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ABSTRACT:
Cancer stem cells (CSCs) represent a unique subset of cells within a tumor that 
possess self-renewal capacity and pluripotency, and can drive tumor initiation 
and maintenance. First identified in hematological malignancies, CSCs are 
now thought to play an important role in a wide variety of solid tumors such as 
NSCLC, breast and colorectal cancer.  The role of CSCs in driving tumor formation 
illustrates the dysregulation of differentiation in tumorigenesis.  The Wnt, Notch 
and Hedgehog (HH) pathways are developmental pathways that are commonly 
activated in many types of cancer.  While substantial progress has been made in 
developing therapeutics targeting Notch and HH, the Wnt pathway has remained 
an elusive therapeutic target.  This review will focus on the clinical relevance of 
the Wnt pathway in CSCs and tumor cell biology, as well as points of therapeutic 
intervention and recent advances in targeting Wnt/β-catenin signaling.

CANCER STEM CELLS: A 
HIERARCHICAL MODEL

Cancer stem cells (CSCs) represent the apex in the 
hierarchical model of tumor genesis, heterogeneity and 
metastasis [1-4].  Analogous to normal stem cells, CSCs 
are thought to possess the capacity for unlimited self-
renewal through symmetric cell division, the ability to 
give rise to progeny cells through asymmetric division, 
and also an innate resistance to cytotoxic therapeutics 
(Figure 1) [5, 6].  While the process of differentiation 
initiated by a normal stem cell ultimately results in a 
specialized progeny with no proliferative potential, 
a CSC gives rise to progeny that do not undergo 
terminal differentiation but instead exhibit uncontrolled 
proliferation.  In the case of solid tumors, this process 
drives formation of the bulk tumor mass.  This model is 
in contrast to the clonal evolution model, which proposes 
that tumors arise from a precursor cell with a competitive 
growth advantage, most likely due to the accumulation of 
mutations that allow unchecked cell division and evasion 
of the apoptotic process [7].  The clonal evolution model 
would predict that all cells within a given tumor are 
phenotypically homogeneous; indeed, cytotoxic agents 
that indiscriminately target proliferating cells constitute 

the majority of anti-cancer agents in the clinic.  In some 
cases, these agents are initially very effective at reducing 
or eliminating tumor burden in the patient.  However, 
tumors often recur, develop resistance and metastasize.  
Furthermore, heterogeneity is a hallmark of tumors in the 
clinic.  

Due to their similarities to normal stem cells, CSCs 
are predicted to rely on pathways that govern development, 
self-renewal and cell fate.  In embryonic stem cells, these 
processes are in large part regulated by three signaling 
programs: the Wnt, Notch and Hedgehog (HH) pathways 
[8-10].  It is an intriguing finding, therefore, that these 
pathways are frequently dysregulated in many types of 
cancers, and specifically within subpopulations of these 
cancers that possess stem-like properties [2, 11-13].  
From a drug development perspective, this provides an 
opportunity not only for new classes of targeted agents, but 
also a novel targeting paradigm: the prospect of targeting 
cells responsible for tumor initiation, progression, and 
even metastasis.  Furthermore, as CSCs often display 
an inherent resistance to many standard cytotoxic agents 
[14-17], targeting CSCs is also an attractive strategy for 
overcoming drug resistance.  Agents targeting the Notch 
and HH pathways have shown pre-clinical promise, and 
are currently being evaluated in clinical trials [18, 19].  
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While the Wnt pathway has been more challenging to 
target, several recent advances have been made with 
regard not only to new therapeutic agents, but new targets 
within the pathway, as well.  This article focuses on the 
significance of Wnt signaling in tumor cell and CSC 
biology, and strategies for therapeutic intervention within 
Wnt pathway.  

DEVELOPMENTAL PATHWAYS AS 
THERAPEUTIC TARGETS

Since the developmental pathways important to 
normal stem cells are also important to CSCs, a great 
deal of time has gone into developing therapeutic agents 
targeting these pathways.  The main focus of this review 

is the Wnt/β-catenin pathway.  However, due to the 
similarities in signaling components and crosstalk among 
these pathways, it is important to provide a brief review 
of the Notch and HH signaling cascades, where progress 
has outpaced efforts in the Wnt pathway.  These pathways 
share overarching themes such as myriad permutations 
of ligand/receptor interactions that ultimately impinge 
and rely heavily upon a central molecule in the signal 
transduction cascade: lessons learned from approaches 
successful in targeting Notch and HH pathways may 
provide valuable insight in how to approach the Wnt 
signaling pathway.

