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ABSTRACT

Background: Prostate cancer (PCa) management can benefit from novel concepts/
biomarkers for reducing the current 20-30% chance of false-negative diagnosis with 
standard histopathology of biopsied tissue.

Method: We explored the potential of selected epigenetic markers in combination 
with validated histopathological markers, 3D high-content imaging, cell-by-cell 
analysis, and probabilistic classification in generating novel detailed maps of 
biomarker heterogeneity in patient tissues, and PCa diagnosis. We used consecutive 
biopsies/radical prostatectomies from five patients for building a database of 
~140,000 analyzed cells across all tissue compartments and for model development; 
and from five patients and the two well-characterized HPrEpiC primary and LNCaP 
cancer cell types for model validation.

Results: Principal component analysis presented highest covariability for the four 
biomarkers 4’,6-diamidino-2-phenylindole, 5-methylcytosine, 5-hydroxymethylcytosine, 
and alpha-methylacyl-CoA racemase in the epithelial tissue compartment. The panel 
also showed best performance in discriminating between normal and cancer-like cells 
in prostate tissues with a sensitivity and specificity of 85%, correctly classified 87% 
of HPrEpiC as healthy and 99% of LNCaP cells as cancer-like, identified a majority 
of aberrant cells within histopathologically benign tissues at baseline diagnosis of 
patients that were later diagnosed with adenocarcinoma. Using k-nearest neighbor 
classifier with cells from an initial patient biopsy, the biomarkers were able to predict 
cancer stage and grade of prostatic tissue that occurred at later prostatectomy with 
79% accuracy.

Conclusion: Our approach showed favorable diagnostic values to identify the 
portion and pathological category of aberrant cells in a small subset of sampled tissue 
cells, correlating with the degree of malignancy beyond baseline.
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INTRODUCTION

PCa is the most common cancer among men and 
the second leading cause of cancer-related deaths [1]. 
The standard diagnostic technique for screening of PCa is 
histopathological review of prostate tissue collected through 
needle biopsy. 12-core or 14-core transrectal ultrasound-
guided prostate needle biopsy (TRUS) is the most prevalent 
method for initial biopsy from patients with an elevated 
serum prostate-specific antigen (PSA) level [2]. Currently, 
although PSA levels and PSA kinetics are gathered, they are 
not used to define cancer progression on active surveillance 
[3, 4]. Biopsy classification using a revised version of the 
original Gleason grading system has emerged as a more 
meaningful endpoint for monitored men [3–7]. PCa must 
meet three criteria to be deemed insignificant: the biopsy 
must receive only Gleason score (GS) 6 (3 + 3) and have 
a core volume (positive for tumor) of 50% or less (both 
determined by histology), in combination with an organ 
confined primary tumor as diagnosed by magnetic resonance 
imaging (MRI) of the prostate [8]. Higher-grade tumors 
(GS7 and higher) imply a significantly elevated likelihood 
of clinical progression [3, 4]. Currently, prostate biopsy 
remains the only method to ascertain prostate cancer grade. 
Nevertheless, when low-grade PCa is diagnosed on needle 
biopsy, there is a risk of undergrading because of a sampling 
error, which occurs when a higher-grade component in the 
prostate gland is being missed during the biopsy process 
[3, 4]. In about 20–30 percent of the time, when a patient 
has a GS6, there may be higher-grade tissue present in the 
rest of the prostate. This relatively high frequency of occult 
tissue has been shown in a meta-analysis of 23 studies (with 
100 cases or more) in which ~35% of all cases were found 
to have a higher grade at paired radical prostatectomy [9]. 
Concerns about false-negative results in conjunction with 
persistent risk factors, such as increased PSA, often leads 
to repeated biopsies. The negative impact of the limited 
precision of histopathology may subject cancer-free men 
to additional invasive biopsy procedures with associated 
negative effects, including anxiety and the risk of urosepsis 
[10, 11]. Hence, there is an unmet need for additional 
biomarkers of prostate malignancy in biopsy tissue to 
complement current histopathology and PSA to improve 
diagnostic accuracy and avoid unnecessary rebiopsy. 
There is a body of evidence, which shows that epigenetic 
aberrations such as altered DNA methylation and related 
changes in histone-tail modification patterns amongst other 
features correlate with several cancer types, including PCa 
[12, 13]. Epigenetic changes are by now known to occur 
early in cellular transformation and cancer development. 
Cancer cells usually display hypermethylation of a 
relatively small number of single gene promoters, mostly in 
gene-rich genomic regions termed CpG islands, leading to 
silencing of certain tumor suppressors involved in cell-cycle 
regulation, DNA mismatch repair, cellular differentiation, 
and apoptosis. Hypermethylation of the glutathione 

S-transferase pi (GSTP1) gene promoter has been observed 
in nearly 90% of all prostatic carcinomas but not in benign 
hyperplastic tissue [14, 15]. Other well-characterized 
hypermethylated genes in PCa include RASSF1A, CDH1 
and CDKN2A. Promoter hypermethylation is often 
coexistent with hypomethylation at the global DNA 
(gDNA) level [16]. A malignant cell can contain 20–60% 
less genomic 5-methylcytosine (5mC) than its normal 
counterpart. The loss of methyl groups is achieved mainly 
by hypomethylation of repetitive DNA sequences, which 
count for more than 90% of the human genome, including 
transposable elements (~48% of genome) such as short 
and long interspersed nuclear elements (SINES and 
LINES, respectively), largely acquired as retroviruses 
throughout evolution [17, 18]. Global demethylation is 
clinically relevant to progression in a number of cancer 
types, since loss of global methylation tends to become 
more pronounced as precancerous lesions advance [19–
22]. As for PCa, global hypomethylation correlates with 
both tumor development and progression [23–26]. This 
epigenetic phenomenon is often accompanied with the 
under-presentation of repressive heterochromatin-associated 
histone marks, predominantly histone-3 lysine-methylation 
such as H3K27me3 (facultative heterochromatin) 
and H3K9me3 (constitutive heterochromatin) [13]. 
Compared to promoter CpGs global hypomethylation 
has been less investigated as a biomarker, despite the 
fact that it is ubiquitous and much more pronounced in 
cancers than is gene-promoter hypermethylation [27, 
28]. The global changes in DNA methylation and histone 
modification patterns can be visualized and quantified 
by high-resolution light microscopy in conjunction with 
computer-assisted image analysis [29–33]. Besides DNA 
methylation also genome-wide changes in cellular DNA 
hydroxymethylation are associated with various cancers 
[34, 35]. Recently, we had only briefly disclosed the 
capability of newly developed 3D high-content analysis to 
perform DNA methylation phenotyping of cells towards 
characterization of human prostate tissue heterogeneity 
[36]. However, biological differences across epigenetic 
and non-epigenetic biomarkers support the use of several 
markers in a cancer detection assay. Hence in here we 
report on using previously developed parallel cell-by-
cell analytical techniques —surrounding 3D high-content 
imaging, chromatin-associated epigenetic in combination 
with validated PCa-relevant markers, and mathematical-
statistical principles for analysis of large imaging data— to 
generate novel detailed maps of biomarker heterogeneity in 
patient tissues and assess their potential in PCa diagnosis 
[30, 37, 38]. The aims of this study were: 1) on cell-by-cell 
basis to determine the best of two sets of biomarkers that 
described the variation of variables as parsimoniously as 
possible using a set of derived uncorrelated variables; 2) 
assess the capability of the biomarkers chosen in step one 
to segregate between what we deemed normal and aberrant 
(malignant cells) based on the tissue of origin; 3) establish 
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the ability of the chosen biomarkers to accurately define the 
pathological category and follow the progression of PCa in 
a set of validation data.

RESULTS

The longitudinal analysis with most of the archived 
patient specimens comprised tissue samples that were 
collected at different diagnostic time points, including 
diagnosis —initial trans-rectal needle biopsy (biopsy 
1) and if available a follow-up biopsy (biopsy 2)— and 
prostatectomy, as shown in Table 1.

