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ABSTRACT
Somatic mutations in the gene encoding epidermal growth factor receptor 

(EGFR) play an important role in determining targeted treatment modalities in non-
small cell lung cancer (NSCLC). The EGFR T790M mutation emerges in approximately 
50% of cases who acquire resistance to tyrosine kinase inhibitors. Detecting EGFR 
T790M mutation in tumor tissue is challenging due to heterogeneity of the tumor, 
low abundance of the mutation and difficulty for re-biopsy in patients with advanced 
disease. Alternatively, circulating tumor DNA (ctDNA) has been proposed as a non-
invasive method for mutational analysis. The presence of EGFR mutations in ctDNA 
predicts response to the EGFR TKIs in the first-line setting. Molecular testing is now 
considered a standard care for NSCLC. The advent of standard commercially available 
kits and targeted mutational analysis has revolutionized the accuracy of mutation 
detection platforms for detection of EGFR mutations. Our review provides an overview 
of various commonly used platforms for detecting EGFR T790M mutation in tumor 
tissue and plasma.

INTRODUCTION

Lung cancer is a major cause of cancer deaths 
with approximately 80% of cases accounting to non-
small cell lung cancer (NSCLC) [1]. In NSCLC target 
therapy, epidermal growth factor receptor (EGFR) is a 
promising candidate [2]. The frequency of EGFR mutation 
among Asian NSCLC populations is approximately 30% 
compared with approximately 10% in Caucasians [3-5]. 
EGFR TKIs like gefitinib, erlotinib, and afatinib are used 
for EGFR targeted therapy in NSCLC [6, 7]. The mode of 
action of tyrosine kinase inhibitors is to inhibit the kinase 
activation and signal transduction downstream by binding 
to the ATP binding site of the kinase domain of EGFR [7]. 
This targeted therapy has shown 56 to 74% of response 
rate with median of 10-14 months of progression free 
survival (PFS) [8, 9]. 

Most common mutations of EGFR gene include in-
frame deletions of exon 19 and heterozygous mutations 
of exon 21 [7]. The correlation between EGFR mutations 

and EGFR TKI sensitivity has shown prognostic potential 
as demonstrated from various clinical trials [10, 11]. 
Although, patients respond well, initially to EGFR TKIs, 
majority of them acquire resistance due to the emergence 
of secondary T790M resistance mutation which abrogates 
the TKIs inhibitory action [12-15]. This can be overcome 
by use of second-generation EGFR inhibitors (afatinib 
and dacomitinib), however, these inhibitors showed low 
response rate ( < 10%) and low PFS ( < 4 months) [16-
18]. They are also associated with skin and gastrointestinal 
toxic effects [19, 20]. A third-generation EGFR TKI that 
is potent to T790M resistance mutation is AZD9291. This 
is shown to be effective with a response rate of 61% and 
limited skin and gastrointestinal adverse events in patients 
who developed T790M mediated resistance to EGFR 
TKIs. AZD9291 also targets EGFR sensitizing mutations 
(exon 19 deletion and L858R) [21, 22].

Monitoring post-TKI progression events in 
tumor tissue has drawn much importance as it assists in 
designing therapeutic strategies to overcome resistant 
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mechanisms. In order to study these mechanisms of 
resistance re-biopsies are recommended, however in 
clinical practice this becomes challenging due to invasive 
procedure and heterogeneity of the tumor tissue [23, 24]. 
A non-invasive alternative to tissue is circulating tumor 
DNA (ctDNA) that has emerged recently and is reported 
as specific and sensitive biomarker for EGFR mutation 
detection. Mutations detected in tumor tissue showed high 
concordance with those observed in plasma ctDNA [25-
27].

Several clinical platforms are available to detect 
EGFR mutations including amplification refractory 
mutation system (ARMS), cobas TaqMan-based PCR, 
digital polymerase chain reaction (PCR) including droplet 
digital PCR (ddPCR) and BEAMing (beads, emulsions, 
amplification, and magnetics) digital PCR, mutant-
enriched PCR, high-resolution melting (HRM) analysis, 
denaturing high performance liquid chromatography 
(DHPLC) and next generation sequencing (NGS). These 
techniques vary in their sensitivity and their specificity in 
their rate of detection in plasma and tumor tissue. 

Real-time monitoring of EGFR mutations is 
essential for determining appropriate treatment strategies; 
therefore, less invasive procedures combined with highly 
sensitivity, specificity, cost-effective diagnostic platform 
remains an unmet need. Hence, we review the existing 
EGFR T790M mutation testing technologies and their 
sensitivity and specificity in detecting these mutations in 
plasma, tissue and bodily fluid samples. 

