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AbstrAct:
It is well established that the PI3K pathway plays a central role in various 
cellular processes that can contribute to the malignant phenotype. Accordingly, 
pharmacological inhibition of key nodes in this signaling cascade has been 
a focus in developmental therapeutics. To date, agents targeting upstream 
receptor tyrosine kinases are best studied and have achieved greatest clinical 
success. Further downstream, despite efficacy in certain tumor types, the 
rapalogs have been somewhat disappointing in the clinic. Novel inhibitors of 
PI3K, Akt, and mTORC1 and 2 are now passing through early phase clinical 
trials. It is hoped that these agents will circumvent some of the shortcomings 
of the rapalogs and lead to meaningful benefits for cancer patients.

INtrODUctION

The PI3K (phosphatidylinositol 3-kinase) pathway 
is a signal transduction cascade that is central to a variety 
of important physiological functions, including cell cycle, 
cell survival, protein synthesis and growth, metabolism, 
motility and angiogenesis. Constitutive pathway 
activation, which occurs in human cancer at considerable 
frequency due to a variety of genetic aberrations, can 
induce a malignant phenotype by contributing to the 
hallmarks of cancer. Many small molecule inhibitors 
targeting key nodes in the pathway – PI3K, Akt and mTOR 
(mammalian target of rapamycin) – are at various stages 
of clinical development. Clinical experience is adding to 
the preclinical knowledge base regarding these agents, 
broadening not only the understanding of the similarities 
and differences between the compounds, but also of the 
machinations of the pathway itself. In this review we will 
focus on the development of those inhibitors that have 
reached clinical evaluation and how their future use may 
evolve.

tHE PI3K/AKt/mtOr PAtHWAY

The PI3Ks are a family of lipid kinases that share 
the primary biochemical function to phosphorylate the 
3-hydroxyl group of phosphoinositides [1]. Three classes 

(I-III) of PI3K are described that vary in structure and 
substrate preference. The heterodimers that make up class 
I PI3Ks consist of a regulatory and a catalytic subunit. In 
the class IA group, these are p85 and p110 (α, β and δ), 
respectively, whereas the class IB PI3K consists of p101 
and p110γ [2]. Class II PI3Ks are monomeric catalytic 
isoforms, and the sole class III member is Vps34. 

Isoform-specific functions of the class I PI3Ks are 
described, albeit with some redundancy, with potential 
implications for toxicity and efficacy of novel inhibitors of 
this class [3]. In broad terms, the ubiquitously expressed 
p110α and p110β influence cellular proliferation and 
insulin signaling, whereas p110γ and p110δ, primarily 
expressed in leukocytes, appear involved in immune 
function and inflammation. Class II PI3Ks assist in the 
regulation of membrane trafficking and the class III 
PI3K is involved in autophagy [4]. Class IA PI3Ks are 
implicated in human cancer.

Upstream receptor tyrosine kinases (RTKs) that feed 
into the PI3K pathway include members of the human 
epidermal growth factor receptor family (EGFR and 
HER2), platelet derived growth factor receptor, and the 
insulin and insulin-like growth factor 1 (IGF-1) receptors. 
Engagement of a growth factor with its RTK is the typical 
initiating event for activation of class IA PI3Ks, where 
RTK stimulation leads to an interaction with p85 in the 
tyrosine kinase domain. This can occur either directly 
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(such as with HER3) or indirectly via adaptor molecules 
(such as the insulin receptor substrate 1, IRS1). Binding 
removes the inhibitory effect of p85 on p110, resulting in 
full activation of PI3K. The activated kinase converts its 
substrate phosphatidylinositol 4,5-biphosphate – PI(4,5)
P2 – into PI(3,4,5)P3. PI(3,4,5)P3 (or PIP3) acts as a 
docking site bringing Akt and PDK1 into close proximity, 
allowing the latter to phosphorylate Akt at threonine-308 in 
its kinase domain. The mTOR-rictor complex (mTORC2) 
also contributes a phosphate group to Akt, at serine-473 in 
its helical domain. Both events are necessary for full Akt 
activity [5]. 

Akt, a serine/threonine kinase, is the central mediator 
of the PI3K pathway with multiple downstream effectors 
that influence key cellular processes (see figure 1). Akt 
stimulates protein synthesis and cell growth by activating 
mTOR (as part of the mTOR-raptor or mTORC1 complex) 

through effects on the intermediary tuberous sclerosis 
(TSC) 1/2 complex. It influences cellular proliferation 
by inactivating cell cycle inhibitors (p27 and p21) and 
promoting cell cycle proteins (c-Myc and cyclin D1) [6,7]. 
Akt mediated inhibition of pro-apoptotic genes (BAD and 
BIM) and degradation of the tumor suppressor protein p53 
limits programmed cell death and enhances cell survival 
[4]. PI3K also features in cellular metabolism and insulin 
signaling through actions on GSK3 [8]. 