Differential imaging and analysis of tissues

The high-content assay and analysis was performed 
on the three-dimensional quantitative DNA methylation 
imaging (3D-qDMI) platform that we had previously 
introduced [29, 31, 39]. The technology constitutes 
a multiplexed image-cytometric approach, by which 

fluorescence signals of simultaneously visualized 
nuclear targets —generated through established 
immunocytochemistry and light microscopy— are 
extracted from 3-D images to visualize and measure 
changes in global epigenetic markers such as DNA 
methylation/hydroxymethylation and other molecular 
targets in thousands of cells in parallel. This capability to 
analyze cell populations on a per-cell basis is a powerful 
means in addressing cell population heterogeneity in 
tissues. Within this context, the application of high-
resolution confocal microscopy in the range of 100–
500nm allowed us to separately acquire images from the 
two major tissue compartments, i.e. the epithelium and the 
stroma, as well as mixed areas that also entailed border 
regions between the two compartments. Hence for each 
subject each tissue sample was divided into four categories 
based on the represented tissue compartments: epithelium 
only (E), major epithelium with minor stroma (E+s), equal 
portions of epithelium and stroma (ES), and stroma only 
(S), as shown in Figure 1.

Table 1: Patient specimens used in the study (including extraction dates)

Development Specimens

Name Biopsy 1 Biopsy 2 Prostatectomy

Patient 1
Atypical glands + small 
focus of cancer, GS6 (3+3); 
03/2011

AC, GS6 (3+3);
06/2012

Stage III (pT3a), GS7 (3+4); 
12/2012

Patient 2 Lots of AC, GS7 (4+3);
11/2012

Stage II (pT2c), GS7 (3+4); 
02/2013

Patient 3 Benign; 08/2009 AC, GS7 (4+3); 09/2012 Stage III (pT3a), GS7 (3+4); 
12/2012

Patient 4 Lots of AC, GS6 (3+3);
02/2012

Stage II (pT2c), GS7 (3+4); 
03/2012

Patient 5 Lots of AC, GS6 (3+3);
11/2012

Stage III (pT3b), GS6 (3+3); 
01/2013

Validation Specimens

Patient 5 Benign tissue distal from 
tumor region; 01/2013

Patient 6 Lots of AC, GS6 (3+3);
5/2014

Stage II (pT2c), GS6 (3+3); 
11/2014

Patient 7 Lots of AC, GS6 (3+3);
1/2013

Stage II (pT2c), GS6 (3+3); 
5/2013

Patient 8 Lots of AC, GS7 (3+4);
2/2013

Stage II (pt2c), GS7 (3+4); 
4/2013

Patient Z
Benign tissue distal from 
tumor region; extraction date 
N/A

HPrEpiC Isolated from normal human prostate tissue, cytokeratin 18 and 19 positive

LNCaP Isolated from human needle biopsy, androgen-sensitive prostate adenocarcinoma cells
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Hematoxylin & eosin (H&E) staining of the 
matching middle sections of the interrogated tissues 
were used to identify tissue regions for confocal imaging 
(Supplementary Figure 1). In here we assessed the 
abundance of two sets of PCa-related biomarkers that 
are novel in their combination. The first set (Biomarkers 
I) comprised 4’,6-diamidino-2-phenylindole (DAPI) 
representing gDNA, the two cytosine variants 5mC and 
5-hydroxymethylcytosine (5hmC), and alpha-methylacyl-
CoA racemase (AMACR) [40, 41]. The second set 
(Biomarkers II) included DAPI, the scaffold attachment 
factor B (SAFB), tri-methylated lysine 9 on histone 
3 (H3K9me3), tri-methylated lysine 27 on histone 3 
(H3K27me3), and the fraction of the androgen receptor 
(AR) that was present in the cell nucleus as nAR [42–44]. 
DAPI was used in both sets also for technical reasons, 
i.e. to delineate the nuclear region of interest; a standard 
procedure to enable the segmentation of cell nuclei and the 
creation of an image mask in order to also retrieve nuclear 
signals of the other biomarkers in the respective channels, 
as can be inferred from the methods section. Overall, in 
adenocarcinoma (AC) versus benign tissue we explored 
an increase in gDNA content represented by DAPI, as 
well as AMACR, H3K9me3 and nAR in epithelial cells 
(Figure 2). Concurrently we could measure a significant 
decrease in global 5mC, 5hmC, and the chromatin-
associated SAFB alongside the suppressive H3K27me3 
mark. Interestingly, luminal cells seemingly exhibit a 
stronger loss of 5hmC compared to basal cells. In reality, 
cells in benign and cancer tissues display a differential 
heterogeneity regarding the levels of these biomarkers. 
For example subsets of cells appear to show more or less 
SAFB intensity than the average abundance (intensity) of 

this protein in the epithelial cells of histopathologically 
(structurally) benign prostate tissues. In comparison, 
our experience was that tumor areas displayed a higher 
heterogeneity of SAFB than the morphologically intact 
(benign) epithelium. Therefore, our imaging results were 
in agreement with previous findings that had reported 
similar trends of the individual markers in association with 
the degree of tissue malignancy [24, 25, 34, 39, 45–48].

Phenotypic biomarker heterogeneity in tissues

In addition to our observations at the microscopic 
level and the report on average changes of biomarker 
intensities, we were interested in utilizing the asset of 
cell-by-cell data (gathered in this study) to conduct a 
systematic quantitative analysis of marker heterogeneity 
in the different pathological tissues. Because the data were 
derived from tissues that had been excised at different 
time-points it was not possible to conduct a continuous 
assessment of marker-covariance over time. From our 
previous studies to characterize cell phenotypes in complex 
cell populations such as differentiating embryonic stem 
cells (ESC) using big imaging data, we had experienced 
that principle component analysis is a valuable statistical 
approach to determine marker variance in multi-parametric 
assays [38]. Principle component analysis enables the 
reduction of observed variables, while preserving a 
large portion of the variance in the data. Using principle 
component analysis, the newly produced variables were 
derived in decreasing order of importance pertaining to the 
amount of variation they explain of the original variables. 
For example, principle component 1 explains for as 
much of the variability of the original data as possible. 

Figure 1: Prostate tissue imaging showing optical mid-sections in the DAPI-channel. Imaging was performed to acquire four 
categories of tissue frames corresponding to a sampling spectrum of epithelial and stromal compartments: epithelia only (E), epithelia with 
minor bordering stroma (E+s), mixed epithelia and stroma at various ratios (ES), and stroma only (S).
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The second principle component explains as much of the 
remaining variance as possible under assertion that it is not 
correlated to principle component 1, etc. This reduction 

is useful as our data could be graphically summarized, 
instead of exploring the covariance/correlation of the 
pairwise relationship between the markers within each 

Figure 2: Differential levels and cellular heterogeneity of Biomarkers I and II between biopsied benign and cancerous 
prostatic tissues (represented by AC with GS6), as visualized by confocal scanning microscopy (A). Each marker (false-
colored) was recorded in a separate channel. For each tissue sample all channels —including the multi-color overlay image— are 
presented as maximum intensity projections. (B) Quantitative presentation of biomarker levels as bar plots indicate for Biomarkers 
I: significant increase in DNA content (DAPI) and AMACR levels and simultaneous loss of the two epigenetic DNA modifications 
5mC and 5hmC in both basal and luminal epithelial cells in AC versus benign tissue; luminal cells seemingly exhibit a stronger loss 
of 5hmC compared to basal cells. Biomarkers II: concurrent loss of suppressive chromatin-state marker H3K27me3 and decrease of 
chromatin-associated SAFB levels, while H3K9me3 and nuclear AR levels are highly elevated in AC versus benign tissue. Scale bar 
is 10 μm.
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of the two marker sets (please see Methods section for 
more detailed explanation). Figure 3 illustrates the degree 
of compartment-specific data segregation for Biomarkers 
I (DAPI, AMACR, 5mC, and 5hmC) and Biomarkers 
II (DAPI, nAR, SAFB, H3K9me3, and H3K27me3) 
across all exploratory tissue samples from Patients 1 to 
5. For Biomarkers I, the highest covariation was found 
in the epithelial compartment. This variation correlatively 
diminishes with increasing proportions of stromal regions. 
As for the abovementioned biomarkers the stromal 
compartment by itself did not show any significant 
covariation. The loading matrix (Supplementary Table 1) 
indicates that the major drivers of principle component 
1 (highest variable markers) are 5hmC and AMACR at 
about equal weight, followed by 5mC, while principle 
component 2 is dominated by DAPI variables. In 
comparison, Biomarkers II did not segregate well (Figure 
3). In this case principle component 1 was majorly 
influenced by H3K27me3 and nAR at about equivalent 
power, followed by SAFB. Principle component 2 was 
driven by DAPI, as shown in the Supplementary Table 2.