COMPANION DIAGNOSTIC PLATFORMS 
FOR EGFR T790M MUTATION 
DETECTION

Currently several PCR based diagnostic platforms 
are available for EGFR mutation detection including 
cobas, ARMS, BEAMing, droplet PCR, HRM, DHPLC, 
mass spectrometry genotyping, electric field-induced 
release and measurement (EFIRM) and NGS. Here we 
review the varying sensitivity and specificity of most 
widely used platforms and their use in plasma and tumor 
tissue. Table 1 represents the salient features of the 
companion diagnostic platforms used for EGFR mutation 
detection. 

Cobas (Roche)

This is a real-time PCR based technique that 
identifies 42 locus mutations of EGFR including T790M. 
The procedure has two steps, step one is extraction of DNA 
from tissue or plasma and the second step is amplification 
of DNA using specific primers and detection using probes 
with fluorescent dyes. It is designed to run both tissue and 
plasma samples on the same plate thus giving clinicians 
the ease of comparison for planning therapeutic strategies. 

Plasma samples are processed using cobas cfDNA sample 
preparation kit after separating plasma from the whole 
blood whereas, for tissue samples cobas DNA sample 
preparation kit is used for extraction of DNA. After 
sample preparation, amplification and detection is done 
by running the samples together on the same plate in PCR 
, thus providing a head to head comparison of tissue with 
plasma [28]. Figure 1 depicts the workflow of cobas in 
tissue and plasma.

ARMS

Allele specific polymerase chain reaction is 
designed using sequence specific PCR primers and is 
useful in detecting small deletions or single base mutations 
[30]. Specific mutated sequences are amplified selectively 
as Taq DNA polymerase distinguishes a match and a 
mismatch at 3’ end of the primer, thus amplifying only 
the target allele DNA. When there is full match good 
amplification occurs and in mismatch low background 
amplification is observed. PCR primers covalently bond to 
a probe; fluorophore of the probe interacts with a quencher 
(incorporated in the probe) reducing fluorescence. During 
PCR the probe binds to the amplicon separating the 
fluorophore and the quencher thus increasing fluorescence 
in the PCR tube [31]. 

ARMS (Qiagen): EGFR RGQ PCR Kit version 2 
is a diagnostic kit that detects mutations using real-time 
PCR on the Rotor-Gene Q 5plex HRM instrument. The 
procedure has two steps, first step consists of the control 
assay for assessing the total sample DNA and second step 
has both control and mutation assay to assess mutated 
DNA [32, 33]. Figure 2 depicts the principle of ARMS.

ARMS (AmoyDx): AmoyDx® EGFR Mutation 
Detection Test (CE-IVD) is a diagnostic kit that detects 
EGFR mutations in exon 18, 19, 20 and 21. This 
technology works using two step PCR amplification 
procedures combined with novel fluorescent probe design 
and can be used for fresh or frozen tissue samples, blood 
serum or plasma [34].

Digital PCR

Digital PCR clonally amplifies and quantifies 
nucleic acids. It can amplify and generate amplicons 
derived from one template using very less sample. 
Different alleles can be distinguished using fluorophores 
or sequencing. It is superior to conventional PCR as it 
transforms the exponential analog signals and gives a 
linear digital signal output suitable for statistical analysis 
[35]. 

Sysmex Inostics BEAMing Digital PCR technology 
is a highly sensitive platform that combines emulsion PCR 
with magnetic beads and flow cytometry. The workflow 
involves isolation of DNA and amplification of DNA by 
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Figure 1: Workflow of cobas (Roche) [28] and ARMS (Qiagen) [29]. The workflow includes sample collection, isolation of DNA 
from the sample using specific DNA sample preparation kit, running the sample DNA in real-time PCR and results are used for clinical 
interpretation and targeted therapy
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PCR. The process involves transformation of a population 
of DNA molecules into a population of beads coated with 
primers. This is followed by emulsion PCR and the DNA 
is hybridised with fluorescent probes. Flow cytometry is 
performed to read the results [36]. Figure 3 represents the 
workflow of BEAMing digital PCR.

Droplet Digital PCR Bio-rad technology is based 
on the water-emulsion droplet technology. DNA sample 
containing the target DNA is fractionated into 20,000 
droplets. End-point PCR amplifies each droplet containing 
target DNA. Quantification of target DNA is done by 
counting the positive droplets. This method provides the 
absolute and precise count of target DNA without the 
standard curves and has higher sensitivity than real-time 
PCR [37].

