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ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is categorized into nonalcoholic fatty 
liver (NAFL) and nonalcoholic steatohepatitis (NASH) and has emerged as a risk factor 
for more critical clinical conditions. However, the underlying mechanisms of NAFLD 
pathogenesis are not fully understood. In this study, expression of proteins associated 
with endoplasmic reticulum (ER) stress, apoptosis and autophagy were analyzed in 
normal, NAFL and NASH human livers by western blotting. Levels of some ER stress-
transducing transcription factors, including cleaved activating transcription factor 6, 
were higher in NASH than in the normal tissues. However, the expression of a majority 
of the ER chaperones and foldases analyzed, including glucose-regulated protein 78 
and ER protein 44, was lower in NASH than in the normal tissues. Levels of apoptosis 
markers, such as cleaved poly (ADP-ribose) polymerase, were also lower in NASH 
tissues, in which expression of some B-cell lymphoma-2 family proteins was up- or 
down-regulated compared to the normal tissues. The level of the autophagy substrate 
p62 was not different in NASH and normal tissues, although some autophagy regulators 
were up- or down-regulated in the NASH tissues compared to the normal tissues. Levels 
of most of the proteins analyzed in NAFL tissues were either similar to those in one 
of the other two types, NASH and normal, or were somewhere in between. Together, 
these findings suggest that regulation of certain important tissues processes involved in 
protein quality control and cell survival were broadly compromised in the NAFLD tissues.

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is a 
pathological condition histologically categorized into 
nonalcoholic fatty liver (NAFL) and nonalcoholic 
steatohepatitis (NASH) [1]. NAFLD can progress 
to cirrhosis and end-stage liver diseases such as 
hepatocellular carcinoma [2, 3].

Accumulation of unfolded proteins in the 
endoplasmic reticulum (ER) causes ER stress, which 

triggers an adaptive response called the unfolded protein 
response (UPR) to restore ER homeostasis [4]. The 
UPR pathway is also required to maintain hepatic lipid 
metabolism [5]. The UPR is coordinated primarily by 
three ER transmembrane stress transducers, protein kinase 
RNA-like ER kinase (PERK), activating transcription 
factor 6 (ATF6) and inositol requiring enzyme 1 (IRE1).

Prolonged ER stress leads to PERK signaling-
mediated upregulation of C/EBP homologous protein 
(CHOP), a pro-apoptotic transcription factor [6, 7]. 
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One mechanism by which CHOP induces apoptosis is 
via inhibition of B-cell lymphoma-2 (Bcl-2) expression 
and induction of bcl-2-like protein 11 (Bim) expression 
[8, 9]. ATF6 is a membrane-bound transcription factor, 
but it is cleaved to release its cytoplasmic domain in 
response to ER stress. Cleaved ATF6 transcriptionally 
activates X-box–binding protein 1 (XBP1). XBP1 mRNA 
is spliced by IRE1 during ER stress to produce the 
transcription factor, XBP1s [4]. These ER stress-related 
transcription factors are involved in activation of various 
ER chaperones and folding-related proteins that directly 
execute protein quality control [10, 11].

Glucose-regulated protein 78 (GRP78, also known 
as BiP) and glucose-regulated protein 94 (GRP94) are 
molecular chaperones regulating protein quality control 
and degradation. GRP78 also plays a pivotal role in 
activation of the UPR, in which GRP78 is released from 
PERK, IRE1 and ATF6 and activates them. The lectin 
calnexin is a transmembrane ER chaperone involved in 
folding of newly synthesized glycoproteins [12].

Protein disulfide isomerase (PDI) is a member of 
PDI superfamily that is involved in oxidative protein 
folding [13]. ER protein 72 (ERp72) and ER protein 44 
(ERp44) are also oxidoreductases in the ER belonging 
to the PDI family [14]. ER oxireductin 1 (Ero1)-Lα is an 
oxidase activated during UPR [15, 16].

The intrinsic pathway to apoptosis predominantly 
leads to cytochrome c release from the mitochondria into 
the cytosol. The intrinsic pathway is strictly controlled by 
anti-apoptotic (Bcl-2 and myeloid cell leukemia-1 (Mcl-
1)) and pro-apoptotic (such as Bim and bcl-2 homologous 
antagonist/killer (Bak)) Bcl-2 family proteases. 
The extrinsic pathway to apoptosis can bypass the 
mitochondrial step. The intrinsic and extrinsic pathways 
activate caspase-3 protease, which is central to execution 
of apoptosis [17]. Poly (ADP-ribose) polymerase (PARP) 
is a cellular substrate of caspases. Cleavage of PARP is 
considered to be an apoptosis marker [18].