Next, we performed principle component analysis 
using only data derived from the epithelial compartment 
to explore any covariation of the abovementioned markers 
in association with tissue malignancy. Tissue malignancy 
was distinguished either by tissue pathological categories 
including PCa stages (benign, AC at biopsy, and stage 
II and stage III cancer at prostatectomy) or by Gleason 
scores (GS) including GS6 (3+3), GS7 (3+4), and GS7 
(4+3). In the relevant Figure 4, the composite plots 
illustrate that for both biomarker sets there seems to be no 
significant difference in data segregation between the two 
tissue classifications. However, there is a strikingly better 

segregation of the data for Biomarkers I compared with 
Biomarkers II.

The pairwise display of the abovementioned results 
for Biomarkers I revealed more detailed information on 
the two comparative tissue classifications (Figure 5). The 
results show significant changes of the markers between 
the morphologically benign tissue and AC, diagnosed 
through needle biopsy as well as benign versus stage II 
and stage III cancers, the latter two conditions diagnosed 
after prostatectomy. The data for AC is slightly more 
overlapping with stage II and even more so with stage III, 
indicating that biopsied AC tissue used in this study must 
have had very similar values for Biomarkers I compared 
with prostatectomy samples of patients diagnosed with 
stage II and even more so with stage III cancer. This is 
conceivable as stage II plotted against stage III exhibited 
also a significant overlap. When GS was utilized for 
tissue characterization, we observed an overall better 
performance (segregation) of Biomarkers I. Similarly, to 
when pathological conditions were used as the diagnostic 
index, benign tissue clearly distinguished itself from 
cancerous prostate tissues (GS6 and GS7). A significant 
segregation was also found between GS6 and two GS7 
tissue types. However, a notable overlap could be observed 
between GS (3+4) and the supposedly more aggressive 
GS (4+3), indicating that only minor differences in 
Biomarkers I seem to exist between the two grades. Also 
of note is the fact that of the three benign-labeled tissue 
samples only one (Patient 3, biopsy 1) showed a clear 
pattern of segregation from malignant tissue, regardless 
whether we used pathological conditions or GS to classify 
the samples. Therefore, this was the only tissue we were 
confident that it should remain labeled as benign.

Figure 3: Comparative tissue compartment-specific results of principle component analysis (with two components) 
for Biomarkers I and II. The data was separated into subsets representing the first biopsy (blue), the second biopsy (red), and finally 
prostatectomy (green). Each dot represents one cell. The results show a high overlap when epithelial and stromal compartments are 
analyzed together (ES). The overlap is reduced in the case of only a minor involvement of stroma (E+s). The best segregation is seen when 
the epithelial compartment is analyzed by itself, indicating the highest change (variance) for the analyzed markers. The latter subdata is 
missing data from two biopsies, as most patients for which epithelial (E) compartments could be analyzed were initially diagnosed with lots 
of AC and thus only underwent one biopsy prior to prostatectomy.
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Distinction between cancer and non-cancer cells

Towards our second objective, we explored two 
logistic regression models. For both models the data was 
divided into a developmental subset using tissue data of 
Patients 1 to 5, and a validation (test) set that comprised 
data from: a) the two cultured cell types, and Patients 
6, 7 and 8, as well as two prostatectomy tissue samples 
isolated from areas distant from the tumor that had 
normal appearance based on H&E staining (per expert 
pathological diagnosis). The latter specimens were from 
Patient 5 and separately from another patient (Patient Z). 
For the developmental set, tissue from Patient 3 biopsy 
1 —pathologically classified as benign— was used as 
healthy control. The first logistic regression model was 
based only on cells that were found within the epithelial 
tissue compartments. Most of the channel intensities 
showed to have a significantly skewed distribution. 
Thus, all channel intensities were log-transformed prior 
to application in the logistic regression model. In total, 
we employed a set of 17,881 cells of which 3,829 were 
rated as normal and 14,052 as aberrant (cancerous) cells. 
Using univariate logistic regression, we established that 

individual markers from the Biomarkers I panel were all 
significantly associated with aberrant cells (Supplementary 
Table 1). However, upon assessment of goodness-of-
fit analysis, only 5mC showed excellent discrimination 
power (epithelial tissue only: area under a curve of the 
Receiver Operating Characteristics (AUC ROC)=0.87; 
both tissue compartments together: AUC ROC=0.89; 
Figure 6). Once we established that essentially all 
biomarkers had a significant association with cancer 
we conducted multivariate logistic regression using all 
four members of the Biomarkers I panel (Table 2). Log-
transformed unit changes in marker intensities resulted in 
enormous alterations in the odds ratio (OR) for cancer: for 
DAPI a 7-fold increase (95% Cred. Int.: 6.7–7.8 OR), for 
AMACR an 80% decrease (95% Cred. Int: 82%–77%), 
for 5mC a 98% decrease (95% Cred. Int: 97.5%–99.2%), 
and for 5hmC a 3-fold decrease (95% Cred. Int: 2.5–3.4 
OR). Based on the probability of cancer using a cutoff 
point of 0.75, this model resulted in 88% sensitivity and 
84% specificity, whereby 87% of the cells were accurately 
classified (Figure 6A). Overall across various probability 
cutoffs we observed an outstanding discrimination 
between normal and abnormal cells of AUC ROC=0.95 

Figure 4: Comparative results of principle component analysis (with two components) for Biomarkers I and II 
according to clinical diagnoses (pathological categories or GS). The analysis was performed with cells located only in the 
E-compartment, which showed highest differential results in the first analysis (Figure 3).
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Figure 5: Pairwise comparative results of principle component analysis for Biomarkers I between the two types of 
disease characteristics (used in diagnosis); i.e. pathological categories including cancer stages versus GS.
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Figure 6: Performance of Logistic regression model with the development data set and Biomarkers I, utilizing epithelial cell 
only (A) and all subsets of all imaged cells (B). 5mC shows best performance as single marker in both cases, and is only exceeded by 
the combined marker panel.
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with this logistic model. For further explanation please 
refer to Methods section (Statistical learning methods and 
diagnosis, staging and prognosis of cancer).

The validation subset of data showed that our 
logistic model classified 87% of the HPrEpiC as non-
cancerous (normal). Analogously, 99% of the LNCaP cells 
were classified as cancerous (Table 3A). Interestingly, 
the supposedly “normal/benign” tissues that were 
isolated distally from the tumor region in Patients 5 and 
Z during prostatectomy, were classified as containing an 
overwhelming portion of cells that exhibited an aberrant 
(cancer-type) Biomarker I profile: 99.9% in Patient 5 and 
77% in Patient Z (Table 3B). In data of Patient 6, which 
was not part of our development model, we identified 87% 
of cells in the first biopsy (B1) sample and 93% of the 
cells in the prostatectomy (P) sample as being transformed 
(cancerous, Table 3C). Finally, for Patient 7 the logistic 
model estimated that 99% of cells isolated during initial 
biopsy were cancer-like. The model based on purely cells 
from the epithelial compartment estimated that 94% of the 
cells from Patient 8 were abnormal (Table 3D).

The second logistic regression model was 
developed using the pool of all imaged cells (139,165) 
from Patients 1 to 5 (development dataset, Table 4). 
This model had a cutoff point of 0.9, resulting in 85% 
sensitivity and specificity (Figure 6): 85% of cells were 
accurately classified (Figure 6A). Again, the overall 
discrimination power of the model was outstanding with 
AUC ROC=0.92–0.94. The model identified 81% of the 
HPrEpiC as normal and in contrast 99% of the LNCaP 
cells as cancer-like (transformed, Table 5A). The two 
“supposedly benign” tissues were indicated to contain 
100% (Patient 5) and 84% (Patient Z) aberrant cells 
(Table 5B). For Patients 6, 7, and 8, the model classified 
92%/98%/92% of cells respectively as aberrant at baseline. 
For Patient 6 also 95% of cells in the prostatectomy were 
classified as aberrant (Table 5C and 5D).