NOTCH

Notch signaling regulates numerous processes in 

Figure 1:  Cancer stem cell properties and therapeutic resistance.  An illustration of a solid tumor depicts the cellular milieu, 
comprised of differentiated tumor bulk, a small number of CSCs, and tumor vasculature.  The CSC niche provides cues that direct CSCs to 
undergo self-renewal to maintain the CSC sub-population, or differentiation to generate the tumor bulk.  Conventional chemotherapeutic 
approaches target the tumor bulk, but due to their inherent chemoresistance, CSCs remain largely unaffected and potentially lead to tumor 
repopulation and/or metastasis.  CSC directed therapeutics that target critical regulatory pathways in CSCs, such as Wnt, Notch and HH, have 
the potential to inhibit tumor repopulation and metastasis, resulting in tumor degeneration.
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both embryonic development and in adult tissue renewal 
[20].  During embryogenesis, Notch is critical in neuronal 
and pancreatic development.  In the adult organism, 
Notch regulates the fate of hematopoietic stem cells 
and gastrointestinal stem cells, as well playing a role 
in angiogenesis [21, 22].  Aberrant Notch signaling has 
been observed in hematopoietic tumors, such as T-ALL, 
and solid tumors, such as non-small cell lung carcinoma 
(NCSCL), breast cancer, and various brain cancers 
[23-28].  The Notch signaling pathway is comprised of 
four membrane-bound receptors (Notch 1-4) and five 
membrane-tethered ligands (DLL 1, 3, 4, and Jagged 1, 2) 
[20, 29].  A complex signaling cascade is initiated when a 
ligand expressed on one cell engages a receptor expressed 
on the surface of another cell, and is thus dependent on 
cell-cell interactions.  Upon ligand/receptor interaction, a 
cleavage event removes the Notch/ligand complex from 
the membrane-bound portion of Notch.  The cytoplasmic 
region of Notch then undergoes a proteolytic cleavage 
mediated by γ-secretase, releasing an intracellular 
domain peptide that translocates to the nucleus and drives 
transcription of Notch target genes.  These target genes, 
including HES family members and myc, regulate diverse 
cellular processes such as tissue renewal and proliferation.

The numerous steps required to translate ligand 
binding to target gene activation provide a series of 
potential points of therapeutic intervention in the Notch 
signaling pathway.  As a result, there are currently 
numerous preclinical therapeutics under evaluation, as 
well as several clinical trials involving Notch pathway 
inhibitors.  Preclinical agents including monoclonal 
antibodies (mAbs) targeted against Notch and Notch 
ligands are meant to disrupt ligand/receptor interaction 
events [30, 31].   While this approach has shown promise, 
the large number of receptor/ligand permutations may 
ultimately result in limited efficacy.  γ-secretase inhibitors 
act downstream of ligand/receptor interactions and 
therefore should not be affected by the diversity of ligands, 
receptors, and possible combinations thereof.  Several 
γ-secretase inhibitors are currently being evaluated in 
Phase I and II clinical trials [18, 32-35].

HEDGEHOG

Under normal conditions, HH signaling plays 
important roles in embryonic development and is 
also involved in tissue regeneration in adults [36, 37].  
Activating events in the HH pathway are involved in 
numerous human cancers, including pancreatic cancer, 
various leukemias, and basal cell carcinoma (BCC) [38-
45].  Like Notch signaling, HH signaling is comprised 
of multiple ligands that can regulate receptor activity 
[36, 37].  Mammalian HH signaling is initiated when 
one of three HH ligands- Sonic, Indian, and Desert 
HH- bind the dodecatransmembrane receptor Patched 
(Ptch1).  Ligand/receptor interactions occur through 

an autocrine or paracrine manner, depending on the 
context.  Receptor engagement results in activation of the 
heptatransmembrane Smoothened (Smo), which is held in 
an inactive state in the absence of ligand.  Smo activation 
in turn regulates the activity of transcription factors Gli1, 
Gli2 and Gli3.  Gli1/2/3 function to regulate transcription 
of genes involved in HH signaling such as Gli1 and Ptch1, 
and importantly genes involved in epithelial-mesenchymal 
transition (EMT), such as SNAIL1 [36, 37].  