PI3K pathway activity can be switched off through 
the action of various proteins. The SHIP phosphatases 
abrogate signaling by converting PIP3 into the alternate 
PI(3,4)P2. A second mechanism involves the PTEN 
(phosphate and tensin homologue deleted on chromosome 
ten) tumor suppressor, a dual specificity phosphatase 
that dephosphorylates both protein and lipid substrates. 
Importantly, PTEN antagonizes PI3K function and 
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Figure 1. the PI3K/Akt/mtOr signaling pathway and associated inhibitors. A ligand engaged RTK binds PI3K, either directly or 
indirectly via adaptor molecules such as IRS1, removing the inhibitory action of the p85 regulatory subunit on the catalytic p110 subunit. The 
active kinase generates PIP3 at the lipid membrane. PIP3 facilitates the phosphorylation of Akt by PDK1, while the mTOR-rictor complex 
contributes a second phosphate residue to Akt. As the central effector of the PI3K pathway, Akt transmits signal to a host of downstream 
substrates, thus influencing a variety of key cellular functions. Pathway activity is negatively regulated by PTEN and the S6K-IRS1 feedback 
loop. Pharmacological inhibition of the pathway is achieved through a variety of compounds in clinical use at various points along the pathway 
that are indicated by the red ⊣.
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negatively regulates Akt activities by stripping a phosphate 
off PIP3 thereby returning it to its original PI(4,5)P2 form. 

Finally, S6K (one of the key effectors of mTOR) 
can feedback to downregulate IRS1, the adaptor molecule 
linking the IGF-1 receptor and PI3K. This effect appears 
to be direct and to impede the ability of IRS1 to associate 
with the insulin receptor. The outcome is to dampen 
further input into the PI3K pathway in the presence of 
ongoing stimulation of the insulin/IGF-1 receptors [9]. 

In addition to the complexity of the PI3K pathway, 
extensive crosstalk exists with other cellular signaling 
networks. For example, mTOR exerts influence on 
PI3K signaling via the S6K-IRS1 feedback loop and via 
mTORC2 mediated Akt-Ser473 phosphorylation [5,10]. 
Activation of the tumor suppressor p53 causes both 
increased PTEN and decreased p110 expression. Further, 
p53 degradation is reduced indirectly by PTEN via its 
antagonism of PI3K [11,12]. These actions safeguard the 
cell in times of genotoxic strain against ongoing DNA 
replication, though the interplay between p53 and PTEN 
requires further elucidation. Finally, activated GTP-
bound RAS proteins are capable of activating the PI3K 
pathway by binding directly to p110 [13]. Downstream 
of RAS, in the mitogen-activated protein kinase (MAPK) 
pathway, ERK has been shown to negatively regulate 
TSC2 [14]. Additionally, MAPK pathway activation has 
been identified as a consequence of mTORC1 inhibition, 
further intercalating these two important cascades [15]. 

GENEtIc ALtErAtIONs IN tHE PI3K 
PAtHWAY IN cANcEr

Deregulation of several elements of the PI3K 
signaling cascade is recognized in human cancer, the 
occurrence of which promotes pathway activation. The 
most prevalent are those affecting PIK3CA (the gene 
coding for p110α) and PTEN, as well as those affecting 
upstream RTKs. This latter group has been extensively 
reviewed previously and will not be discussed here.

Derangements in PTEN were the first described and 
are the most common abnormalities linked with PI3K 
signaling in human cancer. The PTEN gene maps to 
chromosome 10q23. Functional loss of PTEN impairs its 
lipid phosphatase activity, which is critical for its tumor 
suppressor function [16]. Reduced PTEN expression is 
found most commonly in endometrial, prostate, breast 
and ovarian cancers, as well as glioblastomas and 
melanomas. The somatic aberrations that affect PTEN 
(reviewed in [17]) can occur through allelic losses leading 
to either complete deletion of the PTEN locus, or point 
or truncating PTEN mutations resulting in functional 
inactivation. Epigenetic phenomena such as promoter 
methylation can also lead to gene silencing. Further, there 
are various regulators of PTEN transcription that can 
both upregulate (such as Myc and p53) and downregulate 
(such as NFκB) protein production, and miR-21 is the 

first identified microRNA that represses PTEN expression 
[18]. Finally, rare germline mutations at the PTEN locus 
result in a number of overlapping clinical conditions, 
including the autosomal dominant Cowden’s syndrome, 
characterized by the presence of hamartomas and a 
susceptibility to cancer, especially those of the breast, 
thyroid and endometrium [19].

Genetic aberrations of PIK3CA, located on 
chromosome 3, are also commonly found in human 
cancer. Whereas mutations are most commonly described 
in breast, colorectal and endometrial cancers, as well as 
glioblastomas, gene amplification tends to occur with 
greatest frequency in cervical, gastric, lung, head and 
neck, and ovarian cancers [20]. The majority of mutations 
cluster in two hot spot regions in exon 9 (encoding the 
helical domain of p110α) and exon 20 (encoding the 
catalytic domain of p110α). Such hot spot changes have 
been shown to upregulate Akt and promote oncogenic 
transformation in vitro and in vivo [21,22]. The exon 
9 mutations result in E545K and E542K amino acid 
substitutions and may affect interactions with regulatory 
proteins, including p85. On the other hand, the exon 20 
mutation causes a H1047R alteration and may affect 
specificity or affinity of p110α towards its substrates [23]. 
It has been shown that to induce transformation, H1047R 
mutants depend on p85 binding whereas E545K and 
E542K mutants depend on RAS binding [24]. Precisely 
how PIK3CA amplifications affect PI3K activation is less 
clear. 