Autophagy is an intracellular pathway responsible 
for turnover of long-lived proteins [19]. Beclin-1 regulates 
autophagy, forming a multiprotein complex that initiates 
autophagosome formation [20]. Autophagy protein 16L1 
(Atg16L1) mediates conjugation between autophagy protein 
5 (Atg5) and autophagy protein 12 (Atg12) and delivers 
this complex to autophagosomes. Atg5–Atg12 conjugates 
convert the cytoplasmic form of microtubule-associated 
proteins 1A/1B light chain 3A (LC3A/B-I) to the membrane-
bound form, referred to as LC3A/B-II. The conversion of 
LC3A/B-I to LC3A/B-II is a pivotal process for maturation 
of autophagosomes, enabling their fusion with lysosomes 
and autophagosome cargo degradation [21]. The protein p62 
is a selective substrate for autophagy [19, 22].

Recent evidence suggests the involvement of ER 
stress and the UPR in development of many chronic liver 
diseases such as NAFLD [23–28]. Inadequate response to 
ER stress may cause fat accumulation, insulin resistance, 

inflammation, autophagy and apoptosis, all of which are 
critical to pathogenesis of NAFLD [29, 30]. In our study, 
expression of various proteins associated with ER stress, 
autophagy and apoptosis was analyzed in NAFL and 
NASH tissues to elucidate the roles of those proteins in 
pathogenesis of the critical metabolic disorder.

RESULTS

Enhanced expression of transcription factors 
associated with ER stress in NASH tissues

Expression of three ER stress-responsive transcription 
factors was analyzed in NASH, NAFL and normal liver 
tissues by western blotting (Figure 1). Levels of cleaved 
ATF6, XBP1s and CHOP were higher in NASH than 
in normal tissues (P < 0.05), suggesting that there was 
activation of these main UPR transducers in NASH. Levels 
of cleaved ATF6 appeared to be very low in normal and 
NAFL tissues. It appeared that CHOP levels in NAFL tissues 
were between those in NASH and normal tissues. The two 
NAFL tissues displayed highly variable levels of XBP1s and 
CHOP.

Decreased expression of ER chaperones in 
NASH tissues

In contrast to the enhanced expression of ER 
stress-associated transcription factors, levels of some ER 
chaperones were decreased in NASH tissues (Figure 2). 
Levels of GRP78 and GRP94 were much lower in NASH 
than in normal tissues (P < 0.05; Figure 2A). As found in 
the whole tissues, the NASH microsomes had lower levels 
of GRP78 and GRP94 than did normal microsomes (P < 
0.05; Figure 2B).

It appeared that levels of GRP78 and GRP94 in the 
NAFL tissues were between those in NASH and normal 
tissues. The microsomal levels of the two chaperones in 
NAFL tissues were as low as in NASH microsomes.

The NASH tissues and their microsomes also had 
lower calnexin levels, as compared with normal tissues 
and their microsomes, respectively (P < 0.05; Figure 2A 
and 2B). Calnexin levels in the NAFL tissues appeared to 
be between those in normal and NASH tissues. Levels of 
calnexin in NAFL microsomes also tended to be between 
those in normal and NASH microsomes.

Dysregulated expression of protein foldases in 
NASH tissues

Levels of some enzymes related to protein folding 
were lower in NASH than in normal tissues. There 
were lower levels of ER foldases such as PDI, ERp44 
and ERp72 in NASH tissues and their microsomes, as 
compared with in normal tissues and their microsomes, 
respectively (P < 0.05; Figure 3). It appeared that levels of 
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the three foldases in NAFL tissues and microsomes were 
between those in normal and NASH samples. However, 
Ero1-Lα levels were not different among the groups, in 
either tissues or their microsomes.

Reduced expression of apoptosis markers in 
NASH tissues

Cytosolic cytochrome c levels were lower in 
NASH than in normal tissues (P < 0.05; Figure 4A), 
whereas there were no clear differences in cytochrome 
c levels in mitochondria from these two tissue groups. 
There were also no significant differences in cleaved 
caspase-3 levels in normal and NASH tissues (Figure 
4B). However, cleaved PARP levels were lower in 
NASH than in normal tissues (P < 0.05). It appeared 
that cleaved PARP levels in NAFL tissues were as high 
as in the normal tissues.