QuantStudio 3D Digital PCR uses a sealed chip 
technology. It is affordable and has 50% less price 
compared to other platforms. The workflow involves 
diluting the control DNA, digital PCR reaction is run after 
mixing control DNA, master mix and reference assays. 
PCR reaction is loaded onto a QuantStudio® 3D Digital 
PCR 20K chip, lid is applied and loaded with immersion 
fluid and sealed. The chip is thermal cycled and the results 
are read and analyzed using QuantStudio™ 3D Digital 
PCR Instrument [38].

NGS

Next-generation sequencing has revolutionized 
biological research in genome analysis. Illumina MiSeq 
System is used for targeted genome sequencing and 
MiSeqDx System is used in molecular diagnostics [39]. 
Miseq performs sequencing by synthesis technology, a 
reversible terminator-based method that detects single 
bases while incorporation into the DNA strands, producing 
exceptional data quality. This base by base sequencing 
eliminates errors and produces high quality results. It has 
simple work flow and has genomic analysis platforms 
for data analysis and sharing [40]. Thermofisher Ion 
Torrent NGS technology is powered by semiconductor 
chips and is simple, scalable and cost-effective method 
used for targeted sequencing. Ion AmpliSeq technology 
can amplify thousands of targets using 1ng of genomic 
DNA or RNA. It can be used for formalin fixed paraffin 
embedded (FFPE) samples or ctDNA. Sequencing 
workflow takes less than 2 days. Ion Torrent Oncomine 
cfDNA Assays can detect mutations at level of 0.1% in 
genes. Oncomine Lung cfDNA Assay can detect several 
hotspots in EGFR genes including T790M [41-43].

SAMPLES FOR EGFR T790M DETECTION

Tumor biopsy is traditionally used for obtaining 

Table 1: Companion diagnostic platforms for EGFR mutation detection
Platform Cobas ARMS Digital PCR NGS

Commercially 
available kit/brand Roche [28] Qiagen [32,33] Amoydx [34] Bio-rad ddPCR [37] Sysmex Inostics 

BEAMing Digital 
PCR [36]

ThermoTM 
QuantStudio 
3D Digital PCR 
System [38] 

Illumina Miseq [39] Thermo Fisher
Ion Torrent [41]

Technique
Real-time PCR 
using TaqMan 
Probes

ARMS Scorpion 
primers with PCR 
technology 

ARMS PCR based 
technology with 
florescent probe

Water-emulsion 
droplet technology

Emulsion PCR with 
magnetic beads and 
flow cytometry

Chip based 
technology

Sequencing by 
synthesis technology

Semiconductor 
chip based 
technology

EGFR Mutations 
coverage

42 mutations in 
exon 18,19,20 and 
21 of EGFR gene

29 mutations in exon 
18,19,20 and 21 of 
EGFR gene

29 mutations in exon 
18,19,20 and 21 of 
EGFR gene

Broad mutation coverage requires specific primer/probe design

Turnaround time 1 day <1 day <1 day <1 day 7~10 days <1 day 8~10 days 8~10 days

Characteristics Qualitative and 
semi-quantitative Qualitative Qualitative Quantitative Quantitative Quantitative Quantitative Quantitative

Effort Less laborious Less laborious Less laborious Less laborious Intermediate Less laborious High High

Analysis of results
Simple, Automated 
detection through 
cobas z 480 
analyzer.

 Simple Simple

Intermediate, 
Quantasoft software 
measures the positive 
and negative droplets 
and gives output in 
copies/µl of the target 
DNA.

Intermediate Intermediate Complicate

Complicate, 
Automated 
analysis 
through Ion 
Reporter 

Sensitivity
2~3% for FFPET, 
100copies/ml for 
plasma (T790M) 1%

1% for FFPET,
0.2% for plasma 
SuperARMS)

0.2% 0.01% 0.1% 0.1%~0.5% 0.1%~0.5%

Advantages

Tissue and Plasma 
samples can be run 
on the same plate. 
FDA approved 
method for 
mutational analysis.

Low Complexity. FDA 
approved method for 
mutational analysis.

Low Complexity. 
CFDA approved 
method for 
mutational analysis.