Mutual exclusivity between mutations of PTEN 
and RAS, PI3K and RAS, and PTEN and p53 has been 
demonstrated in certain tumors [25-28]. In contrast, 
studies suggest functional PTEN loss and PIK3CA 
mutations can coexist in breast, endometrial and colon 
cancer, implying a level of non-redundancy, despite 
their opposing functions on phosphoinositides [29,30]. 
However, this is perhaps not so surprising given PTEN has 
non-PI3K dependent functions and that PIK3CA codes for 
only one isoform of p110, suggesting other isoforms may 
influence signaling. Indeed, there is a growing body of 
literature relating to the other isoforms. p110β and p110δ 
(class IA), and p110γ (class IB) have not been found to 
possess oncogenic mutations in human cancer. However, 
overexpression of the wild-type protein of these variants 
is transforming in cell culture, unlike their p110α cousin 
[31]. Further, those isoforms with predominant expression 
on white blood cells (p110δ and p110γ) appear to be 
important in hematological malignancies [32]. Another 
recently described finding of interest is that p110β drives 
tumorigenesis in certain cell-based models of PTEN loss 
[33]. 

Other elements of the PI3K pathway are also 
mutated in human cancer, albeit with lower frequency than 
PIK3CA mutation or PTEN loss. Mutations in PIK3R1, 
coding for the p85 regulatory subunit, are observed in a 
small proportion of colorectal and ovarian cancers. These 
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mutations appear to relieve the inhibitory effect that p85 
has on p110, resulting in overactivity of PI3K signaling 
[34,35]. Amplification of AKT is observed in a proportion 
of head and neck, gastric, pancreatic and ovarian tumors, 
whereas a missense mutation in the pleckstrin homology 
domain of AKT1 has recently been described at low 
frequency in breast, colorectal and ovarian cancers [36-
38].

INHIbItOrs OF tHE PI3K/AKt/mtOr 
PAtHWAY

Agents inhibiting the upstream RTKs are amongst 
the most established targeted therapies in oncology. This 
is particularly true for monoclonal antibodies (mAbs) 
directed against EGFR and HER2, both of which are 
RTKs that transduce signal at least in part through PI3K. 
Cetuximab (IgG1 chimeric mAb) and panitumumab 
(IgG2 fully human mAb) both target the extracellular 
domain of EGFR. Both are approved for use in colorectal 
cancer; cetuximab is also approved in head and neck 
cancers. Trastuzumab, a humanized IgG1 mAb that 
inhibits HER2, is used widely in the treatment of women 
with HER2-overexpressing breast cancer in both adjuvant 
and metastatic settings. Small molecule tyrosine kinase 
inhibitors against EGFR (gefitinib and erlotinib) and 
HER2 (lapatinib, which also targets EGFR) are also 
working their way into clinical use. However, here we will 
focus on the evolution of inhibitors that target elements 
further downstream of the RTKs in the PI3K pathway.

mtOr inhibitors – the rapalogs

As part of the mTORC1 complex, mTOR stimulates 
cell growth and protein synthesis through effects on 
mRNA translation and ribosome biogenesis (reviewed 
in [10]). Rapamycin is a macrolide antibiotic originally 
derived from Streptomyces hygroscopicus found in 
the soil on the island of Rapa Nui. Rapamycin (and its 
analogues, also known as rapalogs) acts by binding to 
the FKBP12 binding protein, which in turn interacts with 
the mTORC1 complex, inhibiting downstream signaling 
[39]. Though the rapalogs trace their history back to use 
as immunosuppressant drugs used in transplant medicine, 
their antiproliferative effects led to investigation of their 
use as anti-cancer agents. The other rapalogs, synthetic 
derivatives of rapamycin with improved properties, 
are temsirolimus (CCI-779; Wyeth, Madison, NJ, US), 
everolimus (RAD001; Novartis, Basel, Switzerland) and 
ridaforolimus (AP23573, formerly known as deforolimus; 
Merck & Co., Whitehouse Station, NJ, US).

Despite the high expectation for their application in 
oncology based on sound rationale related to the presumed 
mechanism-of-action, the rapalogs have only met with 
modest success. Most notable is the utility of these agents 

as monotherapy in renal cell cancer (RCC) and mantle cell 
lymphoma. 