Dysregulated expression of Bcl-2 family proteins 
in NASH tissues

Bcl-2 levels were much higher in NASH than in 
normal liver tissues (P < 0.05; Figure 5A). Bcl-2 levels 
in NAFL were as low as in the normal tissues. NASH 
mitochondria also had higher Bcl-2 levels than those of 

normal (P < 0.05) and NAFL tissues (Figure 5B). Bim 
levels were lower in NASH tissues and their mitochondria 
than in the corresponding normal samples (P < 0.05). It 
appeared that expression of the two CHOP-regulated Bcl-
2 family proteins was regulated, in NASH tissues, in a 
manner promoting cell survival.

In contrast to the enhanced expression of Bcl-2, that 
of Mcl-1, another anti-apoptotic protein, was decreased in 
NASH tissues and their mitochondria, as compared with 
in corresponding normal samples (P < 0.05). However, it 
was unclear whether Bak levels were different in NASH 
and normal tissues or mitochondria.

Dysregulated expression of autophagy-related 
proteins

Expression of autophagy-related proteins was also 
analyzed (Figure 6). The NASH tissues had higher levels 
of Atg16L1 and LC3A/B-II than the normal tissues (P 
< 0.05). It appeared that LC3A/B-II levels in NAFL 
tissues were between those in NASH and normal tissues. 
However, there were no clear differences in levels of 
Beclin1, Atg5-Atg12 conjugate or LC3A/B-I among 
all tissue groups analyzed. In addition, it appeared 
that levels of p62 were not different among all tissue 
groups.

Figure 1: Expression of ER stress-associated transcription factors in NASH, NAFL and normal liver tissues. β-Actin was 
used as an internal control. Horizontal lines represent means of densitometry signals from the western blot analyses for all tissue groups. 
#, significant differences in signals between NASH and normal liver tissues (P < 0.05). Data for NAFL tissues were not used for statistical 
comparisons because of limited sample number (n = 2).
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Figure 2: Expression of ER chaperones in NASH, NAFL and normal liver tissues (A) and in their microsomes (B). β-Actin was used as 
an internal control for the whole tissue samples, as described for Figure 1. Horizontal lines represent means of densitometry signals from 
the western blot analyses for the sample groups. #, significant differences in signals between NASH and normal liver tissues or microsomes 
(P < 0.05). Data for NAFL tissues were not used for statistical comparisons because of limited sample number (n = 2).
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Figure 3: Expression of ER-related foldases in NASH, NAFL and normal liver tissues (A) and in their microsomes (B). β-Actin was used 
as an internal control for the whole tissue samples, as described for Figure 1. Horizontal lines represent means of densitometry signals from 
the western blot analyses. #, significant differences in signals between NASH and normal liver tissues or microsomes (P < 0.05). Data for 
NAFL tissues were not used for statistical comparisons because of limited sample number (n = 2).
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Figure 4: Expression of apoptosis marker proteins in NASH, NAFL and normal liver tissues (A and B). Glyceraldeyde-3-phosphate 
dehydrogease (GAPDH) and voltage-dependent anion-selective channel (VDAC) were used as internal controls for cytosolic and 
mitochondrial samples, respectively (A). β-Actin was used as an internal control for the whole tissue samples (B), as described for Figure 1. 
Horizontal lines represent means of densitometry signals from western blot analyses. #, significant differences in signals between NASH and 
normal liver tissues (P < 0.05). Data for NAFL tissues were not used for statistical comparisons because of limited sample number (n = 2).
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Figure 5: Expression of Bcl-2 family proteins in NASH, NAFL and normal liver tissues (A) and in their mitochondria (B). β-Actin 
and VDAC were used as internal controls for the whole tissue and mitochondria samples, as described for Figures 1 and 4, respectively. 
Horizontal lines represent means of densitometry signals from the western blot analyses. #, significant differences in signals between 
NASH and normal liver tissues (P < 0.05). Data for NAFL tissues were not used for statistical comparisons because of limited sample 
number (n = 2).
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DISCUSSION

XBP1s and cleaved ATF6 are among the major UPR 
transducers [31]. Thus, the enhanced expression of XBP1s 
and cleaved ATF6 in the NASH tissues (Figure 1) suggests 
that ER stress could be sensed within inflammatory tissues, 
resulting in UPR activation to restore cellular homeostasis. 
Induction of XBP1s and cleaved ATF6 was also observed 
in mouse models of NASH [32, 33].