Modeling the prediction of indolent versus 
progressive cancer

Towards the third goal of our study, our analyses 
focused on the prediction of a) the pathological 
categories of the tissue, and b) cancer aggressiveness 
and disease progression. Hereby the following six 

pathological categories were used: benign, atypical small 
acinar proliferation (ASAP), adenocarcinoma (AC), lots 
of adenocarcinoma (LAC), as diagnosed at biopsy, and 
stage II and stage III as diagnosed at prostatectomy. 
Cancer aggressiveness and disease progression were 
defined by the four GS: benign (B) or no score (Group 
1), score 6 (3+3) (Group 2), score 7 (3+4) (Group 3), and 
score 7 (4+3) (Group 4). For the purpose of developing 
predictive models we applied k-nearest neighbor (KNN) 
classifier, a machine-learning tool. Both, in development 
and validation, we employed the same strategy (tissue 
data) as for the logistic regression model: first only 
epithelial cells and subsequently subsets of random cells 
across both tissues compartments were recruited in order 
to generate two unique models per category scheme. For 
predictive modeling of tissue pathological categories 
we drafted a total of 17,881 imaged epithelial cells. 
Of these, 3,829 cells were recruited from benign (per 
logistic regression analysis) tissue sources. The KNN 
classification identified 91% of these cells as benign or 
non-cancerous. 84% of the 11,712 cells in ASAP were 
correctly classified (Figure 7). Overall, the KNN was 
able to faithfully affiliate tissue pathological category 
with 67% accuracy (Figure 7B).

Once the KNN classification was established we 
proceeded with model validation. Of the 2,066 HPrEpiC 
KNN identified 87% as benign (Table 6A). Of the 17,437 
LNCaP cells 62% were found to belong to stage II and 
22% were classified as LAC-type cells. In the assumingly 
healthy prostatectomy-derived tissue from Patient 5, who 
had been diagnosed with stage III (pT3b) PCa, KNN 
associated the majority of cells (65%) with LAC, closely 
followed by 20% (on average) of stage III-type cells. For 
Patient Z the model classified 60% of the cells as LAC-
type, followed by 28% rated as stage III-type (Table 
6B). For Patient 6 we estimated that from the 2,719 cells 
obtained during biopsy 39% and 29% were classified as 
stage III and LAC-type, respectively. Similarly, from the 
20,122 cells isolated during prostatectomy, 51% were 
classified as stage III cancer and 43% as LAC-type (Table 
6C). Finally, the majority of cells in Patients 7 (68%) and 
8 (49%) were also classified as stage III-like cancer cells 
and 49% of the cells from Patient 8 were identified as 
stage III, followed by smaller portions of LAC-type cells: 
17% and 22%, respectively (Table 6D).

Table 2: Logistic regression model coefficients for epithelial cells only

Marker Odds Ratio Std. Err. z P>z [95% Conf. Interval]

lnDAPI 7.224606 0.2921743 48.9 <0.0001 6.674063 7.820565

lnAMACR 0.199478 0.0132372 -24.29 <0.0001 0.1751499 0.2271852

ln5mC 0.0199724 0.0017131 -45.63 <0.0001 0.0168818 0.0236286

ln5hmC 2.95159 0.2216339 14.41 <0.0001 2.547649 3.419578

_cons 490131.5 201505.3 31.87 <0.0001 218958.8 1097142
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To simplify the use of our KNN classification 
we decided to use all the cells at our disposal without 
discrimination based on tissue (compartment) origin. 
One limitation of the KNN methodology is that it 
requires immense meta-data storage capabilities [50]. 
Hence in order to make our development dataset more 
portable we determined that 30,000 cells from both tissue 
compartments (epithelium and stroma) and across all 
six pathological categories was the optimal number of 
cells that needed to be randomly chosen for obtaining 
the most accurate KNN classification. Even though 
we used either solely epithelial cells or a subset of all 
imaged cells (139,165 cells) for the development of the 
KNN classifications, we assessed model accuracy with 
all 139,165 cells from our development dataset (Figure 
7A). KNN failed to classify a marginal portion of 4% 

(~5.500) cells. From the remaining 96% of cells, KNN 
classification faithfully affiliated 79% of all cells. In detail, 
the analysis of our validation dataset showed that 80% of 
the HPrEpiC were correctly identified as being normal 
(benign), and 87% of the LNCaP cells were classified as 
stage II cancer cells (Table 7A). The assumingly benign 
prostatectomy tissues isolated from PCa patients were 
indicated as follows: Patient 5 tissue was diagnosed of 
harboring 68% stage II cells followed by 24% LAC-type 
cells (Table 7B). Subject Z tissue was found to consist of 
44% stage II cells and an almost equal portion (38%) of 
LAC cells. Further, for Patient 6, biopsy 1 was populated 
with a majority (45%) of LAC-type cells and an additional 
19% of stage II cells. The prostatectomy tissue seemed to 
host a majority (47%) of LAC cells and a smaller fraction 
(37%) of stage II cells (Table 7C). Cells from Patient 7’s 

Table 3: Predictions of the logistic model based on epithelial cells only

A Presence of cancer cell

ID No Yes Total

HPrEpiC 1,800 266 2,066

% 87.12 12.88 100.00

LNCaP 148 17,289 17,437

% 0.85 99.15 100.00

B Presence of cancer cell in patients 5 and Z

ID No Yes Total

Patient 5 3 11,582 11,585

% 0.03 99.97 100

Patient Z 2,168 7,206 9,374

% 23.13 76.87 100

C Presence of cancer cell in patient 6

Phase No Yes Total

B1 359 2,360 2,719

% 13.2 86.8 100

P 1,488 18,634 20,122

% 7.39 92.61 100

D Presence of cancer cell in patients 7 and 8

ID No Yes Total

Patient 7 71 5,622 5,693

% 1.25 98.75 100

Patient 8 519 7,996 8,515

% 6.1 93.9 100

(A) cancer and benign cell types; (B) pathologically defined benign tissue isolated during prostatectomy of patients 5 and Z; 
(C) patient 6: prediction of cancer at time point of tissue isolation. (D) tissue isolated during initial biopsy from patients 7 
and 8.
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first biopsy —initially diagnosed with stage II (pT2c) 
adenocarcinoma— were classified to be 63% of LAC-type 
and 28% stage II-type, with a minor stage III component 
(7%). The patient had not progressed beyond pT2c at 
prostatectomy (Table 1). In comparison, almost 38% 
and 29% of the cells from Patient 8’s biopsy —initially 
diagnosed with stage II (pT2c) adenocarcinoma— were 
identified to be of LAC and stage II-type, respectively, 
with a larger stage III fraction (22%) (Table 7D). Also 
this patient had not progressed further at prostatectomy 
(Table 1).

The predictive power of the KNN algorithm 
considering GS was estimated using the same two 
subgroup data as for tissue pathological categories: a) 
purely epithelial cells and b) subsets of 30,000 epithelial 
and stromal cells. For both approaches cells across all 
samples of Patients 1 to 5 were used (Figure 7). The KNN 
based exclusively on epithelial cells correctly classified 
67% of cells in the development dataset (Figure 7B). 
During validation we found that 88% of HPrEpiC were 
classified as benign/normal (Group 1), and the absolute 
majority of the LNCaP cells were identified as cancer cells: 
67% were associated with the more advanced GS 7 (3+4) 
(Group 3) and 23% even with GS 7 (4+3) (Group 4), as 
shown in Table 8A. Again, KNN classified the supposedly 
healthy prostatectomy tissue from Patients 5 and Z to 
be populated with an absolute majority (72% and 68%, 
respectively) of the more aggressive Group 4 cells (Table 
8B). For Patient 6 —diagnosed with adenocarcinoma GS 
(3+3)— biopsied tissue was almost equally partitioned 
into 32% Group 3 cells and 29% Group 4 cells, followed 
by smaller portions of the Group 1 (23%) and Group 2 
cells (16%) (Table 8C). This trend seemed to be even 
more advanced at the time of prostatectomy (patient was 
diagnosed with GS (3+3)), where 41% of the 20,122 
analyzed cells were classified as Group 3 and a larger 
portion (54%) as the more aggressive Group 4 cells. As 
for patient 7 —initially diagnosed with adenocarcinoma 
GS (3+3)— the cells were almost equally assigned to GS6 
(40%) and GS (3+4) (44%) with a minor portion of GS 
(4+3) cells (15%) (Table 8D). At the time of prostatectomy 
the patient had not significantly progressed and had been 
diagnosed with GS (3+3) in 40% of total tissue, however 
with perineural invasion present (Table 1). In the case of 
Patient 8 KNN detailed the biopsied tissue to contain a 

majority (54%) of GS (3+4) cells closely followed by a 
large fraction (38%) of GS (3+3) cells. The patient was 
diagnosed with GS7 (3+4) at initial biopsy and later at 
prostatectomy.