Dysregulation of nearly every step of the HH 
signaling pathway has been linked to cancer progression.  
For example, mutations in Ptch1, Smo, Gli1 and Gli3 are 
linked to BCC, medullablastoma and pancreatic cancer 
[40, 42, 43, 46-48].  Ligand upregulation can also drive 
cancer formation, as has been described in breast, ovarian, 
pancreatic, prostate and lung cancers [41, 49-52].  Not 
only does this list illustrate the relevance of HH signaling 
in human cancers, it also provides multiple candidates to 
target with novel agents.  In fact, several agents targeting 
the HH pathway have shown encouraging pre-clinical 
results, and are currently in Phase I and Phase II clinical 
trials [19, 48, 53, 54].  To date, these trials are evaluating 
the effects Smo antagonists developed by multiple 
pharmaceutical companies in a broad spectrum of cancers, 
such as BCC, multiple myeloma, brain, breast and gastric 
cancers.  Smo is an attractive target, due to its centrality 
in the HH pathway.  It will be of interest to see if agents 
targeting other components of HH signaling achieve 
pre-clinical validation.  To this end, efforts are currently 
underway to target the Gli transcription factors with 
small molecules [55, 56], as well antibody neutralization 
of HH ligands to block signaling at the ligand/receptor 
interface [57].  While current clinical trials are assessing 
HH inhibition in frank disease, the role of HH in CSCs 
and EMT suggests that this type of therapy may also be 
beneficial in combination with other chemotherapies, such 
as traditional cytotoxic agents, to prevent re-initiation of 
tumorigenesis and/or metastasis by CSCs.

WNT

Elucidation of the Wnt signaling pathway was built 
upon the seminal observation that the Drosophila segment 
polarity gene Wingless had a common origin with the 
murine oncogene Int-1 [58].  This discovery launched an 
intense field of study that has resulted in the identification 
of 19 mammalian Wnts, myriad Wnt receptors, and 
characterization of pathways involved in biological 
processes involved in embryogenesis, development, cell 
polarization, differentiation and proliferation [59-62].

Wnts are secreted glycoproteins which bind to cell 
surface receptors to initiate signaling cascades important 
in many physiological settings, as described above [63].  
Wnt signaling cascades are highly conserved among 
species, and have traditionally fallen into two categories: 
canonical and non-canonical, differentiated by their 
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dependence on β-catenin.  Non-canonical Wnt pathways, 
such as the planar cell polarity (PCP) and Ca2+ pathway, 
regulate processes such as cell dorsoventral patterning 
and neuronal migration, function through β-catenin 
independent mechanisms, and remain better characterized 
in lower organisms [64-66].  Canonical Wnt signaling 
is initiated when a Wnt ligand engages co-receptors of 
the Frizzled (Fzd) and low-density lipoprotein receptor-
related protein (LRP) families, ultimately leading 
to β-catenin stabilization, nuclear translocation and 
activation of target genes [67-72].  This canonical pathway 
is far better characterized in mammalian systems, and will 
be the focus of this review.  We will highlight paradigms 
and discovery efforts that highlight the promise, and 
challenges, of targeting the Wnt/β-catenin pathway; for 
a more exhaustive review of discovery, pre-clinical and 
clinical candidates, we recommend several excellent 
review articles found among the references [11, 73-75].

It has been appreciated for decades that dysregulation 
of the mechanisms that regulate β-catenin signaling is a 

common feature across a broad spectrum of human cancers 
(Figure 2).  However, as β-catenin is an intracellular 
signaling protein with no discernable enzymatic activities, 
it has been considered to be “undruggable”.  Due to 
intense research efforts in this field, recent findings have 
provided hope that we may be able to target other aspects 
of this pathway to inhibit aberrant β-catenin activation/
transcriptional activity.

In the absence of Wnt stimulus, β-catenin is held in 
an inactive state by a multimeric “destruction” complex 
comprised of adenomatous polyposis coli (APC), Axin, 
glycogen synthase kinase 3β (GSK3β) and casein kinase 
1α (CK1α) [76].  APC and Axin function as a scaffold, 
permitting GSK3β- and CK1α-mediated phosphorylation 
of critical residues within β-catenin.  These phosphorylation 
events mark β-catenin for ubiquitination and subsequent 
proteasomal degradation [77, 78].    

An additional layer of regulation that keeps β-catenin 
levels low in cells is the expression and secretion of 
antagonists of the Wnt pathway.  These come in two 

Figure 2:  Canonical Wnt signaling and dysregulation in cancer.  The Wnt signaling pathway is comprised of extracellular, 
cytoplasmic and nuclear signaling events that are amenable to therapeutic intervention.  Dysregulation at these stages are common in numerous 
cancers, captured in the white boxes.  Upon entering the nucleus and interacting with TCF/LEF and various co-activators, β-catenin drives 
transcription of programs critical for CSCs, tumor cells and EMT.
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flavors, proteins that bind Wnt ligands, and proteins 
that bind Wnt receptors [79].  Members of the secreted 
Frizzled-related protein (sFRP) family, as well as Wnt 
Inhibitory Factor-1 (WIF-1) and Cerberus function in a 
manner analogous to decoy receptors by binding Wnts 
and preventing their interaction with Fzd/LRP [80-85].  A 
second family of secreted Wnt antagonists is the Dickkopf 
(Dkk) family [86].  Dkk proteins bind to LRP5/6, thus 
preventing formation of the Wnt-Fzd-LRP5/6 ternary 
complex required to initiate canonical Wnt signaling [87-
89].  