Absolute quantification, high sensitivity and specificity 1. High throughput;
2. Can read the 
repetitive sequence

1. Input as less 
as 1ng gDNA. 
2.. Low cost;

Disadvantages Does not give absolute quantification of the mutation.
Detects only known mutations.

Detects only known targeted mutations

1.Longer turnaround 
time
2. High cost 
(fluorescence);
3. Complicate library 
preparation.

1.Longer 
turnaround time 
2. Low 
throughput;
3. Complicate 
library 
preparation.
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Figure 2: Principle of ARMS (Qiagen) [29].
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information on diagnosis, prognosis, recurrence, drug 
response and drug resistance. With the advent of 
targeted therapy, it is now important to continuously 
monitor the molecular alterations emerging in the 
tissue which demands a repeat biopsy. Obtaining serial 
repeat biopsies for real-time monitoring of the disease 
becomes challenging due to the invasiveness, impractical 
accessibility, and heterogeneity of tumor tissue [23, 24]. 

Alternatively, plasma derived ctDNA is promising 
due to its minimal invasive extraction that could facilitate 
the monitoring of EGFR mutations [1, 44, 45]. Several 
studies have indicated that ctDNA is likely to derive from 
tumor lesions and metastatic sites, possibly representing 
the patients tumor genome [46, 47]. Plasma ctDNA 
is promising for mutation detection due to the ease of 
accessibility, convenience and practicality [27]. It has 
potential in monitoring the real time disease burden and 
progression by characterizing intra-tumor and inter-tumor 
heterogeneity [48, 49]. 

Studies on use of other bodily fluids in mutation 
detection in lung cancer are limited. Saliva, urine and 
pleural effusions are some of the clinically available 
bio-samples that are potentially used in EGFR mutation 
testing. A core technology called EFIRM has been used for 
EGFR mutations detection using saliva. Good correlation 

was observed in EGFR mutation detection between 
EFIRM and cobas [50]. Several studies have shown use 
of malignant pleural effusions as an alternative for tissue 
and blood using PCR for EGFR mutation detection and 
monitoring [51-53]. Urinary ctDNA has emerged as 
completely non-invasive sample for assessing disease 
progression and treatment response in T790M resistant 
mutation patients. Most studies have used PCR based 
technology alone or in combination with NGS [54-57]. 
A study on kinetics of monitoring T790M mutation in 
urinary samples revealed 68% of patients with T790M 
mutation post-TKI treatment using PCR coupled with 
MiSeq. Among these positive patients 10 had similar 
results with tissue biopsy, three patients who were negative 
in tissue were detected to be positive in plasma and urine 
[55]. Another study reported 72% concordance between 
urine and tissue results for detecting T790M mutation. 
Plasma and urine detected additional T790M positive 
cases that were missed by tissue biopsy [58].

COMPARISON OF DIAGNOSTIC 
PLATFORMS IN EGFR T790M DETECTION 
IN PLASMA AND TISSUE

Molecular testing for EGFR gene alterations is 

Table 2: Concordance of EGFR T790M mutation detection in tumor and plasma 

S.No
Method

Sample
Parameters Study group

Plasma detection Tissue detection Sensitivity Specificity Concordance 
with tissue

1

Cobas (Roche)

Cobas (Roche) Plasma N = 38

41% 100% 57%
Thress et al. 
[70]

ddPCR (Bio-rad) 71% 83% 74%
BEAMing 71% 67% 70%
ARMS Qiagen 29% 100% 48%

2
Cobas (Roche)

Cobas (Roche) Plasma N = 
153

64% 98% 86% Karlovich C 
et al. [98]BEAMing 73% 50% 67%

3 BEAMing (Sysmex) Cobas (Roche) Plasma N = 
216 70.3% 69.0% NR Oxnard GR et 

al. [115]

4 ddPCR (Bio-rad) ARMS (AmoyDx) Plasma N = 117 81.25% 100% 81.25% Zheng et al. 
[91]

5 ddPCR (Bio-rad) ddPCR (Biorad) Plasma N = 18 81.8% 85.7% 83.3% Ishii H et al. 
[90]

6 ddPCR (Bio-Rad) ddPCR (Biorad) Plasma N = 41 64.5% 70.0% 65.9% Takahama T 
et al. [116]

7 Picoliter-ddPCR 
(RainDance) ARMS (Qiagen) Plasma N = 10 71% NR 80% Seki et al. 

[117]

8 NGS (Illumina, 
MiSeq)

Cobas (Roche) and 
ARMS (Qiagen) Plasma N = 60 93% 94% NR Reckamp KL 

et al. [58]