In RCC, a phase III trial investigated temsirolimus, 
interferon or the combination of both in previously 
untreated poor-prognosis patients. Those randomized to 
receive the rapalog as monotherapy had a response rate 
(RR) of 8.6% and a significantly longer overall survival 
(OS) and progression-free survival (PFS) compared to 
the other two study arms, leading to US Food and Drug 
Administration approval for this indication [40]. A further 
phase III study of everolimus versus placebo in RCC where 
patients had progressed on vascular endothelial growth 
factor (VEGF) receptor TKIs (sunitinib or sorafenib) was 
also positive for PFS in favor of the rapalog [41]. There 
was no OS benefit, however 80% of patients who initially 
received placebo subsequently crossed-over to everolimus 
treatment, diluting any potential effect. Additionally, 
although the RR was low (1.8%), an impressive 25% 
of patients remained progression free for 10 months or 
greater. Temsirolimus has also been investigated in a 
phase III trial of refractory mantle cell lymphoma, where 
it demonstrated superior RR and PFS compared with the 
control arm (investigator’s choice of therapy) [42]. The 
rapalogs have been investigated as monotherapy in a host 
of other phase II studies in diverse tumor types, including 
neuroendocrine tumors, breast cancer, endometrial cancer 
and sarcomas [43]. Encouraging single agent clinical 
efficacy was observed with the use of everolimus in 
pretreated patients with recurrent endometrial cancer, 
where loss of PTEN expression was predictive of clinical 
benefit [44]. 

Overall, the activity of rapalogs in a host of tumor 
types where the PI3K/Akt/mTOR pathway is frequently 
activated has been disappointing. As a general rule, these 
agents only inhibit the mTORC1 complex (although there 
are some cellular models where disruption of mTORC2 
also occurs) [10]. Therefore, there have been legitimate 
concerns that there efficacy may be partly limited by a 
failure to stop mTORC2 mediated phosphorylation 
and activation of Akt. In addition, inhibiting mTORC1 
releases the feedback inhibition mediated by the S6K-
IRS1-PI3K loop that normally acts to moderate pathway 
activity. This can lead to a paradoxical increase in Akt 
activity that can have both biological and therapeutic 
implications. Indeed, increased phosphorylated Akt has 
been detected in tumor biopsies from patients treated with 
rapalogs [45]. Altogether, these data suggest that pathway 
activation and reactivation could be avoided by PI3K, Akt 
or concomitant PI3K and mTOR catalytic inhibition (that 
would target both mTORC1 and mTORC2).

PI3K INHIbItOrs

A series of compounds are currently passing through 
the early phases of clinical development (summarized 
in table 1). ‘Pure’ PI3K inhibitors target only p110; 
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both pan-p110 inhibitors and isoform-specific inhibitors 
exist. As the catalytic domains of the p110 subunits and 
mTOR are structurally similar, dual inhibitors of both 
PI3K and mTOR and are also emerging. These dual 
inhibitors suppress mTOR in both the mTORC1 and 
mTORC2 complexes, distinct from the rapalogs. With 
few exceptions, these agents act in an ATP-competitive 
and reversible manner.

The first generation PI3K inhibitors were 
Wortmannin and LY294002. Wortmannin is a fungal 
metabolite initially isolated from Penicillium wortmanni 
in 1957. LY294002, about 500 times less potent and first 
produced about 25 years ago, is a synthetic compound 

derived from quercetin, a broad-spectrum kinase inhibitor 
[46]. Both agents achieve significant growth inhibition 
across a broad spectrum of cancer cell lines especially in 
circumstances of excess PI3K activity. However, neither 
Wortmannin nor LY294002 have progressed to clinical 
trials due to unfavorable pharmacokinetic properties, 
poor selectivity and toxicity concerns [47]. Regardless, 
their use has led to a greater understanding of the PI3K 
pathway and has spawned a new generation of inhibitors 
that overcome some of the failings of these compounds 
(summarized in table 1). 

table 1: summary of presented results from PI3K inhibitors in phase I clinical trials. Legend: BW – twice weekly; QD – once 
daily; BD – twice daily; 21/7 – 21 days on, 7 days off; CDD – continuous daily dosing; MTD – maximum tolerated dose; MAD – maximum 
administered dose; AST – aspartate transaminase; ALT – alanine transaminase; AE – adverse event; NHL – non-Hodgkin’s lymphoma; MCL 
– mantle cell lymphoma; CLL – chronic lymphocytic leukemia.

Dual PI3K/mTOR inhibitors Pure PI3K inhibitors

Compound
(Company)

SF1126
(Semafore)

NVP-
BEZ235
(Novartis)

XL765
(Exelixis-
Sanofi)

GDC-0980
(Roche-
Genentech)

NVP-
BKM120
(Novartis)

XL147
(Exelixis-
Sanofi)

PX-866
(Oncothyre
on)
-
Irreversible 
inhibitor

GDC-0941
(Roche-
Genentech)

CAL-101
(Calistoga)
- p110δ 
isoform 
specific 
inhibitor

No. of 
patients

39 59 83 17 35 78 60 59 106

Administrat
ion 
schedule

Intravenous 
BW

Oral
QD

Oral
BD or QD

Oral
QD 21/7

Oral
QD

Oral, 
QD: 21/7 or 
CDD

Oral, 
QD: 
Intermitten
t or CDD

Oral
QD or BD 
(21/7)

Oral
BD or QD

MTD
(or MAD)

1110mg/m2
(MAD)

1100mg
(MAD)

50mg (BD)
90mg
(QD)

16mg 
(MAD)

100mg 600mg 
(both 
schedules)

12mg 
(intermitten
t)
8mg (CDD)