Considering that GRP78 expression was increased in 
mouse NASH tissues [32, 34] as well as in hepatoma cells 
treated with palmitate [35], our observation of decreased 
GRP78 in NASH tissues (Figure 2) was unexpected. It was 
reported that the expression level of GRP78 mRNA was 

lower in human NAFL and NASH tissues than in normal 
liver tissues [27]. Notably, GRP78 downregulation occurred 
in tissues where expression of XBP1s and cleaved ATF6, 
two transcriptional regulators for GRP78, were induced 
(Figure 1) [36–38]. Decreased expression of GRP78 was 
reported in liver tissues of obese db/db mice, in which 
expression of cleaved ATF6 was enhanced [35].

Inhibition of GRP78 expression may cause fat 
accumulation in livers of mice. These mice exhibited 
increased GRP94 levels, PDI, CHOP, XBP1s and 
cleaved ATF6 [39]. GRP78 overexpression in the 
livers of obese ob/ob mice decreased hepatic TG and 
cholesterol content as well as hepatic expression of 
XBP1s and ATF6 [40]. Based on these findings, we 

Figure 6: Expression of proteins related to autophagy in NASH, NAFL and normal liver tissues. β-Actin was used as 
internal control, as described for Figure 1. Horizontal lines represent means of densitometry signals from western blot analyses. #, significant 
differences in signals between NASH and normal liver tissues (P < 0.05). Data for NAFL tissues were not used for statistical comparisons 
because of limited sample number (n = 2).
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assumed that decreased GRP78 levels (Figure 2) 
contributed to the disturbances related to NAFLD and 
induction of ER stress in liver tissues.

GRP94 depletion did not induce ER stress in the 
mouse liver, but led to high plasma low-density lipoprotein 
cholesterol levels [41] as well as to hyperproliferation of 
mouse liver progenitor cells [42]. In light of these findings, 
it is possible that GRP94 downregulation in NASH tissues 
(Figure 2) is involved in dysfunctional lipid metabolism as 
well as NASH-related proliferative diseases.

Like those of GRP78, GRP94 and calnexin, levels 
of the ER-associated protein foldases, PDI, ERp44 and 
ERp72, were also decreased in NASH tissues (Figure 3). 
Downregulation of the three foldases was unexpected, 
based on reports that XBP1s could regulate activation of 
ERp44 and PDI and that ATF6 could, similarly, activate 
ERp72 [5, 36, 43].

It was intriguing that levels of most of the ER-
related chaperones and foldases analyzed in our study 
were decreased in NASH tissues (Figures 2 and 3), despite 
activation of the UPR transducers (Figure 1). Because 
chaperones and foldases are considered to directly 
execute protein quality control in the ER, it is possible 
that capacity for protein quality control was broadly 
compromised in the ER of NASH tissues.

When ER stress cannot be reversed, the UPR can 
trigger different pathways leading to cell death, such 
as apoptosis [44]. However, in our study, levels of two 
apoptosis markers, cytosolic cytochrome c and cleaved 
PARP, were decreased in NASH tissues (Figure 4), 
suggesting that apoptotic processes were less active than 
in normal liver. Apoptosis inhibition does not transform 
cells. However, when it is combined with activation of 
growth stimulatory signals, cancers can develop [45].

Activated CHOP can cause changes in gene 
expression favoring apoptosis, including increased Bim 
and decreased Bcl-2 expression [9, 46]. In contrast to those 
previously reported observations, CHOP induction (Figure 
1) coincided with that of Bcl-2 as well as with inhibition 
of Bim expression in the NASH tissues (Figure 5). Based 
on their activities in apoptotic processes, expression of 
Bcl-2 and Bim was changed in a manner that would inhibit 
apoptosis in the NASH tissues. However, expression of 
another anti-apoptotic regulator, Mcl-1, was changed in 
a manner that would promote apoptosis. Thus, poorly 
controlled regulation of Bcl-2 family protein expression 
may contribute to dysregulation of apoptotic processes in 
NASH tissues.

Autophagy is a pathway mediating cell survival, 
although it can also promote cell death under certain 
conditions. Decreased autophagic function was reported 
to promote the initial development of NAFLD [47]. The 
observation that levels of p62 were unchanged suggests 
that the autophagy process was not activated in the NASH 
tissues (Figure 6), even though two major autophagy 
regulators, Atg16L1 and LC3, were induced.