9 PANAMutyper R 
EGFR kit Ion Torrent NGS Plasma N = 39 58% 68% 63% Han J Y et al. 

[118]

10 cSMART ARMS (AmoyDx) Plasma N = 61 100% NR 98.4% Chai X et al. 
[119]

11 NGS (MiSeq) PCR/FISH/NGS 
(MiSeq) Plasma N = 15 81.8% 100% 86% Paweletz et 

al. [95]
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Figure 3: Work flow of Digital PCR (BEAMing) [36]. Droplets are generated using droplet generator and are read using droplet 
reader. However, QuantStudio digital PCR has much simpler workflow which makes use of chip based technology, the sample is loaded 
and PCR amplified and the results are read and analyzed using system based software.
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considered a standard of care in NSCLC patients. Various 
treatments guidelines from American Society for Clinical 
Oncology (ASCO), College of American Pathologists 
(CAP), International Association for the Study of Lung 
Cancer (IASLC), Association for Molecular Pathology, 
and the US National Comprehensive Cancer Network 
support genetic mutation testing for treatment modalities 
[59-61]. The guidelines for molecular testing of EGFR 
mutations recommend a validated mutation method with 
sufficient performance characteristics with turnaround 
time of 2 weeks and in case of secondary or acquired 
resistance to TKIs the method should be sensitive enough 
to detect secondary mutation (T790M) [60]. Even 
the new European guidelines encourage coverage of 
exons 18-21 for mutation detection in NSCLC pateints 
[62]. United states FDA approved cobas (Roche) as a 
companion diagnostic tool for EGFR mutations detection 
(exon 19 deletions, L858R in exon 21 and exon 20 
insertions including T790M) using tissue or plasma for 
TKI targeted therapies (erlotinib and osimertinib) and 
ARMS therascreen (Qiagen) as companion diagnostics 
for detecting exon 19 deletions and exon 21 (L858R) 

substitution mutations using tissue for afatinib selection 
[63].

In identifying EGFR mutations, concordance 
between tissue and plasma plays an important role to 
address the issue of liquid biopsies to serve as molecular 
substitute for tissue. Studies have reported 100% 
specificity and sensitivity of ctDNA with concordance 
rate ranging from 27.5%-100% between ctDNA and tissue 
biopsy for various EGFR mutations [64-69]. A phase 
IV, open-label, single-arm study in Caucasian NSCLC 
patients (N = 652) demonstrated 94% concordance for 
EGFR mutations detected (by ARMS, Qiagen) between 
plasma and tumor tissue in a study evaluating efficacy and 
safety of gefitinib [26]. In a cross platform comparison 
study, the concordance for T790M mutation between 
plasma and ctDNA was 57%, 48%, 74% and 70% using 
cobas (Roche), ARMS (Qiagen), ddPCR (Bio-rad) and 
BEAMing dPCR, respectively between plasma ctDNA and 
tissue in Chinese NSCLC patients. The digital platforms 
outperformed to the non-digital ones in sensitivity 
and concordance in T790M mutation detection [70]. 
Additional studies on concordance of EGFR T790M 

Table 3: Comparison of EGFR T790M detection platforms in plasma

S.No Method Sample

EGFR T790M detection rate % Study Group

Treatment 
Naive/Pre-TKI Post-TKI

1 BEAMing Plasma N = 44 4.8 43.5 Taniguchi et al. [106]
2 Scorpion ARMS Plasma N = 26 34.8 64 Maheswaran et al. [109]

3 ARMS Plasma N = 135 5.8 31.1 Wang Z et al. [89]
Digital PCR 25.2 43.0

4 Mutant-enriched PCR Plasma N = 33 NA 36.4 He et al. [74]Direct Sequencing NA 6.1
5 Cobas (Roche) Plasma N = 23 0 39 Sorensen et al. [99]
6 ddPCR Plasma N = 49 - 28.6 Lee et al. [104]
7 SABER Plasma N = 75 - 28 Sakai et al. [120]
8 ddPCR Plasma N = 12 - 41.7 Isobe K et al. [92]

9 Mutation-biased PCR Plasma N = 58 - 40 Sueoka-Aragane N et al. [112]

10

Mutation-biased PCR

Plasma N = 19

- 53

Nakamura T et al. [78]
PNA-LNA PCR - 15.7
Cycleave PCR - 26.3
ASO-PCR - 31.5
Direct sequencing - 31.5