245mg (QD)
180mg TDD 
(BD)

350mg 
(MAD BD), 
300mg 
(MAD QD)

DLTs Diarrhea None Rash, 
nausea, 
vomiting, ↓ 
PO4 / 
anorexia, 
transa-
minitis (BD)
Abnormal 
ECG, rash / 
fatigue, 
dyskinesia
(QD)

None Mood 
alteration, 
epigastralgi
a, rash, 
hyper-
glycemia

Rash (21/7)
Hyper-
sensitivity 
(CDD)

Diarrhea, ↑ 
AST 
(intermitten
t)
Diarrhea 
(CDD)

Headache, 
pleural 
effusion, ↓ 
DLCO

↑ AST / 
ALT

AEs
(most 
common)

Nausea, 
vomiting, 
diarrhea, 
fever, 
fatigue

Fatigue, 
diarrhea, 
nausea, 
vomiting, 
anorexia

Nausea, 
diarrhea, 
anorexia, 
vomiting, 
transa-
minitis

Nausea, 
fatigue, 
diarrhea, 
flatulence

Rash, 
hyper-
glycemia, 
diarrhea, 
anorexia, 
nausea

Nausea, 
fatigue, 
diarrhea, 
rash, cough

Diarrhea, 
nausea, 
vomiting, ↑ 
AST/ALT, 
fatigue

Nausea, 
fatigue, 
diarrhea, 
dysguesia

↑AST/ALT, 
pneumonia, 
neutropeni
a, anemia, 
thrombo- 
cytopenia

Best 
response
(in 
evaluable 
patients)

Stable 
disease 

Partial 
response (2 
pts)

Stable 
disease

Stable 
disease

Partial 
response (2 
pts)

Partial 
response (1 
pt)

Stable 
disease

Partial 
response (1 
pt)

Partial 
response 
(31 pts)
NHL 57%
MCL 67%
CLL 30%

Reference [49] [53] [54] [55] [60] [61] [63] [66] [68] 
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Dual PI3K-mtOr inhibitors

As mentioned, agents of this class target all catalytic 
isoforms of PI3K together with mTORC1 and mTORC2. 
This has the theoretical advantage of more completely 
shutting down the PI3K/Akt/mTOR pathway but also the 
possible drawback of greater toxicity.

SF1126 (Semafore Pharmaceuticals, Indianapolis, 
IN, US) is a small molecule prodrug of LY294002 that 
is conjugated to an integrin-binding component. This 
design enhances delivery to the tumor and its associated 
vasculature where cleavage leads to release of the active 
drug. It has shown significant anti-tumor effects in 
xenograft models of solid tumors including glioblastoma, 
breast and prostate cancer, and potent anti-angiogenic 
activity has also been observed, felt partly to be related 
to a reduction in HIF-1α levels [48]. A phase I trial of 
patients with solid tumors is ongoing. No maximum 
tolerated dose (MTD) has been found, but the maximum 
administered dose (MAD) has been declared at 1110mg/
m2 as intravenous administration. The most frequent 
adverse events were gastrointestinal complaints, fever 
and fatigue; there were no clinically significant effects on 
glucose or insulin levels. No responses were observed, but 
19 of 38 evaluable patients (50%) showed stable disease 
as best response, for a median of 13 weeks and a mean of 
18 weeks [49]. 

Two dual inhibitors are under investigation by 
Novartis (Basel, Switzerland) – NVP-BEZ235 and NVP-
BGT226 (there is currently no presented or published 
data relating to NVP-BGT226). NVP-BEZ235 is 
an orally available product belonging to the class of 
imidazoquinolines [50]. Preclinical studies demonstrated 
anti-proliferative activity against a wide range of cancer 
cell lines, including HER2-overexpressing breast cancer 
models of trastuzumab and lapatinib resistance [51,52]. 
Further, tumor growth suppression has been shown in 
PI3K mutated xenograft models of human cancer. First 
data from the phase I clinical trial of NVP-BEZ235 
was presented at the 46th American Society of Clinical 
Oncology (ASCO) annual meeting (2010) [53]. No DLTs 
have been observed in the first 59 treated patients. Of the 
51 evaluable patients, two achieved a partial response – 
an estrogen receptor (ER) positive, HER2 negative breast 
cancer patient with unknown PI3K pathway status; and 
a patient with Cowden’s syndrome (germline PTEN 
mutation) who had developed lung cancer. A further 14 
patients (27%) achieved stable disease for 4 months or 
greater. 

XL765 (Exelixis, South San Francisco, CA, US), 
also known as SAR245409, is another dual inhibitor. 
Tumor stabilization or shrinkage has been observed 
with XL765 in a variety of mouse xenograft models of 
human cancer, including breast, ovary, lung, prostate 
and brain cancers. Updated clinical data from the phase 
I monotherapy study in patients with solid tumors has 

demonstrated stable disease in 12 patients for 16 weeks or 
more and in 7 patients for 24 weeks or more (of a total of 
83 enrolled patients) [54]. The most frequently observed 
toxicities involved elevated liver enzymes, gastrointestinal 
complaints and rash. The MTD has been defined as 50mg 
twice daily or 90mg daily.