Canonical Wnt/β-catenin signaling is initiated 
when a Wnt ligand engages its co-receptors, Fzd and 
LRP5/6, forming a ternary complex on the extracellular 
membrane.  Fzd, made up of 10 family members, is a 
seven transmembrane receptor that binds Wnts through an 
extracellular cysteine-rich domain (CRD) [90].  LRP5/6 
is a transmembrane receptor with a large extracellular 
domain critical for Wnt binding, and a short intracellular 
tail that plays an important role in initiating the Wnt-
mediated signaling cascade [91-93].  These receptors will 
be described in greater detail below, as they play critical 
roles in initiating Wnt signaling and are thus attractive 
points for therapeutic intervention.

Wnt binding to Fzd-LRP5/6 initiates a cascade 
of events that results in disruption of the β-catenin 
destruction complex, leading to β-catenin stabilization 
and nuclear translocation.  The early events initiated by 
Wnt-Dvl-LRP binding remain incompletely understood.  
However, current data demonstrate that Wnt binding 
results in phosphorylation of the cytoplasmic tail of 
LRP5/6 within a PPSP domain in its C-terminus [87].  
This phosphorylation involves GSK3β and casein kinase 
1-gamma (CK1γ), though it is unknown if other kinases 
or phosphatases regulate LRP5/6 phosphorylation.  
Following phosphorylation, Axin and GSK3β are 
recruited to LRP5/6, thereby driving dissociation of the 
destruction complex.  Concurrent with Axin recruitment 
is recruitment and phosphorylation-mediated activation 
of the Dishevelled (Dvl) family of proteins.  CK1 family 
members play a role in Dvl activation [94], and Dvl has 
also been implicated in the phosphorylation of LRP5/6 
[95, 96].  While the precise series of events remains to 
be clarified, it is generally accepted that Wnt binding 
to Fzd and LRP5/6 results in recruitment of Axin, 
GSK3β and Dvl to the co-receptor complex, leading to 
disruption of the β-catenin destruction complex, β-catenin 
stabilization and nuclear translocation.  Once in the 
nucleus, β-catenin forms a complex with members of the 
T-cell factor/lymphoid enhancer factor (TCF/LEF) family 
of transcription factors, recruiting co-factors such as CBP, 
p300, TNIK, Bcl9 and Pygopus, and ultimately driving 
transcription of target genes including c-myc, cyclin D, 
and survivin [95-97].

WNT SIGNALING IN CANCER AND 
CANCER STEM CELLS

 The relevance of Wnt signaling in human cancers is 
highlighted by the frequency with which this pathway is 
aberrantly activated across a vast range of malignancies.  
The first described, and perhaps best well known role 
for Wnt/β-catenin signaling is in colon cancer, where 
nearly 90% of these tumors harbor mutations that result 
in β-catenin mutation [98-100].  The most common type 
of mutation in colon cancer results in the inactivation of 
APC, thus driving constitutive activation of β-catenin.  
Activating mutations within β-catenin itself are also found 
in this disease, albeit at a much lower frequency [101, 
102].  It is important to note that while there are numerous 
mechanisms that drive aberrant Wnt/β-catenin signaling, 
these different mechanisms nearly always occur in a 
mutually exclusive manner.  It is very rare, for example, 
to find a colorectal tumor with mutations in both APC and 
β-catenin.

Interestingly, a growing body of evidence illustrates a 
critical role of β-catenin in CSCs [103-105].  For example, 
stem-like colon cells with a high level of β-catenin 
signaling have a much greater tumorigenic potential than 
counterpart cells with low β-catenin signaling [106].  
Furthermore, hematopoietic stem cell (HSC) function 
is regulated by Wnt activity [107-109].  HSCs and the 
niche microenvironments in which they reside secrete 
Wnts, again illustrating a possible autocrine or paracrine 
Wnt model [108].  Axin expression in HSCs leads to 
growth inhibition and diminished reconstitution, and HSC 
function and lymphocyte development have been shown 
to be dependent on Wnt signaling [109].  

STRATEGIES FOR TARGETING THE 
WNT PATHWAY

The brief overview of canonical Wnt signaling 
described above provides a glimpse into the complexity 
of this system.  However, the array of numerous ligands, 
receptors, kinases, signal transducers and transcription 
factor complexes also provide an opportunity for multiple 
modes of therapeutic targeting and intervention.  We 
will therefore discuss three major areas of targeting 
the Wnt pathway which have shown promise in recent 
years: receptor/ligand interactions, cytosolic signaling 
components, and nuclear signaling components.  