The performance of the KNN classification using 
randomly selected subsets of 30,000 cells was on average 
79% accurate within the development set of 139,165 cells 
(Figure 7C). 81% of the HPrEpiC were found to be non-
cancerous (Group 1), and conversely 77% of the LNCaP 
cells were assigned to Group 3 (Table 9A). The supposedly 
benign prostatectomy tissue of Patient 5 harbored 55% 
Group 3 cells and 45% Group 4 cells. For Patient Z the 
associations were reciprocal: 52% Group 4 and 37% to 
Group 3 cells (Table 9B). Lastly for Patient 6, biopsy 1 
showed a larger number (59%) of Group 4 cells. This 
portion increased to 69% at prostatectomy (Table 9C). 
The majority of cells from Patient 7 (67%) and Patient 
8 (48%) were found to be of Group 4-type (GS (4+3)) 
closely followed by Group 3 cells (Patient 8: 30%; Patient 
9: 36%; Table 9D).

With Biomarkers II we took the identical approach 
to the first panel. Briefly, the channel values for all 
markers had to be log-transformed because the data did 
not show a normal distribution. We then conducted logistic 
regression analysis in order to predict the specificity and 
sensitivity of the second panel for successful prediction 
of presence or absence of aberrant cells in a subset of all 
imaged cells. Then the model was applied to the same 
training dataset. When considering only epithelial cells in 
the analysis with the second panel, unfortunately were not 
able to generate data for all the pathological categories 
applied in here for Biomarkers I. Only benign as well 
as stage II-type and stage III-type cells were present. 
Nevertheless, the model was able to achieve a fairly good 
sensitivity (84%) and specificity (81%) over the quota 
of all 153,000 imaged cells. However, the model trained 
with Biomarkers II failed to identify HPrEpiC as benign. 
Instead it characterized 98% of these primary cells as 
being malignant. This was also the case when the pool 
of all imaged cells of Patients 1 to 5 was used for model 
development. As abovementioned, since for Biomarkers 
II there were only 3 pathological categories available 
when using cells from the epithelial compartment for 
model development, we decided to apply KNN with cells 
from all tissue compartments. While we obtained almost 

Table 4: Logistic regression model coefficients for all cells

Marker Odds Ratio Std. Err. z P>z [95% Conf. Interval]

lnDAPI 6.459606 0.1339882 89.94 <0.0001 6.20226 6.727629

lnAMACR 0.4555956 0.0120028 -29.84 <0.0001 0.4326676 0.4797386

ln5mC 0.0290629 0.0009604 -107.08 <0.0001 0.0272403 0.0310075

ln5hmC 3.055547 0.0929042 36.74 <0.0001 2.878778 3.243171

_cons 3845.418 650.8334 48.77 <0.0001 2759.806 5358.073
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100% accuracy in correctly matching the cells with their 
respective pathological category, the KNN classification 
developed with Biomarkers II also failed to identify the 
majority of HPrEpiC as benign. Instead, 64% of HPrEpiC 
were classified as stage III-type cancer cells while only 
22% were faithfully classified as benign. Hence we did not 
pursue the further assessment of Biomarkers II.

DISCUSSION

The aims of our study were to assess the potential 
of two sets of biomarkers in conjunction with 3D high-
content imaging and fluorescence readout towards: a) early 
detection of aberrant cells in prostatic tissue using logistic 
regression analysis, and b) consequent prediction of 
cancer progression based on cell composition in biopsied 
tissue at baseline, powered by KNN classification. The 
novelty of this study was two-fold: (i) in the combinatorial 
use of global epigenetic features (DNA methylation/

hydroxymethylation and two well-characterized histone-
tail modifications) together with established markers of 
prostate pathology, and (ii) the application of extracted 
cell-by-cell information for diagnostic/prognostic disease 
modeling. The notion for our approach arised from the fact 
that epigenetic changes occur early in cancerogenesis and 
that such changes have been also correlated with disease 
progression. Specifically, the loss of DNA methylation/
hydroxymethylation and trimethylation at lysine 9 
and 27 of histone 3 have been extensively shown to be 
associated with the different stages of PCa. Also loss of 
chromatin-associated proteins such as SAFB have been 
reported in connection with PCa, as well as an increase 
in AMACR and the nuclear portion of cellular AR [24, 
25, 34, 39, 45–48]. As we have shown with Figure 2, 
measurement of average values for biomarker abundance 
usually does not reflect cellular heterogeneity within 
tissues, and can only present average biomarker trends 
when comparing different pathological cases. Because 

Table 5: Predictions of logistic model based on all imaged cells

A Presence of cancer cell

ID No Yes Total

HPrEpiC 1,674 392 2,066

% 81.03 18.97 100

LNCaP 159 17,278 17,437

% 0.91 99.09 100

B Presence of cancer

ID No Yes Total

Patient 5 6 11,579 11,585

% 0.05 99.95 100

Patient Z 704 7,811 8,515

% 8.27 91.73 100

C Presence of cancer cell (Patient 6)

Phase No Yes Total

B1 209 2,510 2,719

% 7.69 92.31 100

P 1,077 19,045 20,122

% 5.35 94.65 100

D Presence of cancer cell

ID No Yes Total

Patient 7 96 5,597 5,693

% 1.69 98.31 100

Patient 8 704 7,811 8,515

% 8.27 91.73 100
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of this fact we intended to exploit the valuable capability 
of highly-parallel single-cell analysis provided by high-
resolution microscopy [29, 31, 38] in combination with 
sophisticated statistical tools for more complex data. In 
the exploratory phase of this study and utilizing principal 
component analysis to graphically assess the variance 
of the data, we established that Biomarkers I including 
5mC and 5hmC presented a better partitioning of the 
data (Figure 3), and later on showed a better performance 
(specificity/sensitivity) in both cases when tumor 
specifications and GS were used as reference pathological 
tissue classifications. Therefore, we decided to initially 
proceed with data analysis of Biomarkers I. Perhaps 
the biggest complication of this study was the fact that 
we were lacking a truly normal prostate tissue sample. 
Nevertheless, through careful consideration of our three 
samples labeled by expert pathologist as benign, and 
using PCA analysis we identified one that most closely 
resembled a pattern of dispersion most indicative of the 
possibility of normal tissue. Further validation of our 
approach was the fact that our goodness-fit assessment of 
both logistic and KNN classification showed outstanding 
results.

Both logistic regression and KNN classifiers 
employed in our study had been previously applied for 
the purpose of early detection of cancer [49]. However, 
in those studies both methods had been either used to 
cross-validate the approaches or compared against each 
other to assess their respective predictive performance 
[40, 41, 49]. Conceivably the most challenging aspect of 
prior analyses had been narrowing down the number of 
predictors since KNN classifier only performs well with 
a very limited number of independent variables [42]. In 
our study, the two sets of biomarkers were chosen in part 
based on scientific rationale and in part based on clinical 
validation for a majority of cancers and especially for 
PCa (as referenced above) rather than their statistical 
performance. The statistical methodology we present here 
differs from previously reported applications in at least 
two aspects. First, instead of using the two approaches 
for cross-validation, logistic regression was used to 
characterize the composition of cells which would be 
indicative of the presence or absence of PCa-specific 
aberrations. Subsequently, KNN classifier was utilized 
to correlate these aberrations with pathological category/
grade of cancer. Thus, the two approaches operated 
collectively in the prediction of PCa presence and severity. 
Second and final, in abovementioned previous studies, 
each observation had been relating to one patient sample, 
whereas in our case each observation was related to a 
single cell within a tissue sample. Thus, our approach 
is a true cell-by-cell approach and the derived model 
predicts the presence or absence of aberrant cancer-like 
cells, leading to the characterization of the overall tissue 
sample based on its composition of classified cells and 
the resulting portion of aberrant cells. However, for each 

of the individual cells in our sample we did not have a 
full and comprehensive status. We were only aware of the 
status of each of the tissue samples based on the diagnosis 
performed by a professional pathologist. To bridge the 
gap between the individual cells and the originating tissue 
we adopted a fuzzy logic summary of the results where 
the largest share of cells would represent the probability 
of that subject being overall affected by malignancy or 
being free of it [50]. Hence we established a more detailed 
profile of a patient sample with a probabilistic outcome 
that may allow for prediction of cancer progression 
(prognostics) rather than only generating a diagnostic 
snapshot. Nevertheless, future studies will be required in 
which we can identify possible probabilistic cutoffs for 
the proportion of aberrant cells that will enable a more 
deterministic outcome in regards to the presence or 
absence of malignancy. From a data-structure perspective, 
in the first phase of analysis, we used logistic regression, 
which implied a binary outcome —presence (value 0) or 
absence (value 1) of malignance— for each cell. In the 
second and final step of our analysis, we shifted towards a 
polychotomous outcome by which we either predicted the 
resulting pathological category or grade of cancer based 
on the proportions of the different subtypes of cells. As 
part of the comprehensive statistical analyses and in order 
to determine whether the chosen marker panels serve as 
good predictors of prostate cancer stage and grade, we 
conducted a preliminary assessment of goodness-of-
fit analysis [51]. From the estimates of the coefficients 
of the logistic model (Tables 2 and 4) it became clear 
that all of the four markers (DAPI, AMACR, 5mC and 
5hmC) were significantly associated with the likelihood 
of cancer. Furthermore, the panel revealed our optimized 
cutoff probability point on per-cell bases yielded an 
excellent sensitivity and specificity with majority of the 
cells being accurately classified. Finally, the estimated 
AUC ROCs in case of both models yielded a value above 
0.9, which according to Hosmer and Lemeshaw, indicates 
outstanding discrimination capability of the logistic model 
(Figure 6) [51]. Based on above mentioned metrics, we 
were confident that our logistic model had excellent 
power of predicting the outcome of presence or absence 
of malignancy.