11 Cobas (Roche) Plasma N = 15 0 33.3 Marchetti A et al. [100]NGS (Roche) 0 33.3
12 Cobas (Roche) Plasma N = 238 0.8 2.01 Mok T et al. [88]

13 NGS (Illumina)
Hi Seq Plasma N = 45 - 42.2 Jin Y et al. [114]

14 NGS (MiSeq) Plasma N = 15 - 60 Paweletz et al. [95]
15 Ion Torrent PGM NGS Plasma N = 190 - 16.8 Uchida J et al. [121]

 ‘-‘ :Not reported.
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Figure 4 : Work flow of NGS (Ilumina) [39]. The methodology comprises of template preparation, sequencing, imaging and analysis. 
The workflow involves library preparation, cluster generations, sequencing, alignment and data analysis. Genomic DNA is fragmented and 
ligated using 5’ and 3’ adapter ligation to prepare NGS library. These fragments are amplified by PCR and gel purified. They are loaded into 
a flow cell and hybridisation takes place. Through bridge amplification the bound fragments are amplified into a clonal cluster. These are 
then sequenced base-by-base using reversible terminator based method thus eliminating sequence context specific errors. After sequencing 
bioinformatics software is used to align the resultant reads to reference genome thus identifying the differences.
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Table 4: Comparison of EGFR T790M detection platforms in tissue

S.No Method Sample
EGFR T790M Detection rate %

Study groupTreatment Naive/
Pre-treatment Post-TKI

1 Scorpion ARMS Tissue N = 29 0 48.3 Chen HJ et al. [84]
2 Direct sequencing Tissue N = 14 0 50 Kosaka et al. [75]

3 ARMS Tissue N = 10 - 0 Zhang et al. [85]ddPCR - 50

4 Standard HRM Tissue N = 146 0 - Hashida et al. [107]MEC-HRM 13 -
5 SABER Tissue N = 28 7 - Sakai et al.[120]
6 Ion Torrent PGM NGS Tissue N = 15 - 60 Masago et al. [94]
7 ddPCR Tissue N = 12 83.3 - Isobe K et al. [92]

8 MALDI-TOF MS Tissue N = 54 7.1 - Su K.Y et al. [97]NGS 14.3 -
9 PNA-clamping PCR Tissue N = 50 - 68 Costa C et al. [110]
10 ddPCR Tissue N = 78 6.4 - Xu et al. [93]
11 ACB-ARMS PCR Tissue N = 27 22.2 - Zhao J et al. [83]

12 PNA-clamping PCR Tissue N = 147 8.2 - Oh et al. [76]Direct sequencing 0 -
13 ddPCR Tissue N =  373 79.9 - Watanabe M et al.[105]

14 Direct sequencing Tissue + other clinical 
samples N = 280

0.3 1.05 Inukai M et al. [77]Mutant-enriched PCR 3.5 3.1
15 TaqMan PCR Tissue N = 129 35 - Rosell R et al. [122]

16 SARMS Tissue N = 38 0 - Fujita Y et al. [86]Colony hybridisation 79 -
17 Direct sequencing Tissue N = 98 2 - Sequist LV et al. [71]

18 Direct sequencing Tissue+other clinical 
samples N = 1261 0.5 - Wu JY et al. [79]

19
NGS
(Miseq/Hiseq2000/
Hiseq2500)

Tissue N = 209 0.48 - Hagemann IS et al.[108]

20 LNA-PCR sequencing Tissue N = 155 - 62 Yu HA et al. [111]

21

Direct sequencing Tissue+other clinical 
samples N = 69 - 49

Arcila ME et al. [80]RFLP-PCR Tissue+other clinical 
samples N = 45 - 53

LNA-PCR sequencing Tissue+other clinical 
samples N = 64 - 70

22 TaqMan PCR Tissue+other clinical 
samples N = 15 - 40 Molina-Vila MA et al. 

[123]
23 AMRS Tissue N = 609 0.8 - Mok TS et al. [87]
24 Direct sequencing Tissue N = 74 - 1.35 Soh J et al. [81]

25 Cobas(Roche)/ARMS 
(Qiagen) Tissue N = 148 - 53 Sequist LV et al. [101]

26 Cobas (Roche) Tissue N = 222 - 62 Janne PA et al. [21]

27 ARMS Tissue N = 134 6.8 28.4 Yu J et al. [124]

28 NGS (MiSeq) Tissue = 15 - 73.3 Paweletz et al. [95]

29 NGS (AmpliSeq cancer 
hotspot panel v2) Tissue N = 43 - 79 Belchis DA et al. [96]

 ‘-‘: not reported
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mutation detection in tumor and plasma are summarized 
in Table 2. These studies report wide range of concordance 
range 48-94%, sensitivities (29-81.8%) and specificities 
(83-100%). This variability in concordance, sensitivities 
and specificities are heavily technology driven. 