RECEPTOR/LIGAND INTERACTIONS

Mutations downstream of Wnt receptors, such as 
those found in APC or β-catenin, were the first examples of 
aberrant Wnt signaling in human cancers.  Some cancers, 
however, demonstrate hallmarks of constitutive Wnt 
signaling in the absence of downstream mutations.  Triple 
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negative breast cancers and non-small cell lung cancers 
(NSCLCs) have been demonstrated to harbor high levels 
of uncomplexed cytosolic β-catenin and exhibit a high 
basal level of Wnt/β-catenin transcriptional activation 
[110, 111].  This suggests an autocrine mechanism of 
Wnt activation in certain tumors.  Indeed, epigenetic 
silencing of endogenous Wnt inhibitors such as sFRP 
has been observed in many types of cancers [112, 113].  
Furthermore, certain tumor cell lines have been shown 
to express high levels of particular Wnts, and treatment 
of these cells with Wnt inhibitors such as Dkk or sFRP 
has an anti-proliferative effect [110, 111].  In line with 
these findings are other observations and opportunities 
that validate the approach of targeting Wnt signaling at 
the extracellular level.

Given the sheer number of Wnt growth factors, and 
functional redundancy demonstrated by knock-out mouse 
models, it is tempting to speculate that antibodies directed 
against any particular Wnt may not be a viable approach 
for inhibiting the Wnt pathway.  However, a series of 
studies by the Jablons group has demonstrated that certain 
tumor models rely heavily on specific Wnts.  Monoclonal 
antibodies against Wnt1 and Wnt2 drive apoptosis in a 
variety of tumor models, including melanoma, NSCLC, 
mesothelioma, sarcoma, breast and CRC cells [97, 
114-118].  However, these antibodies only had modest 
efficacy in xenograft models derived from some of these 
cells [115, 118].  This could potentially be explained by 
differences in Wnt expression profiles in mice relative to 
a specific tissue culture line.  Murine and human Wnts, as 
well as their receptors, share a high degree of homology, 
and have been demonstrated to function interchangeably.  
Nevertheless, these in vitro results are encouraging, and 
warrant further exploration into the development of 
specific Wnt antibodies.  

While tumors which rely exclusively on a specific 
Wnt may be amenable to monoclonal antibody targeting, 
tumors that are driven by multiple Wnt ligands would not 
be effectively targeted in this manner.  In this scenario, a 
pan-Wnt inhibitor may prove to be more efficacious.  A 
recent study from Genentech demonstrated that a soluble 
ligand binding domain of Fzd8, Fzd8-CRD-Fc, inhibited 
autocrine Wnt signaling in vitro, as well as in multiple 
xenograft models [119].  Mice treated with this soluble 
receptor displayed no signs toxicity after several weeks of 
treatment, demonstrating that pan-Wnt inhibition may be 
a safe and efficacious approach for targeting appropriate 
tumor types.  

An alternative approach to inhibiting ligand/receptor 
interactions would be to target the Wnt co-receptors, 
LRP5/6 and members of the Fzd family.  The LRP family 
of co-receptors is comprised of 2 highly homologous 
members, LRP5 and LRP6.  These are long single-pass 
transmembrane receptors, and endogenous Wnt inhibitors 
of the Dkk family bind LRP5/6 to block Wnt signaling [86, 
120].  Thus, a plausible approach to Wnt inhibition may 
be through antibody targeting of LRP5/6.  Furthermore, a 
recent study by Bourhis et al. described specific domains 
with the propeller regions of LRP6 that may preferentially 
bind specific Wnt ligands [121].  These propeller domains 
may offer an added degree of specificity for antibody-
mediated Wnt inhibition.  

The Fzds are family of seven transmembrane 
receptors comprised of 10 members.  Fzd family 
members share a high degree of homology in their 
extracellular cysteine-rich domain (CRD), which is the 
region responsible for Wnt-Fzd interactions [90].  While 
not thought to function in as classical G-protein coupled 
receptors, the transmembrane regions of Fzds may still 
serve as potential small molecule binding pockets, raising 

Table 1:  Wnt pathway drug discovery approaches.  A summary of various Wnt therapeutics in early development or Phase I 
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the possibility that this approach may be a viable approach.  
An antibody that recognizes the conserved CRD regions 
across multiple Fzds may also prove to be an attractive 
therapeutic strategy for blocking Wnt signaling at the 
receptor level.  

CYTOSOLIC SIGNALING COMPONENTS

Biologics approaches interfering with Wnt/co-
receptor interactions have shown promise, as illustrated 
above.  The intracellular signaling components of the 
Wnt pathway also provide myriad targets for therapeutic 
intervention, and are ripe for targeting with either small 
molecules or perhaps protein mimetics designed to impact 
critical steps along the Wnt signaling cascade.