GDC-0980 (Genetech, South San Francisco, CA, 
USA), also a PI3K/mTOR inhibitor, is under evaluation in 
a phase I clinical study of patients with solid tumors [55]. 
Though the study is in its earlier stages compared to those 
above, initial results show it to be well tolerated with no 
DLTs, and some suggestions of anti-tumor activity.

Other dual PI3K-mTOR inhibitors in clinical 
development include the orally administered PF-
04691502 (Pfizer, New York, NY, US), and an intravenous 
agent, PKI-587 or PF-05212384 (Pfizer, New York, NY, 
US). Based on preclinical studies, phase I clinical trials 
are underway to assess safety and tolerability of these 
drugs in cancer patients with solid tumors [56,57].

Pure PI3K inhibitors

The majority of compounds described as pure PI3K 
inhibitors are pan-p110 inhibitors. However, at least one 
isoform-specific inhibitor (CAL-101) has had preliminary 
results presented.

NVP-BKM120 (Novartis, Basel, Switzerland) is 
one such agent, and preclinical data showed anti-tumor 
activity in xenograft models of human cancer both with 
and without PI3K/PTEN mutations [58,59]. Preliminary 
results from the phase I study of NVP-BKM120 in patients 
with solid tumors were also presented at the 46th ASCO 
annual meeting [60]. Interestingly, though hyperglycemia 
has been an anticipated adverse event when using agents 
that inhibit the PI3K pathway due to its influence on 
cellular metabolism and insulin/glucose regulation, 
NVP-BKM120 is the only inhibitor in clinical trials that 
has encountered clinically relevant elevations in plasma 
glucose. Indeed, hyperglycemia was a DLT, as was mood 
alteration and rash. The MTD was identified as 100mg 
daily. Of the 31 evaluable patients, there were two partial 
responses. Both were in women with breast cancer – one 
had a triple negative breast cancer (ER and progesterone 
receptor (PR) negative, HER2 negative) that was PIK3CA 
wild type, without PTEN loss and KRAS mutant; and the 
other had a ER/PR positive, HER2 negative tumor with a 
confirmed PIK3CA mutation (E545K). Additionally, 20% 
of patients remained on study for at least 8 months.

XL147 (Exelixis, South San Francisco, CA, US), 
also known as SAR245408, is another pan-p110 inhibitor. 
It has shown preclinical activity in a variety of xenograft 
models of human cancer, including those of breast, lung 
and prostate cancer. Initial data from the first 60 patients 
treated with this agent as monotherapy in a phase I study 
was presented at the same ASCO meeting [61]. Rash 
was the DLT, setting the MTD at 600mg on either an 
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intermittent (21 out of 28 days) or continuous daily dosing 
schedules, with fatigue, nausea, vomiting and diarrhea 
also attributable to the drug. Of the patients evaluable 
for response, there was a partial response in a non-PI3K/
PTEN mutated non-small cell lung cancer patient, and 
19% of patients continued on treatment for a minimum 
of 16 weeks.

The semisynthetic wortmannin derivative PX-866 
(Oncothyreon, Seattle, WA, US), also a pan-isoform 
inhibitor of class I PI3Ks, differs from other agents 
targeting PI3K in that it covalently binds to the ATP-
binding site of p110 and is thus irreversible. In vivo studies 
demonstrate that PIK3CA mutant or PTEN null xenografts 
were sensitive to treatment with PX-866 [62]. Final results 
from 60 patients treated on the phase I study of PX-866 
have been presented [63]. The MTD was defined as 8mg 
and 12mg on the continuous and intermittent schedules, 
respectively, with DLTs of diarrhea and elevated liver 
enzymes. Nausea, vomiting and fatigue were also amongst 
the more common adverse events seen. No responses were 
seen amongst the 53 evaluable patients, but 25% of these 
heavily pretreated patients achieved stable disease for a 
median of 57 days. 

PI103 was one of the earlier new generation PI3K 
inhibitors that showed proof-of-concept whereby targeting 
members of the PI3K family with high selectivity was 
able to achieve target modulation with resultant in vivo 
antitumor activity [64]. Its rapid metabolism precluded 
clinical development, but proved a valuable tool that 
ultimately led to development of GDC-0941 (Piramed/
Genentech, Slough, United Kingdom/South San Francisco, 
CA, US) another pan-isoform class I PI3K inhibitor. This 
derivative of thieno[3,2-d]pyrimidine has demonstrated 
tumor growth inhibition in xenograft models including 
those harboring mutations in PI3K or PTEN [65]. In a 
phase I study of GDC-0941 administered as monotherapy, 
the most frequently reported drug-related adverse events 
were mild or moderate nausea, fatigue, diarrhea, and 
dysgeusia [66]. The three DLTs reported were headache, 
pleural effusion and decreased lung diffusion capacity. 
One partial response has been observed in a breast cancer 
patient, and encouraging activity has also been seen in 
patients with ovarian cancer.