Several studies have demonstrated use of various 
platforms for EGFR T790M detection both in plasma 
(Table 3) and tissue samples (Table 4). Direct sequencing 
is widely used in EGFR mutation detection. Studies have 
reported detection limit of direct sequencing to be around 
25-30%. This method is complex, time consuming and 
not standardized in terms of clinical laboratory practice 
[71-73]. Although, direct sequencing has drawbacks with 
low sensitivity, several studies have reported use of direct 
sequencing in detecting EGFR T790M with detection rate 
ranging from 0-50%. This disparity could be attributed 
to the low abundance of T790M mutation (due to less 
sensitivity of the technique mutation is not detected) and 
also to small sample size (instances where higher detection 
rates are reported) [71, 74-81]. Some studies compared 
direct sequencing with other techniques (mutant-enriched 
PCR, RFLP-PCR, LNA-PCR, Mutation-biased PCR) 
in T790M mutation detection and demonstrated higher 
detection rates by other sensitive methods [74, 76-78, 80]. 

ARMS is another most commonly used method for 
EGFR mutation testing both in plasma and tissue [26, 
70,76-78, 82-88]. Though it produces good specificity, it 
lacks sensitivity when compared to HRM, ddPCR, cobas, 
colony hybridization and BEAMing [70, 83, 85, 86, 89]. 
Another study used a method combining allele-specific 
competitive blocker (ACB) with TaqMan quantitative 
PCR ARMS called ACB-ARMS PCR for EGFR T790M 
testing and found 22.2% T790M mutation detection rate 
as compared to scorpion ARMS (0.0%) in tissue samples 
[83].

Quantification platforms like ddPCR and NGS are 
also widely used in T790M mutation detection especially 
in dynamic monitoring during TKI therapy. Ishii et al. 
reported high sensitivity (82%) and specificity (86%) of 
digital PCR (bio-rad) in detecting T790M mutation using 
plasma ctDNA with concordance of 83.3% with tumor 
tissue. Qualitatively digital PCR was more sensitive than 
ARMS in detecting T790M mutation both in pre- and 
post-TKI plasma samples 31.1% vs 5.5% (P < 0.001) 
and 43.0% vs 25.2% (P = 0.001), respectively [90]. 
Quantitative dynamic monitoring of T790M mutation by 
digital PCR is useful to predicted the clinical outcomes 
of EGFR TKIs using plasma ctDNA, as serial re-
biopsies using tissue is practically impossible [89-92]. In 
detecting T790M mutation ddPCR has high sensitivity 
and specificity compared to cobas, BEAMing, ARMS and 
conventional PCR [70, 85, 93].

Targeted NGS using Ion Torrent Personal Genome 
Machine detected T790M resistant mutation in 60% of 
the cases which were not diagnosed by other conventional 
platforms. In addition to EGFR mutations other oncogenic 

mutations were detected which may play a role in TKIs 
resistance. This high throughput analysis of NGS 
elucidates the importance of such analysis in targeted 
therapy [94]. Two other studies also demonstrated the use 
of targeted NGS in detection of resistant mutations both 
in tissue and plasma even at low abundance rate [95, 96]. 
Mass spectrometry (MALDI-TOF-MS) compared to direct 
sequencing yielded good results with detection rates of 
83.3 and 33.3% respectively for T790M mutation in tissue. 
The results of MALDI-TOF-MS showed good correlation 
with NGS [97]. 

Cobas is a semi-quantitative method used frequently 
in mutational analysis using tissue or plasma [21, 70, 87, 
98-101]. Thress et al. reported concordance of 78.6% 
between tumor tissue and plasma using this method, 
another study indicated a positive percentage agreement 
of 64% between tissue and plasma [70, 98]. Quantification 
of T790M mutation using cobas and NGS significant 
correlation between the two tests (P < 0.001) with 
concordance rate of 95%. The sensitivity and specificity 
of cobas and NGS was 72% and 100% to that of 74% 
and 100%, respectively. Though PCR based techniques 
can identify only the known mutations, they are preferred 
over NGS due to the advantages attributed to their ease, 
turnaround time and cost [100].