While KNN classifier is not as developed in its 
measures of goodness-of-fit as logistic regression, it still has 
some elementary measures of accuracy of the classification. 
KNN classifiers based on all cells (Figure 7A and 7C) 
identified most cells with correct tissue pathological 
categories and Gleason score with accuracy higher than 
80% percent. While KNN classifier based on epithelial 
cells (Figure 7B and 7D) was slightly inferior to the KNN 
classifier based on all cells, it was still able to classify most 
cells with above 40% accuracy. Once we established that 
we have a reasonable good classifier we proceeded with 
validating the classifiers using a dataset of two cultured 
cell types and five tissue samples. Our validation strategy 
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for Biomarkers I in conjunction with both classification 
approaches can be divided into three steps.

Detection of benign and aberrant cells in benign 
prostate tissue

In the first step, our goal was to assess whether 
prostate tissue isolated from a patient diagnosed to have 
PCa and classified as “normal” by an expert pathologist, 
would contain aberrant cells. By that we were trying to 
establish if Biomarkers I would indicate any signatures of 

malignancy present in a tissue that was labeled as benign 
according to conventional pathological features. Not only 
we were able to detect aberrant cells in these “benign” 
validation samples but we also accurately correlated these 
aberrant cells with pathological category and GS of the 
patients’ tumors. The reader should note that while these 
benign samples were not included in our development 
datasets, other malignant tissue from the same patients 
was. This fact underlines the capability of cell-by-cell 
characterization with Biomarkers I of identifying already 
existing cancer-like aberrations in occult tissue beyond the 

Figure 7: Heat maps representing the performance of the KNN classification.
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tumor region. This feature would be in agreement with the 
concept of field cancerization, also known as a field effect 
or field defect, which suggests that detectable epigenetic 
alterations occur in histopathologically nonmalignant 
tissue that is contiguous with cancerous tissue [43, 
44]. Epigenetic changes in field cancerization not only 
involve hypermethylation, but also hypomethylation 
[52]. Because the field, in which altered cells reside can 
extend beyond the morphologically evident tumor into the 
tumor environment, current histopathological practices 
may result in high false-negative diagnoses. However, 
with the implementation of epigenetic biomarkers there 
is hope to improve this aspect: biopsy samples taken from 
outside the cancerous tumor focus that result in negative 
pathology findings with current practices may produce 
a positive diagnostic result when epigenetic features are 
included into tissue analysis and classification. This may 
also reduce the burden of repeat biopsies. Within this 

context, our approach with Biomarkers I could potentially 
raise the chance of detecting malignancy even if neoplastic 
tissue (as per current definition) is being missed during 
needle biopsy (currently in 20–30 % of cases). This would 
lead to decreasing the chance of false-negative calls, thus 
speaking in favor of a better early PCa diagnosis.

Validation and prediction of cancer grading 
using known cell culture models

Unfortunately, for a direct comparison of malignant 
versus benign tissue, we were unable to obtain a more 
reliable normal reference, i.e. prostate tissue samples 
from patients that were not diagnosed as having PCa 
or any other malignancy in follow-up examinations. 
Therefore, in the second step we focused on using well-
established and comprehensively analyzed cell cultures 
for comparative validation: LNCaP cells as a positive 

Table 6: Validation of KNN classification for predicting tissue pathological categories (including cancer stages) using 
epithelial cells only and Biomarkers I

A Classification

ID B ASAP Stage II Stage III LAC Total

HPrEpiC 1,798 29 49 102 88 2,066

% 87.03 1.4 2.37 4.94 4.26 100

LNCaP 128 1,070 10,775 1,587 3,877 17,437

% 0.73 6.14 61.79 9.1 22.23 100

B Classification

ID B ASAP Stage II Stage III LAC Total

Patient 5 2 61 1,687 2,355 7,480 11,585

% 0.02 0.53 14.56 20.33 64.57 100

Patient Z 207 832 73 2,652 5,610 9,374

% 2.21 8.88 0.78 28.29 59.85 100

C Classification

Phase B ASAP Stage II Stage III LAC Total

B1 589 202 87 1,052 789 2,719

% 21.66 7.43 3.2 38.69 29.02 100

P 437 650 74 10,270 8,691 20,122

% 2.17 3.23 0.37 51.04 43.19 100

D Classification

ID B ASAP Stage II Stage III LAC Total

Patient 7 9 250 536 3,851 983 5,629

% 0.16 4.44 9.52 68.41 17.46 100

Patient 8 232 1,038 1,215 4,136 1,894 8,515

% 2.72 12.19 14.27 48.57 22.24 100
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control and primary HPrEpiC representing normal 
non-transformed cells of epithelial origin. Again, our 
classification methods accurately identified HPrEpiC and 
LNCaP cells to be normal and aberrant, respectively, with 
highest probabilities (90% and 99%).

Validation and prediction of cancer

In step three of our validation we tried to assess an 
equally important matter, i.e. the capability of our single-
cell imaging approach with Biomarkers I to predict tissue/
cancer progression with data obtained at baseline and 
projected towards prostatectomy. Also in this regard both 
classifications were able to correctly predict PCa indolence 
in all three validation Patients 6, 7, and 8 down to stage 
and GS, as no change was reported for either specification 
at later prostatectomy. In summary, both mathematical-
statistical classification methods demonstrated excellent 
predictive capabilities in conjunction with cancer 

pathological categories (including staging), whereas 
KNN resting on GS revealed mixed scores that were not 
presented by pathological (expert) test results. The latter 
needs to be further investigated, whether these results could 
reflect or explain the current controversies in the field of 
Gleason scoring. With the advent of thin core biopsy and 
radical prostatectomy it has become clear that, as originally 
defined, some aspects of the GS system do not accord with 
subsequent clinical behavior. Even though the system has 
been subject to changes since 2005, areas of controversy 
remain regarding GS6 and in particular GS7 [53]. Donald 
Gleason himself noted exact reproducibility of score in 
50% of needle biopsies and a variance of ±1 score in 85%, 
similar to the findings of others [54]. Finally, and critical in 
terms of practicality, we experienced that the performance 
of Biomarkers I-based models using randomized groups of 
cells across both compartments (epithelium and stroma) 
for cell-by-cell classification of tissues are independent 
from the location of the analyzed cells. Thus our approach 

Table 7: KNN classification-based predictions of pathological categories with subsets of 30,000 cells and Biomarkers I

A Classification

ID B ASAP AC Stage II Stage III LAC Total

HPrEpiC 1,613 20 221 35 16 106 2,011

% 80.21 0.99 10.99 1.74 0.8 5.27 100

LNCaP 78 262 430 14,681 264 1,220 16,935

% 0.46 1.55 2.54 86.69 1.56 7.2 100

B Classification

ID B ASAP AC Stage II Stage III LAC Total

Patient 5 0 1 24 7,693 878 2,716 11,312

% 0 0.01 0.21 68.01 7.76 24.01 100

Patient Z 201 1,062 35 3,935 265 3,415 8,913

% 2.26 11.92 0.39 44.15 2.97 38.31 100

C Classification

Phase B ASAP AC Stage II Stage III LAC Total

B1 277 131 416 453 56 1,102 2,435

% 11.38 5.38 17.08 18.6 2.3 45.26 100

P 330 443 263 6,164 1,705 7,874 16,779

% 1.97 2.64 1.57 36.74 10.16 46.93 100

D Classification

ID B ASAP AC Stage II Stage III LAC Total

Patient 7 7 11 32 1,568 411 3,495 5,524

% 0.13 0.2 0.58 28.39 7.44 63.27 100

Patient 8 142 140 578 2,291 1,779 2,968 7,898

% 1.8 1.77 7.32 29.01 22.52 37.58 100
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Table 8: Validation of KNN classification for predicting GS based on epithelial cells only with Biomarkers I
A Classification

