral (SFGdor.L), the 
left rolandic operculum (ROL.L), the right precuneus 
(PCUN.R), and the left caudate nucleus (CAU.L), were 
identified as hubs in the healthy controls group but not in 
the ALL group (Figure 2). 

DISCUSSION

In the present study, we explored whether there 
were aberrant topological properties in WM networks in 
ALL patients with chemotherapy treatment and healthy 
controls. Our main findings were as follows: a) small-
world organizations were present in both ALL patients 
with chemotherapy and controls, which is agreement 
with a previous study [42]; b) increased shortest path 
length Lp (P < 0.01), decreased in clustering coefficient 
Cp (P < 0.01), and decreased normalized clustering 
coefficients γ (P < 0.01) were present in ALL patients; c) 
lower global efficiency Eg (P < 0.01) was present in ALL 
patients; d) hubs were located more in the parietal regions 
of healthy controls and in the temporal regions in ALL 
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Figure 1: Differences in global metrics of the structural networks between ALL and HC groups. Error bar represent 
standard errors. Cp, clustering coefficient; Lp, shortest path length; Gamma, normalized clustering coefficient; Lambda, normalized shortest 
path length; sigma, small-worldness; Eg, global efficiency; Eloc, local efficiency. ALL, acute lymphoblastic leukemia with chemotherapy 
treatment, HC, healthy controls.

Table 1: Demographic characteristics of study participants
Items ALL patients Healthy controls P-value
N 28 20 –
Age (year) 40.71 ± 8.58 42.95 ± 6.39 0.33a

Gender (M/F) 14/14 8/12 0.49b

Note: a p value from t test, b p value from chi-square test.

Figure 2: Hub distribution between ALL and HC groups. The size of nodes indicates the betweenness centrality (BC). PreCG, 
precentral gyrus; MFG, middle frontal gyrus; SMA, supplementary motor area; INS, insula; MOG, middle occipital gyrus; PUT, putamen; 
SFGorb, superior frontal gyrus_orbital; HIP, hippocampus; STG, superior temporal gyrus; MTG, middle temporal gyrus; SFGdor, superior 
frontal gyrus_ dorsolateral; ROL, rolandic operculum; PCUN, precuncus; CAU, caudate nucleus; R, right; L, left.
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patients; and e) alterations in nodal betweenness centrality 
were present in both groups.

Our study is the first to find that the ALL patients 
with chemotherapy treatment demonstrated reduced 
global connectivity in WM structure compared with 
healthy controls. This global hypo-connectivity in ALL 
patients with chemotherapy treatment is reflected by two 
abnormal indexes for small world measures (decreased γ 
and increased λ). As expected, the significantly decreased 
γ in ALL patients compared with healthy controls has 
been suggested to reduce global connectivity efficiency 
[23], which is in line with a previous study [42]. Global 
efficiency is known to indicate the capacity to transfer 
information between different nodes of the brain network 
and is a comprehensive index for parallel information 
processing capabilities [39, 43]. Brain networks with 
small-world σ confer resilience against pathological 
attack, and impairments of these properties are caused by 
chemotherapy treatment in ALL patients.

We demonstrated a lower network efficiency in 
ALL patients with chemotherapy treatment compared 
with healthy controls, which suggested a less optimal 
organization for ALL patients. The significantly decreased 
Cp and increased Lp in ALL patients indicate the loss of 
the capacity to transmit specialized information rapidly 
among distant brain regions. It is suggested that the 
structural aberrations in some local brain areas might 
have contributed to the reduced clustering and longer path 
length in ALL patients compared with healthy controls.

There have been several studies on the morphological 
analysis of ALL patients with chemotherapy treatment 
[15, 20, 21, 44], but the results have been inconsistent. 
Reduced thickness in the right precentral gyrus [21], 
decreased GM volume in several brain regions [15, 20], and 
increased GM volume in the caudate [44] have also been 
reported. A possible explanation for these findings might 
be the mixing of various aetiologies, or the analyses were 
performed using different methods. By employing graph 
theoretical analysis for structural imaging, our study revealed 
the different structural connectivity networks between ALL 
patients with chemotherapy treatment and healthy controls.