PREVALENCE OF T790M IN PRE-TKI AND 
POST-TKI NSCLC PATIENTS

Ethnic variations are observed in EGFR mutations. 
The mutation rate among east Asians is 30-40% among 
east Asians when compared to 5-13% in Caucasians, 
signifying the importance of molecular analysis in east 
Asian popluations [102]. Among the EGFR mutations, the 
T790M mutation occurs in less than 5% of the untreated 
EGFR mutated tumors and occurs to about 50% of the 
EGFR mutated tumors that acquire resistance to the first 
generation TKIs [12, 77, 103]. Tables 3 and 4 summarise 
the prevalence of T790M mutations in pre- and post-
TKI NSCLC patients using tissue and plasma samples. 
Though for most of the studies patients ethnic details are 
not reported. Dividing all the studies into Asian and non-
Asian. Asians studies have used cobas, ddPCR, BEAMing, 
ARMS, direct sequencing and Ion torrent PGM platforms 
for detecting T790M mutation [21, 70,71, 75, 81, 84, 87, 
88, 94, 101, 104, 105]. The frequency of T790M mutation 
ranged from 0- 35% with most of the studies reporting 
less than 5% before TKI administration in NSCLC [71, 
75-77, 79, 84, 86-88, 99, 100, 106-108]. Three studies 
reported more than 50% of T790M mutation in patients 
before TKI [86, 92, 105]. This high frequency could be 
attributed to small sample size in one of the studies [92] 
and to high sensitivity of the detection methods (ddPCR 
and colony hybridisation) used to detect low abundance 
T790M mutation in the other two studies [86, 105]. The 
incidence of T790M mutation in after TKI ranged from 
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0-70% with most studies reporting around 50% of this 
resistant mutation in NSCLC patients [21, 74, 75, 78, 80, 
81, 84, 85, 87, 88, 94, 101, 104, 106, 109-111]. This low 
detection rates in few of the post-TKI studies of T790M 
mutation rate could be attributed to the technology used 
for detection (direct sequencing) and heterogeneity of the 
tissue sample [77, 81].

Non-Asian studies used ARMS, cobas and PNA-
PCR for mutation detection [26, 99, 107, 111]. The 
incidence of post-TKI T790M around 50-60% [99, 
110, 111]. The percentage of T790M mutation directly 
correlates with the treatment duration of the first and 
second line TKI for acquiring resistance to these TKIs. 
The variation in the rate may also be attributed to the 
differences in sensitivities of the testing platforms. The 
rate of T790M detected in tissue and plasma also varies 
as evident from the various studies (Table 3 and Table 
4). Moreover, Sueoka-Aragane et al. demonstrated that 
T790M mutation was frequently detected in certain 
subgroups of patients like smokers, males, in patients with 
exon 19 deletion and in patients with new lesions [112].

Several studies demonstrated the prevalence of 
T790M in Chinese populations using various technologies. 
Zhao et al validated three platforms RTD-PCR sequencing, 
TaqMan probe PCR and Sequenom MassArray for specific 
detection of EGFR T790M mutation and found that all 
three platforms detected T790M in seven cases from 78 
tissue samples [113]. The ddPCR showed better sensitivity 
and specificity over qPCR in detecting EGFR mutations 
in tissue samples and it detected T790M mutation (6.4%) 
which were missed by qPCR in pre-TKI patients [93]. 
ARMS detected T790M mutation in 48.3% in post-TKI 
patients whereas no mutation was detected in pre-TKI 
Chinese NSCLC patients [84]. Another study reported 
T790M mutation in 36.1% in TKI resistant patients using 
NGS [114].

CONCLUSION

In this review, we compared various companion 
diagnostic platforms for EGFR T790M testing. Multiple 
platforms like cobas, BEAMing, ddPCR and NGS are 
capable of detecting EGFR TKI resistant mutations in 
NSCLC patients though they differ in their sensitivity, 
specificity and turnaround time. In cases that demand 
quantification of mutation BEAMing, ddPCR and NGS 
could take a lead. More prospective studies to monitor 
the EGFR T790M in plasma ctDNA during or after EGFR 
TKI treatment are warranted.

Overall the data suggests that plasma testing is 
useful compared to tissue especially in patients with EGFR 
T790M resistant mutations where continuous monitoring 
is mandate. Other bodily fluids can also be investigated as 
potential alternatives in real-time monitoring for targeted 
therapy in EGFR mutated NSCLCs. 
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