Finally, there has been interest in developing isoform-
specific inhibitors as it may permit more complete target 
inhibition with a more tolerable adverse effect profile. 
The most advanced is a p110δ-specific inhibitor – CAL-
101 (Calistoga Pharmaceuticals, Seattle, WA, US). The 
p110δ isoform is expressed predominantly in leukocytes, 
and preclinical work showed it to be efficacious in 
lymphoma and leukemia cells and promoted apoptosis 
[67]. Accordingly, 106 patients with chronic lymphocytic 
leukemia (CLL), different types of non-Hodgkin’s 
lymphoma (NHL), acute myeloid leukemia (AML) and 
multiple myeloma (MM) have been enrolled thus far into 
a phase I study of CAL-101 [68]. Reversible increases 

in liver enzymes and pneumonia have been the most 
frequent treatment emergent adverse events, although 
there was minimal hematological toxicity. Impressively, 
partial responses have been seen in 13 of 23 patients 
(57%) with indolent forms of NHL, 8 of 12 patients (67%) 
with mantle cell lymphoma and 10 of 30 patients (33%) 
with CLL. 

Akt inhibitors

Direct inhibition of the serine/threonine kinase Akt 
provides another avenue to pharmacologically regulate 
activity of the PI3K pathway. The two strategies being 
explored involves agents that compete for the ATP-
binding site (ATP mimetics) and those that act away 
from this catalytic site (allosteric inhibitors). As is the 
case with PI3K inhibitors, there is some expectation that 
tumors harboring mutations or amplifications of Akt, or 
increased pathway activity, will show greater sensitivity 
to Akt inhibitors. However, as with the rapalogs, the 
release of feedback inhibition consequent to targeting Akt 
may enhance the activity of non-Akt effectors of PI3K 
signaling. Further, these non-Akt dependent effectors of 
PI3K signaling, such as SGK3, can promote cancer in 
the presence of PIK3CA mutations [69]. Despite these 
findings, a recent study demonstrated that a noncatalytic 
site Akt inhibitor was effective against breast cancer cell 
lines with PIK3CA mutations and HER2 amplifications 
[70]. In addition, another study demonstrated that tumors 
with PIK3CA mutations were the most sensitive to an Akt 
plekstrin homology (PH) domain inhibitor, and KRAS 
mutant tumors were the least sensitive [71].

Perifosine (Keryx Biopharmaceuticals, New York, 
NY, US) is an allosteric inhibitor that targets the PH 
domain of Akt, thereby preventing its translocation to the 
plasma membrane required for activation [72]. It exerts 
Akt-dependent and Akt-independent effects, and although 
many preclinical studies have documented Akt inhibition 
by perifosine, clinical validation of these findings is 
lacking [73]. Perifosine has been evaluated in a host of 
phase I/II clinical trials both as monotherapy and in 
combination with various other agents. The most common 
adverse reactions are fatigue and gastrointestinal toxicity. 
The latter led to frequent treatment discontinuation; 
alterations to the dosing schedule helped rectify this 
problem [74]. Single-agent activity with perifosine has 
generally been disappointing, although activity has been 
observed in patients with sarcoma and Waldenström’s 
macroglobulinemia [75,76]. 

MK-2206 (Merck & Co., Whitehouse Station, NJ, 
US) is another allosteric Akt inhibitor. In preclinical 
studies, synergism has been demonstrated when MK-
2206 has been used in combination with other targeted 
therapies (erlotinib, lapatinib) or a host of cytotoxic agents 
[77]. Preliminary results of a phase I study in solid tumors 
have been presented [78]. The MTD has been defined 
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as 60mg and 200mg on the daily and weekly schedules, 
respectively. DLT was rash, with other common side effects 
being fatigue and gastrointestinal complaints. No patient 
achieved a partial response, although tumor shrinkage 
of up to 23% was seen in several patients, especially 
those with pancreatic cancer (both adenocarcinoma and 
neuroendocrine histologies). 

GSK690693 (GlaxoSmithKline, Brentford, UK) is a 
potent ATP-competitive Akt inhibitor that also inhibits the 

phosphorylation of the downstream target GSK3 in cells. 
It is currently in clinical development as an intravenous 
agent for use in patients with solid tumors or hematological 
malignancies. 

Other orally dosed Akt inhibitors undergoing 
phase I first-in-human trials in cancer patients include 
GSK2141795 (GlaxoSmithKline, Brentford, UK), 
GSK2110183 (Octagon Research Solutions, Wayne, 
PA, US), GDC-0068 (Genentech, South San Francisco, 

table 2: summary of presented pharmacodynamic biomarker studies from phase I clinical trials of inhibitors of the PI3K/
Akt/mtOr pathway. Legend: PD – pharmacodynamic; PBMC – peripheral blood mononuclear cell; FDG-PET – fluorodeoxyglucose 
positron emission tomography.