The present study found that the hubs were mostly 
located in the parietal and temporal regions, which is 
compatible with former findings in which hubs were 
primarily located in parietal areas [41], reflecting the main 
functions associated with these areas [23]. However, there 
was little overlap distribution of hubs between the two 
groups. Specifically, hubs in parietal regions accounted for 
a great proportion of all of the hubs in healthy controls, 
while more hubs were found in temporal regions in ALL 
patients with chemotherapy treatment. These findings 
suggest that parietal regions are more important in healthy 
populations, while temporal regions are more important 
in ALL patients.

A number of limitations need to be noted regarding 
the current study. First, the methodology of deterministic 

tractography to reconstruct structural connectivity cannot 
accurately map out all the fibres and has the limitation of 
tracking crossing fibres. Second, the sample size is limited, 
and the results need to be replicated in large samples. 
Third, this study included no neurocognitive testing; 
therefore, we cannot analyse the relationship between 
brain structure abnormalities and behaviour patterns. 
Finally, the present study is cross-sectional in design. 
Without a longitudinal study, the differential effects of 
cancer progression, chemotherapy, and/or treatment-
related factors cannot be determined. A longitudinal study 
with a larger sample would be valuable to further define 
the network properties of ALL patients. 

In conclusion, our study demonstrated the presence 
of altered topological properties in the structural networks 
of ALL patients with chemotherapy. In addition, the 
network metrics suggested that the efficiency of the 
entire brain network was decreased. The abnormality 
of the structural networks between ALL patients with 
chemotherapy and healthy controls is remarkable and 
could contribute to a better understanding of the effects of 
chemotherapy in ALL patients.

MATERIALS AND METHODS

Participants

This study was approved by the Ethics committee 
of the Second Hospital of Anhui Medical University, 
and all participants obtained written informed consent. 
We identified 32 ALL patients who had completed all 
anti-cancer treatments with chemotherapy only in the 
Second Hospital of Anhui Medical University from June 
2015 to June 2016. Four of the 32 survivors withdrew 
during data collection, leaving 28 participants (mean 
age: 40.71 ± 8.58 years; years since diagnosis: 7–38) 
included in the study. The ALL group had a history of 
chemotherapy treatment and was off-therapy for at least 
3 years. Systemic chemotherapy included prednisolone, 
vincristine, cyclophosphamide, daunorubicin, doxorubicin, 
asparaginase, teniposide, cytarabine, 6-mercaptopurine, 
6-thioguanine, and dexamethasone. Criteria for exclusion 
were as follows: (1) pre-existing neurologic disease 
affecting behaviour, (2) neurologic sequelae during 
treatment, (3) ALL relapse, (4) cranial irradiation or 
haematopoietic stem cell transplantation, and (5) MRI 
contraindication. For the control group, 20 healthy, age-
matched controls were selected. 

MRI acquisition

All MRI examinations were performed with a 3.0 
T MR scanner (Trio; Siemens, Erlangen, Germany) in 
the Second Hospital of Anhui Medical University. Foam 
pads and ear plugs were used to minimize head motion 
and scanner noise. Diffusion-weighted images were 
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acquired with an echo planar imaging sequence covering 
the whole brain (TE/TR = 84/8400 ms, FOV = 256 × 256, 
slice thickness = 3 mm, slice gap = 0, b = 0,1000 s/mm2, 
direction = 30). High-resolution T1-weighted structural 
images were obtained with a magnetization-prepared 
rapid gradient-echo sequence (TE/TR = 2.98/1900 
ms, FOV = 256 × 256, slice thickness = 1 mm, voxel 
size = 1 × 1 × 1 mm3, number of slices = 176). 