Constitutive β-catenin signaling, due to inactivating 
mutations in APC or activating mutations within β-catenin 
itself, plays a critical role in the development of certain 
cancers.  Colorectal cancer is the best example, as nearly 
90% of all CRCs harbor mutations driving β-catenin 
signaling.  These mutations lead to the stabilization and 
accumulation of β-catenin and subsequent translocation 
into the nucleus.  Preventing β-catenin stabilization and 
accumulation are of obvious interest, though this has 
proven to be an extremely difficult task, perhaps because 
β-catenin does not possess enzymatic activity.  However, a 
greater understanding of the β-catenin destruction complex 
and the auxiliary proteins involved in its regulation 
provide new possibilities for therapeutic intervention to 
regulate this step of the Wnt signaling pathway.  

The most upstream intracellular components of 
the Wnt pathway are at the receptor level.  LRP5/6 
phosphorylation plays a critical role in initiating the 
Wnt signaling cascade [122].  While the series of events 
leading to this phosphorylation are not yet entirely clear, 
this is an area of intense research and will most likely 
yield new clues, and thus targets, regarding intracellular 
LRP5/6 phosphorylation.  Similarly, while Dvl family 
proteins play a critical role in disruption of the β-catenin 
destruction complex, the precise mechanism of their 
regulation remains to be elucidated.  Several compounds 
were recently described that target the PDZ domain of Dvl 
and subsequently interfere with Wnt/β-catenin signaling 
[123, 124].  CK1 family members play a positive role in 
phosphorylation and activation of Dvl, phosphorylation 
of LRP5/6 and phosphorylation of β-catenin [87, 94, 
125], and may therefore provide an opportunity for 
intervention.  However, different isoforms within the 
CK1 family play opposing roles in regulating Wnt 
signaling: CK1δ contributes to LRP phosphorylation and 
CK1ε phosphorylates Dvl, while CK1α phosphorylates 
β-catenin, thus playing a negative regulatory role in the 
pathway.  A CK1 modulator must therefore demonstrate 
the appropriate selectivity.  Similarly, GSK3β also 
plays a critical role within the destruction complex, and 
molecules which potentiate GSK3β activity in the setting 

of hyperactive Wnt signaling provide a therapeutic benefit.  
With the exception of LRP5/6, it will be important to keep 
in mind that many of these kinases play important roles 
in signaling programs distinct from the Wnt pathway, and 
will therefore need to be approached in a highly context-
dependent manner.

A critical component of the β-catenin destruction 
complex is the scaffolding protein Axin.  Axin 
overexpression can inhibit Wnt signaling, and Axin 
undergoes genetic inactivation in various cancers 
[126-128].  This suggests that positive regulation of 
Axin activity may have a negative impact on Wnt 
signaling.  Interestingly, a recent study utilizing a high 
throughput screen to identify inhibitors of Wnt-mediated 
transcriptional activity identified XAV939, a small 
molecule that increased levels of Axin1 and Axin2, thus 
inhibiting β-catenin stabilization, accumulation and 
transcriptional activity [129].  The authors then went on 
to show that XAV939 inhibited the activity of Tankyrase 1 
and Tankyrase 2, members of the PARP family that mark 
Axin for degradation [130].  In a similar set of studies, 
Chen et al. independently identified IWR-1, a small 
molecule that increased Axin stabilization [131].  Both 
compounds inhibited Wnt signaling and tailfin generation 
in zebrafish, a classical Wnt/β-catenin driven model.  
IWR-1 inhibited β-catenin activity in DLD-1 cells, a 
human CRC cell line that harbors an inactivating mutation 
in APC, and XAV939 inhibited growth in the same setting.  
These data offer encouragement that in the appropriate 
setting, Axin stabilization may provide a novel strategy 
to inhibit β-catenin signaling.  However, the effect of 
these compounds in the setting of an activating mutation 
in β-catenin remains to determined.  Furthermore, the 
effects of systemic Axin stabilization and Tankyrase 
inhibition have not yet been investigated.  Compounds 
such as XAV939 and IWR-1 will surely help us gain a 
greater understanding these aspects of Tankyrase and 
Axin biology, and may guide efforts of identifying cancer 
types susceptible to this mechanism of action.  

Ultimately, these myriad upstream signaling events 
impinge upon β-catenin, leading to its stabilization, 
accumulation and nuclear translocation.  Despite intense 
research efforts, progress has been slow in directly and 
selectively targeting β-catenin.  Theriac Pharmaceutical 
Corporation recently described a small molecule inhibitor 
of the Wnt pathway which is proposed to function via 
inducing β-catenin destabilization [73].  CWP232291 
was identified in a high throughput screen for inhibitors 
of Wnt/β-catenin mediated transcriptional activity.  in 
vitro, CWP232291 demonstrated anti-proliferative 
effects in various cell lines, and inhibited transcription 
of β-catenin target genes.  In an in vivo AML model, 
CWP232291 inhibited tumor progression and exhibited 
a favorable safety profile, and is currently scheduled for 
Phase I clinical trials in AML and multiple myeloma 
in 2010.  While its mechanism of action remains to be 
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elucidated, this compound was reported to be active in the 
context of both wild-type and mutant β-catenin, raising 
the possibility of anti-tumor effects across a broad range 
of cancers.