NAFL may represent an intermediate state leading 
to NASH, the most extreme form of NAFLD. Five to 
twenty percent of patients with NAFL progress to NASH 
[48]. Levels of most of the proteins analyzed in NAFL 
tissues were either similar to those in one of the other two 
types, NASH and normal, or were somewhere in between 
(Figures 1–6). That is, NAFL tissues showed no unique 
expression patterns of any of the proteins analyzed, as 
compared with NASH and normal liver tissues.

Taken together, our findings suggest that many 
proteins related to UPR, apoptosis and autophagy 
were dysregulated in the NASH tissues. Some of the 
proteins were dysregulated in NASH tissues in a manner 
consistent with inhibition of UPR and apoptosis processes. 
Inhibition of UPR and apoptosis can cause prolonged 
accumulation of cellular stresses that may, in turn, result 
in cell transformation. This is interesting to consider 
because NASH is one of the risk factors for hepatocellular 
carcinoma. Future studies are warranted to determine 
tissue environmental factors and signaling pathways 
that regulate expression of proteins related to UPR and 
apoptosis in NAFLD tissues.

MATERIALS AND METHODS

Chemicals

All chemicals used in this study were of reagent 
grade or higher and were purchased from Sigma-Aldrich 
(St. Louis, MO, USA), unless otherwise specified.

Liver tissues

Frozen human liver tissues were obtained from 
the National Institutes of Health-funded Liver Tissue 
Cell Distribution System at the University of Minnesota, 
Virginia Commonwealth University and the University 
of Pittsburgh [49]. Patient IDs for the liver tissues 
used are listed in Supplementary Table 1. Clinical, 
histopathological, and donor information for the tissues 
was described previously [49].

Tissue subcellular fractionation

Subcellular extraction of the liver tissues was 
performed as described by Cox and Emili [50]. Briefly, 
tissues were homogenized using a tight-fitting Teflon 
pestle in ice-cold lysis buffer containing 250 mM 
sucrose, 50 mM Tris-HCl (pH 7.4), 5 mM MgCl2, 1 mM 
dithiothreitol (DTT) and 1 mM phenylmethylsulfonyl 
fluoride (PMSF). The lysate was centrifuged at 6000 x g 
for 15 min at 4°C and the pellet resuspended to obtain 
mitochondrial proteins solubilized in extraction buffer 
containing 20 mM Tris-HCl (pH 7.8), 0.4 M NaCl, 
15% glycerol, 1 mM DTT, 1 mM PMSF and 1.5% 
Triton-X-100. The supernatant was centrifuged at 100,000 
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x g for 1 h at 4°C, and the pellet resuspended to extract 
microsomal proteins into the extraction buffer. Protein 
concentrations were determined with a BCA protein assay 
kit (Pierce Biotechnology, Rockford, IL, USA).

Western blot analysis

Sample preparation and western blotting were 
performed as previously described [51]. Anti-Atg5-Atg12 
complex (#4180), -Atg16L1 (#8089), -Bak (#12105), 
-Beclin1 (#3495), -Bim (#2933), -Calnexin (#2679), 
-CHOP (#2895), -cleaved PARP (#9541), -cytochrome 
c (#4280), -Ero1-Lα (#3264), -ERp44 (#3798), -ERp72 
(#5033), -GRP94 (#2104), -LC3A/B-I/II (#12741), -Mcl-
1 (#5453), -PDI (#3501) and -VDAC (#4661) antibodies 
were from Cell Signaling Technology (Beverly, MA, 
USA). Anti-β-actin (ab8226), -Bcl-2 (ab692), -cleaved 
caspase-3 (ab2302), -GAPDH (ab9485), -GRP78 
(ab21685) and -p62 (ab56416) antibodies were from 
Abcam (Cambridge, MA, USA). Anti-XBP1s (sc-7160) 
antibody was from Santa Cruz Biotechnology (Santa Cruz, 
CA, USA). Anti-cleaved ATF6 (NBP1-40256) antibody 
was from Novus Biologicals (Littleton, CO). Horseradish 
peroxidase-conjugated goat anti-mouse and anti-rabbit 
immunoglobulin G secondary antibodies were from 
GenDEPOT (Barker, TX, USA). The blots were developed 
using a chemiluminescent detection kit (Ab Frontier, 
Seoul, Republic of Korea). Densitometric quantification of 
western blot bands was performed using Image J software, 
version 1.49 (http://rsb.info.nih.gov/ij/index.html).

Statistics

The nonparametric Mann-Whitney U test was 
performed to compare specific protein abundances in 
NASH and normal liver tissue groups (SAS 9.13 statistical 
program, SAS Institute, Cary, NC, USA). A P-value of < 
0.05 was considered significant.
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