Data preprocessing 

Data preprocessing and network construction were 
performed using PANDA (www.nitrc.org/projects/panda), 
a pipeline toolbox for diffusion MRI analysis [32]. Briefly, 
the image preprocessing steps included: format conversion 
of original data (DICOM), BET (skull removal), eddy 
current and head motion correction, fractional anisotropy 
(FA) calculation, and diffusion tensor tractography. 

Network construction

Defining network nodes. Individual structural 
images were first co-registered to their first b0 images. 
Next, the transformed structural images were non-
linearly normalized to the MNI space. Finally, the derived 
deformation parameters were inverted and employed to 
warp the automated anatomical labelling (AAL) atlas 
[33] from the MNI space to the diffusion image native 
space. After this procedure, we obtained 90 cortical 
and subcortical regions (45 for each hemisphere), each 
representing a network node [23]. 

Defining network edges. To define the edges of the 
structural network, we calculated the number of fibres 
(with end-points in both nodes during the fibre tracking) 

between two regions, generating a 90 × 90 matrix for each 
subject (Figure 3). To reduce false-positive connections 
due to the limited resolution of DTI when a minimum 
of three fibres is used as a threshold [34–36], the fibre 
number (FN) between each couple of brain nodes was 
defined as the weights of the network edges. Finally, the 
FN-weighted structural networks were constructed for 
each participant [37, 38].

Network analysis

The WM network topological properties were 
analysed using graph theory in GRETNA (www.nitrc.org/
projects/gretna). For the structural-weighted brain network, 
we calculated the network metrics at the global level. We 
mainly focussed on the clustering coefficient Cp, shortest 
path length Lp, small-worldness (normalized clustering 
coefficient γ and normalized shortest path length λ) [26], 
local efficiency Eloc, and global efficiency Eg. The Cp of 
the entire network was the average of that of all nodes in 
the network, which refers to how the neighbouring nodes 
and the node itself are connected and indicates the local 
efficiency for the transformation of the information [23]. 
The Lp of the entire network is the average of that of 
all nodes in the network, which represents the average 
shortest travel distance between another node and the node 
itself and indicates the most efficient information transfer 
between the two nodes. To obtain a normalized clustering 
coefficient γ and a normalized shortest path length λ, we 
generated 100 matched random networks that had the same 
numbers of nodes and edges and degree distributions but 
preserved the weighted distribution of the real network. We 
calculated the average Cprandom and Lprandom over the random 
network. Then, we computed the γ (γ = Cp/Cprandom) 

Figure 3: Structural connectivity (fiber number) matrices for the construction of structural weighted networks for ALL (A) and HC (B). 
The axes represent the 90 AAL brain regions used in the analysis. Color of each entry represents the level of connectivity. ALL, acute 
lymphoblastic leukemia with chemotherapy treatment, HC, healthy controls.
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and λ (λ = Lp/Lprandom), which indicate the normalized 
clustering coefficient and normalized shortest path length, 
respectively. In a small-world network, the γ should be 
much larger than 1, and the λ should be close to 1.

The global efficiency Eg is the average of the inverse 
of the shortest path length of all node pairs in the network 
and usually represents the capability of the network for 
performing parallel information processing. The local 
efficiency Eloc is the average of the global efficiency of 
the community neighbouring all nodes in the network and 
reflects the fault tolerance level of the network [39, 40].

Identification of hubs

Hubs of structural networks are essential nodes 
that are identified in various ways [41]. In the present 
study, we applied betweenness to identify the hubs of the 
network. A node was considered as a hub if its regional 
betweenness centrality was one SD higher than the mean 
network betweenness.

Statistical analysis

Statistical analysis was performed with SPSS 16.00 
software. The group difference in age was tested using the 
two-sample t-test and the gender ratio was examined with 
a Pearson chi-square test. For group differences in global 
network measures (Cp, Lp, γ, λ, σ, Eloc, Eg), was used the 
two-sample t-test.
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