Several agents with diverse, or even unknown, 
mechanisms of action have shown activity in Wnt/β-
catenin driven cancers and cancer cell lines.  Aspirin and 
non-steroidal anti-inflammatory drugs (NSAIDs) have 
recently shown promise in clinical trials at preventing 
polyp formation in colon cancer patients without 
mutations in APC, and regular use of these agents has been 
correlated with a decreased occurrence of cancers such as 
breast and lung cancer [132-134].  While these are non-
specific agents that regulate numerous cellular processes, 
cell culture experiments have demonstrated that various 
NSAIDs can inhibit β-catenin nuclear localization and 
Wnt/β-catenin mediated gene transcription [135].  Other 
compounds, such as the polyphenols curcumin and ECGC, 
also inhibit Wnt/β-catenin activity in cellular assays, 
though their mechanism(s) of action remain undefined 
[136, 137].   

An additional component of Wnt signaling, 
especially important in those tumors in which paracrine/
autocrine Wnt signaling drives activation of the pathway, 
is the processing and secretion of the Wnt ligands.  In the 
same study mentioned above that led to the discovery 
of the Axin destabilizer IWR-1, IWP-1 and IWP-2 were 
shown to inhibit Wnt-driven transactivation activity with 
similar potency, though through a distinct mechanism 
[131].  IWPs were shown to down-regulate Wnt secretion 
by inhibiting the activity of the acyltransferase Porcupine 
(Porcn).  Porcn belongs to the family of membrane-bound 
O-acyltransferases (MBOATs), which facilitate protein 
secretion via palmitoylation [138-141].  IWPs inhibited 
the secretion of Wnts, but not other MBOAT substrates, 
indicating a degree of Wnt specificity.  While its precise 
mechanism of Porcn inhibition is unclear, this paradigm 
demonstrates another layer of Wnt signaling that may be 
amenable to pharmacological inhibition.     

NUCLEAR SIGNALING COMPONENTS

Upon entering the nucleus, β-catenin interacts with 
members of the TCF/LEF family of transcription factors to 
drive target gene expression.  In the absence of β-catenin, 
TCF/LEF is held in a transcriptionally inactive state 
through interactions with co-repressors such as Groucho 
and HDACs [142].  β-catenin interaction with TCF/LEF 
displaces these co-repressors and recruits a variety of 
co-activators, such as CBP, p300, BCL9, Pygopus, and 
Brg1 [142-144].  These co-activators play critical roles 
in driving β-catenin-mediated transcription, and therefore 
represent potential therapeutic targets.  

A compelling series of studies by the Kahn group 
has suggested differential roles for the highly homologous 
CBP and p300 in Wnt/β-catenin-driven signaling, 

especially with regard to the role of the Wnt pathway 
in CSCs [75, 145-147].  A screen of compounds that 
could inhibit β-catenin/TCF-dependent transactivation 
identified ICG-001, which also down-regulated β-catenin 
target genes and inhibited growth in a CRC xenograft 
model [146].  ICG-001 was shown to disrupt selectively 
the interaction between β-catenin/TCF and CBP, but not 
p300.  While these data are encouraging, it is important to 
note that ICG-001 targets CBP, a promiscuous co-factor 
involved in numerous signaling pathways.  Furthermore, 
as the effective dose of ICG-001 is near 10μM, it will be 
critical to develop derivatives with improved specificity 
in order to rule out off-target effects.  These studies offer 
hope that targeting distinct β-catenin/TCF co-factor 
interactions may provide an opportunity to target specific 
sub-populations of Wnt-dependent cells.  

Leproucelet and colleagues utilized a high 
throughput screen to identify a series of small molecules 
that disrupted β-catenin/TCF interaction [148].  These 
compounds inhibited β-catenin/TCF transactivation 
activity and target gene activity in HCT116 CRC cells, 
and inhibited duplication of the Xenopus embryonic 
dorsal axis.  The mechanism(s) by which these compounds 
disrupt β-catenin/TCF interaction remain to be elucidated, 
but provide a proof of concept that interference of this 
protein-protein interaction can be achieved with promising 
effects.