ID B 3+3 3+4 4+3 Total

HPrEpiC 1,820 27 140 79 2,066

% 88.09 1.31 6.78 3.82 100

LNCaP 154 1,535 11,697 4,051 17,437

% 0.88 8.8 67.08 23.23 100

B Classification

ID B 3+3 3+4 4+3 Total

Patient 5 4 49 3,234 8,298 11,585

% 0.03 0.42 27.92 71.63 100

Patient Z 210 679 2,113 6,372 9,374

% 2.24 7.24 22.54 67.98 100

C Classification

Phase B 3+3 3+4 4+3 Total

B1 638 441 865 775 2,719

% 23.46 16.22 31.81 28.5 100

P 420 554 8,239 10,909 20,122

% 2.09 2.75 40.95 54.21 100

D Classification

ID B 3+3 3+4 4+3 Total

Patient 7 8 2,226 2,516 879 5,629

% 0.14 39.55 44.7 15.62 100

Patient 8 239 3,278 4,584 414 8,515

% 2.81 38.5 53.83 4.86 100

Table 9: KNN classification-based predictions of GS with subsets of 30,000 cells and Biomarkers I
A Classification

ID B 3+3 3+4 4+3 Total

HPrEpiC 1,672 166 33 195 2,066

% 80.93 8.03 1.6 9.44 100

LNCaP 85 507 13,482 3,363 17,437

% 0.49 2.91 77.32 19.29 100

B Classification

ID B 3+3 3+4 4+3 Total

Patient 5 0 67 6,323 5,195 11,585

% 0 0.58 54.58 44.84 100

Patient Z 222 792 3,500 4,860 9,374

% 2.37 8.45 37.34 51.85 100

C Classification

Phase B 3+3 3+4 4+3 Total

B1 254 329 539 1,597 2,719

% 9.34 12.1 19.82 58.73 100

(Continued) 
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resulted in a huge technical benefit as it does not require 
highly challenging and tedious steps of post-imaging tissue 
demarcation and particular computational selection of 
epithelial cells for analysis.

We conclude that tissue characterization through 
cell-by-cell 3D high-content analysis using Biomarkers 
I (DAPI, 5mC, 5hmC and AMACR) showed favorable 
predictive values when combined with the two types 
of statistical learning methods: a) the logistic model to 
predict composition of aberrant versus benign cells in 
tissue samples, and b) KNN classification to correlate cell 
composition with pathological categories (including PCa 
stages) and PCa grades, both for the detection of possible 
occult cancer at first and follow-up diagnoses, and the 
prediction of the degree of malignancy — especially 
the greater than GS3 component within biopsied tissue. 
The results encourage the validation of Biomarkers I 
in affiliation with 3D high-content screening and both 
statistical models in larger patient cohorts.

MATERIALS AND METHODS

Cultured cells and tissues

For the purpose of this analysis we used deidentified 
archived tissues from eight PCa patients and two well-
characterized human cell types of prostatic origin. 
Cultured cells included primary human prostate epithelial 
cells (HPrEpiC, ScienCell, Carlsbad, CA) as normal 
primary cells, and LNCaP (American Type Culture 
Collection, Manassas, VA), an androgen-sensitive 
prostate cancer cell line. For this study we used HPrEpiC 
at an early passage to rule out a decrease in global DNA 
methylation due to proliferative aging in culture, which 
is typical for primary cells and especially for these cells, 
as published by Oh et al. [31]. Cells were cultured at 
37°C and 5% CO2 following standard culture procedures 
as previously described in [31]. For each patient we 
analyzed tissues taken at different diagnostic time points, 
including baseline diagnosis —first biopsy (biopsy 1) 
and if available second biopsy (biopsy 2)— and paired 
prostatectomy. For each time point two needle biopsies 
(as displayed in Supplementary Figure 1) were labeled and 

analyzed. While the diagnosis and the characterization of 
the two cell types where known to us for the development 
dataset, the status on each cell was not. Therefore, we 
assumed that all cells coming from healthy tissues were 
normal and all cells coming from tumor tissues were 
malignant. We judged the performance of our classification 
methods under these assumptions.

Immunofluorescence

Tissue sections of 10 μm thickness were 
deparaffinized, fixed with 4% paraformaldehyde/phosphate 
buffered saline, and subjected to antigen-retrieval using 
Target Retrieval Solution (Dako, Carpinteria, CA) according 
to the manufacturer’s protocol, all prior to labeling 
procedures. Immunofluorescence labeling of cells and 
tissues was performed according to previously established 
protocols [36]. Unconjugated primary antibodies used 
were: monoclonal mouse anti-5-methylcytosine clone 
33D3 (Aviva Systems Biology), polyclonal rabbit anti-
5-hydroxymethylcytosine (Active Motif), polyclonal 
sheep anti-AMACR (R&D Systems), polyclonal goat 
anti-SAFB (Santa Cruz Biotechnology), polyclonal rabbit 
anti-H3K9me3 (Active Motif), monoclonal mouse anti-
H3K27me3 (Active Motif), and monoclonal rat anti-
AR (Santa Cruz Biotechnology). Matching secondary 
antibodies (all from Life Technologies, now Thermo Fisher 
Scientific) included: Alexa 488-conjugated donkey anti-
mouse IgG (H+L), Alexa 555-conjugated donkey anti-sheep 
IgG (H+L); Alexa 555-conjugated donkey anti-goat IgG 
(H+L), Alexa 594-conjugated goat anti-rabbit IgG (H+L), 
Alexa 647-conjugated chicken anti-rabbit IgG (H+L), Alexa 
647-conjugated donkey anti-sheep IgG (H+L), and Alexa 
680-conjugated goat anti-rat IgG (H+L). The specimens 
were counterstained with 4’,6-diamidino-2-phenylindole 
(DAPI), prior to mounting in ProLong Gold (Thermo Fisher 
Scientific).

Image acquisition and analysis

Confocal imaging of labeled cells and tissues 
was performed using a TCS SP5 X supercontinuum 
microscope (Leica Microsystems). This microscope 

A Classification

ID B 3+3 3+4 4+3 Total

% 1.71 2.67 26.58 69.04 100

D Classification

ID B 3+3 3+4 4+3 Total

Patient 7 13 117 1,705 3,794 5,629

% 0.23 2.08 30.29 67.4 100

Patient 8 183 1,176 3,086 4,070 8,515

% 2.15 13.81 36.24 47.8 100
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essentially provides flexible settings of excitation and 
emission wavelengths in a continuous range between 
470nm and 670nm with 1nm increment. Serial optical 
sections were collected at increments of 500 nm with a 
Plan-Apo 63×1.3 glycerol immersion lens. The pinhole 
size was consistently 1.0 airy unit. To avoid channel 
bleed through due to overlap of emission spectra, 
images were acquired serially: first DAPI, Alexa 555, 
and Alexa 647 dyes, followed by Alexa 488 and Alexa 
594. The typical image size was 1576×1576 with a 
respective voxel size of 189 nm ×189 nm × 500 nm 
(x, y, and z axes), and a dynamic intensity range of 12 
bits per pixel in all four channels. All biomarker signals 
from optical sections were recorded into separate 
channels. All images were acquired under nearly 
identical conditions and modality settings. The drift of 
the settings during acquisition was considered minimal 
and therefore neglected. 3D image analysis was 
performed as described in [29, 31, 38]. The resulting 
dat-files were incorporated into software for statistical 
analysis, as described in the following section.