An expanded base of knowledge regarding critical 
β-catenin/TCF co-regulators will be critical in the 
development of novel antagonists of the Wnt signaling 
pathway.  For example, recent reports from the Clevers 
and Yamada groups have identified Traf2- and Nck-
Interacting Kinase (TNIK) as a critical mediator of Wnt-
driven transcription in CRC [149, 150].  In the mouse 
small intestinal crypt, TNIK interacts with the β-catenin/
TCF complex exclusively in the proliferative crypt, 
as opposed to the differentiated villus, in a β-catenin 
dependent manner.  TNIK phosphorylates TCF4, and a 
kinase-dead mutant of TNIK abrogated β-catenin/TCF-
driven transactivation.  siRNA-mediated inhibition of 
TNIK had an anti-proliferative effect in vitro, and inhibited 
tumor growth in an HCT116 xenograft model.  It will be 
of interest to determine if inhibitors of this component of 
the β-catenin/TCF transcriptional complex, as well as the 
others listed above, serve as novel targets of inhibition in 
the Wnt signaling pathway.

MOVING FORWARD: TARGETING WNT 
IN CANCER AND CANCER STEM CELLS

As a result of its role in numerous cancers, the 
Wnt signaling pathway is a prime target for therapeutic 
intervention.  Inhibition of Wnt signaling has proven 
to be an elusive goal over the years.  However, as new 
developments emerge in the field of Wnt biology, the 
field continues to inch closer to an effective strategy of 
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Wnt inhibition.  Concurrent with these advances comes 
the realization that Wnt signaling plays critical roles in 
biology of CSCs.  

A role for Wnt signaling has been demonstrated in 
a variety of CSC settings, including colon, breast and 
cutaneous CSCs, as well as in hematopoietic stem cells 
[104-106, 151-153].  CSCs are also thought to play a 
role in drug resistance and metastasis [16, 154-158].  
The approaches described above for targeting various 
components of the Wnt signaling pathway may potentially 
also be used to target CSCs.  For example, colon cancer 
stem cells have been described to harbor high levels of 
β-catenin transcriptional activity, and this is correlated 
with their tumorigenic potential [106].  Wnt stimulation 
may occur in an autocrine fashion due to colon CSC 
Wnt secretion, and may be potentiated by secreted 
factors from cells within the CSC microenvironment.  It 
is therefore plausible to imagine a therapeutic strategy 
involving several of the potential agents listed above: a 
Wnt neutralizing approach or Wnt secretion inhibitor may 
dampen initiation of the Wnt signaling cascade, while a 
β-catenin destabilizer or β-catenin/TCF disruptor could 
provide downstream inhibition.  Wnt inhibition could also 
be used in combination with classic chemotherapeutic 
agents.  A cytotoxic agent such as cisplatin may target 
the bulk of a tumor but not the inherently chemoresistant 
CSCs, which might ultimately give rise to chemorefractory 
tumor cells.  However, if the CSCs were targeted in parallel 
with a Wnt pathway inhibitor, a curative response might 
be achieved.  These situations are clearly speculative, but 
are meant to highlight the enormous potential of targeting 
developmental pathways in cancer and CSCs, such as the 
Wnt signaling pathway.  

Another potential advantage of employing a Wnt-
targeted therapy is the potential role for CSCs in resistance 
to classical cytotoxic treatments (i.e. chemotherapy and 
ionizing radiation) and in metastatic disease.  CSCs in 
a broad range of cancers are relatively more resistant to 
these conventional therapeutic approaches than their bulk 
tumor cell counterparts, as has been described in CSCs in 
leukemias and breast, colorectal, and brain cancers [16, 
17, 159, 160].  A role for autocrine Wnt signaling has been 
described in various breast cancer cell lines: certain triple-
negative breast cancer lines have been shown to express 
Wnt ligands, and harbor hallmarks of aberrant Wnt/β-
catenin signaling in the absence of common mutations 
in the pathway [111].  Wnt signaling in these cells is 
inhibited by overexpression of endogenous inhibitors 
such as Dkk1, thus validating an autocrine Wnt loop 
that is amenable to pharmacologic inhibition.  In breast 
cancer patients, a recent study has also demonstrated the 
presence of CD44+CD24low stem-like cells in metastases, 
suggesting a role for breast CSCs in the metastatic process 
of this disease [154, 161].  Furthermore, the Wnt pathway 
regulates epithelial-mesenchymal transition (EMT), an 
important component of metastasis [162-165].  During 

development, Wnt signaling plays a critical role in EMT 
required for heart cushion development, and aberrant 
Wnt signaling also drives EMT and tumor formation in 
mouse xenograft models [162-165].  Cells undergoing 
EMT possess important properties normally found in stem 
cells, including the acquisition of the CD44+CD24low cell-
surface marker pattern and the ability to form spheroids 
in suspension culture- key properties of normal and 
cancer stem cells [165, 166].  It is therefore reasonable 
to hypothesize that the Wnt pathway may offer a unique 
opportunity to target metastasis, which is the leading 
cause of morbidity in many types of cancers.
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