Exploratory statistical analysis

All analyses were conducted with STATA 14 
(StataCorp., College Station, TX). To address the first 
aim of our study as well as in the exploratory step of our 
study we assessed the degree of changes (variance and 
covariance) of the two sets of biomarkers in correlation 
with tissue cancer pathology (degree of malignancy) as 
indicated by 1) pathological categories and 2) GS. To this 
end we decided to use principle component analysis, which 
is one of the oldest and most widely used multivariable 
analyses. It was originally developed by Pearson (1901) 
and independently by Hotelling (1933) [55]. Using PCA 
the goal is to explain most of the variability of the data 
while trying to reduce the dimensionality (number of 
variables) of the dataset. PCA achieves this by linear 
transformation of the original variables (x1,x2,…,xp) 
into a new set of variables (y1,y2,…,yp) called principle 
components, where

Using principle component analysis, the newly 
produced variables were derived in decreasing order of 
importance pertaining to the amount of variation they 
explain of the original variables. For example, PC 1 
explains for as much of the variability of the original data 
as possible. The PC 2 explains as much of the remaining 
variance as possible under assertion that it is not correlated 

to PC 1, etc. This reduction is useful as our data could 
be graphically summarized with less dimensions, instead 
of exploring the covariance/correlation of the pairwise 
relationship between the markers within each of the 
two marker sets assessed in this study. We used this 
visualization to identify outliers and grouping (clusters) 
of cells in respect to their pathological categories and GS. 
The goal was determine the set of biomarkers that provides 
better clustering (more clear segregation) of the groups 
of cells among various tissue specifications [56]. We also 
looked at the loading matrix (the set of eigenvectors) to 
find out if we can further reduce the number of markers 
within each biomarker set. As tissue sections were either 
simultaneously labeled for the four Biomarkers I (DAPI, 
5mC, 5hmC, AMACR) or the five Biomarkers II (DAPI, 
SAFB, H3K9me3, H3K27me3, AR) —with DAPI used in 
both sets— it was not possible to assess on a cell-by-cell 
basis the combination of all eight different biomarkers.

Statistical learning methods for diagnosis and 
prognosis of cancer

Two statistical analyses were considered for pursuing 
the objectives of our study. First, we focused on the 
development of a logistic model that would determine the 
probability of a cell being non-cancerous (normal, benign) or 
cancerous (malignant, transformed), based on two separate 
sets of Biomarkers I and Biomarkers II. We used a group 
of five subjects that were diagnosed with PCa at the time of 
biopsy or prostatectomy, as our development dataset.

The logistic analysis was performed once only with 
the cells located in the epithelial tissue compartment and 
then repeated once with all imaged cells from all tissue 
compartments (including the epithelial compartment). 
All data were analyzed in a cell-by-cell manner. In 
other words, for each cell the logistic model estimated 
a probability of being cancerous (malignant) or non-
cancerous (normal). As a first step of building the 
multivariate logistic model, we conducted a univariate 
logistic regression to identify those biomarkers that were 
significantly associated with cancerous cells. For the 
purpose of developing the logistic model, we assumed that 
cells originating from malignant tissue are malignant cells 
and the cells originating in what we call normal tissue 
were all normal. Logistic regression is a linear regression 
approach used when the outcome variable dichotomous as 
we define it above.

E y x x Eq. 2p p0 1 1
β β β= + + +

The aim of this analysis is to estimate the probability 
that the outcome takes the value of interest (malignant, 
normal cell) depends on the explanatory variables which 
in our case was the set of Biomarkers I or II (Equation 

y a x a x a x

y a x a x a x

y a x a x a x
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2). Nevertheless, there are two major obstacles when 
modeling a dichotomous outcome: 1) the prediction of the 
model must satisfy 0≤ E(y)≤1, whereas a linear predictor 
can yield any value from plus to minus infinity; and 2) 
our outcome is not normally distributed but it is rather 
binomially distributed. Both issues were resolved by logit 
transforming the left side of equation 2 where,

logit E y
E y
E y

log(
1

)( )= −

transforming equation 2 into,

logit E y x x( )  Eq. 3p p0 1 1
β β β= + + +

Once the coefficients of equation 3 are estimated it 
is easy to estimate the probability E[y] using inverse logit 
function. Once we were able to accurately estimate the 
parameters of logistic model, we assessed how effectively 
the model describes the outcome. This is referred to as 
goodness-of-fit. To determine the “optimized” cutoff that is 
required to build the classification tables (Figure 6 and 7), 
we used summary tables of sensitivity and specificity for a 
given cutoff value that varied from 0-1 with increments of 
.05. Generally, the goal is to maximize both sensitivity and 
specificity by varying the cutoff point [51]. We also used 
AUC of the ROC curve. The AUC of ROC curve, which 
ranges from 0 to 1, provides a measure of the models ability 
to discriminate between malignant and non-malignant cells. 
In order to interpret the ROC we adopted the general rules 
as suggested by Hosmer and Lemeshaw [51]:

If ROC=0.5 no discrimination (the model is not 
better than flipping a coin)

If ROC>0.7 and ROC≤0.8 acceptable discrimination
If ROC>0.8 and ROC≤0.9 excellent discrimination
If ROC>0.9 and ROC≤1 outstanding discrimination
Since our models were based on cell-by-cell data, 

and the diagnosis was associated with the tissue, we 
needed to bridge the gap. An a priori decision was made 
that the largest portion of cells in each tissue should be 
considered as the determinant of the characteristic of 
that tissue as a whole, and therefore be concordant with 
the known diagnosis. For example, 80% of normal cells 
indicated that there is 80% probability that the tissue 
was normal and 20% probability of malignancy. This 
assumption had to be established because there was no 
conceivable way for us to assess the true state of the cells 
with respect to malignancy. Once we were assured that we 
had obtained the best logistic model given the data, we 
proceeded to validate the model in an independent  set of 
five samples. Validation was necessary because a logistic 
model may be heavily biased by cells originating from an 
outlier individual [57]. For this purpose we developed an 
intricate validation procedure. The validation data set was 
comprised of: a) the two cell lines b) Patients 6, 8 and 

9 and c) two prostatectomy tissue samples isolated from 
areas distant from the tumor that had normal appearance 
based on H&E staining (per expert pathological diagnosis) 
from Patient 5 and separately from another patient (Patient 
Z). The cultured cells are well established and were used 
as surrogates for normal and cancer tissue. We felt that 
while they provided an initial good assessment of our 
logistic model, they may not be an absolute replacement 
for patient tissue. Therefore, we proceeded with the 
analysis of three patients which were not included in the 
model (Patients 6, 7, and 8). While we knew the complete 
pathological history of Patient 6, we only knew the 
baseline diagnosis for patients 7 and 8 as we were blinded 
to their prostatectomy results. With Patient 6 we validated 
the logistic model predictions (also the KNN analysis) 
in comparison with the clinical diagnosis of this subject. 
Using data of patients 7 and 8 we evaluate the prognostic 
power of the model. Finally the normal tissue from two 
patients was used to assess whether the logistic model is 
capable of assigning probability to this tissue that may 
indicate that these subjects are normal or have malignancy.

Second and final, we performed two k-nearest neighbor 
(KNN) classifiers that would predict the two types of 
classifications of cells. KNN is a memory-based classifier and 
a model free approach [58]. We found k training points where 
xr,r=1,…,k closest in distance to x0. Despite its simplicity, 
KNN classification has been very successful in a large 
number of applications that originally faced classification 
challenges, such as satellite image scenes and EKG [42]. The 
size of the cluster of nearest neighbors (k parameter) for the 
KNN classification was determined using the training data 
thereby maximizing the likelihood of correct classification 
[58]. We determined that the best results were obtained with k 
= 5. Thus, k was sufficiently large to diminish noise effects in 
the data, yet small enough to reduce computational expenses. 
Instead of Euclidian distance between the neighbors, we 
used Mahalanobis distance [59]. As a distance measure 
we applied Mahalanobis transformation. Therefore, the 
scale of distance measure between a point x0 and xr was 
the standard deviation. The first classification was based on 
baseline diagnoses (biopsies) and prostatectomy. The second 
version was considering GS (cancer grade) of the same 
specimens as an indicator of disease progression and cancer 
aggressiveness. The KNN classifications were developed 
using same development and validation datasets as for the 
logistic regression model. Hence analogously tissues were 
classified based on the category of the largest portion of cells.

Supplementary materials

The following additional figure and tables are 
available in Supplementary Materials. Supplementary 
Figure 1 shows consecutive sample prostate tissue 
stained with either H&E or by immunofluorescence. 
Supplementary Table 1 displays the loading matrix of 
Biomarkers I —comprising the principal components 



Oncotarget57299www.impactjournals.com/oncotarget

(eigenvectors)— for the epithelial compartment only. 
Supplementary Table 2 shows the loading matrix of 
Biomarkers II, also for the epithelial compartment only.
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