Drug Target/s Acquired PD biomarker Comments / findings

Skin Hair PBMC / 
plasma Tumor FDG-

PET

SF1126 PI3K/mTOR ✓ ✓ ↓ pAktS473 & ↑ apoptosis in circulating lymphocytes (selected cases)

NVP-BEZ235 PI3K/mTOR ✓ ✓ ✓

Dose-dependent ↑ in plasma C-peptide (no significant ↑ glucose)
↓ pS6 & ↑Ki67 in tumor biopsies (selected cases)
↓ in FDG-PET uptake in 18 of 37 (49%) pts

XL765 PI3K/mTOR ✓ ✓ ✓ ✓ ✓

Modest ↑ in plasma insulin (no effect on glucose)
PI3K pathway inhibition in hair & skin across doses including MTD
Robust PI3K pathway inhibition across diverse tumor types:
- ↓ pAktS473 (50-90%), ↓ pAktT308 (50-80%), ↓ p4EBP1 (60-90%)
MAPK pathway inhibition in tumors: ↓ pERK (40-80%)

GDC-0980 PI3K/mTOR ✓ ✓ ↓ pAkt in platelet rich plasma

NVP-BKM120 PI3K ✓ ✓ ✓

↑ in C-peptide (with associated ↑ glucose)
↓ pS6 in skin (40-85% in most pts treated at 80-150mg doses)
↓ in FDG-PET uptake in most pts (≥ 25% in 10 pts)

XL147 PI3K ✓ ✓ ✓ ✓ ✓

Minor ↑ in plasma insulin (no effect on glucose)
PI3K pathway inhibition in hair & skin across doses including MTD
Robust PI3K pathway inhibition across diverse tumor types:
- ↓ pAktT308 (40-80%), ↓ p4EBP1 (60-90%)
MAPK pathway inhibition in tumors: ↓ pERK (40-60%)

PX-866 PI3K ✓ ✓ PI3K pathway inhibition in PBMCs (pS6 and p-mTOR)

CAL-101 PI3K
- p110δ specific ✓ Robust PI3K pathway inhibition in CLL cells: ↓ pAktT308 (70-90%)

MK-2206 Akt ✓ ✓

PI3K pathway inhibition in whole blood pAkt at all dose levels
Robust PI3K pathway inhibition in tumor: ↓ pAkt up to 90% in 5/7 paired 
samples

OSI-207 mTOR (mTORC1 & 
mTORC2) ✓ mTOR pathway inhibition in PBMCs: ↓ p4EBP1 (>60% in most patients)
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CA, US), and LY2780301 (Eli Lilly and Company, 
Indianapolis, IN, US).

mtOr kinase inhibitors

A new variety of mTOR inhibitor has recently 
emerged. They are ATP-competitive inhibitors and thus 
target the kinase domain of mTOR, repressing both 
mTORC1 and mTORC2 activity. Therefore, they share 
more in common with the dual PI3K/mTOR inhibitors 
than the rapalogs in terms of their mechanism-of-action. In 
turn, this should mitigate the paradoxical PI3K activation 
consequent to de-repression of the negative feedback 
seen with rapalogs. Despite this advantage, interesting 
preclinical data of two such agents (PP242 and PP30) 
suggests that they have more substantial antiproliferative 
actions than rapamycin not because of the mTORC2 
effects but rather because they are more effective in 
suppressing mTORC1 [79]. Other agents in this group 
include WAY-600, WYE-687, and WYE-354, the latter of 
which has displayed robust antitumor activity in PTEN-
null tumor xenografts [80].

AZD8055 (Astra Zeneca, London, UK), OSI-027 
(OSI Pharmaceuticals, Melville, NY, US) and INK128 
(Intellikine, La Jolla, CA, US) are the first mTOR kinase 
inhibitors to enter clinical trials [81]. Preliminary data 
from a phase I trial of OSI-027 was presented at the 46th 
ASCO annual meeting [82]. Only 43 patients have been 
treated across 3 dosing schedules thus far. DLTs of fatigue 
and a decrease in cardiac left ventricular ejection fraction 
have been noted, but the most common side effects have 
been fatigue, anorexia and nausea. Stable disease has been 
the best response to date, although tumor shrinkage has 
been seen in a patient with colorectal cancer and another 
with a parotid adenoidcystic cancer.

bIOmArKErs

Biomarker studies are becoming increasingly 
incorporated into early phase clinical trials. This is 
largely true for the phase I trials of PI3K pathway 
inhibitors described above where various predictive 
and pharmacodynamic (PD) biomarkers have been 
explored. PD biomarkers are markers of drug effect that 
assess for target inhibition and pathway downregulation. 
They necessitate assessment prior to and following an 
intervention to detect a change from baseline; a correlation 
with clinical activity is not implied but is desirable. A 
number of different biological tissues have been acquired 
from patients on these trials in order to perform these 
biomarker studies (summarized in table 2). Predictive 
biomarkers predict the efficacy (or lack thereof) of a 
particular treatment in a given clinical scenario (discussed 
below).

In the clinical trials of PI3K inhibitors where 

preliminary PD outcomes have been reported, diminution 
in pathway readouts has been observed, giving reassurance 
that the target is being hit. For example, the XL765 and 
XL147 studies had an extensive biomarker component. 
Results have shown reduced activation of key pathway 
nodes in the order of 50-90% in both tumor and non-
tumor tissue [54,61]. However, this does not necessarily 
equate with meaningful clinical benefits. Regardless, 
translational research requires biomarker studies to 
further knowledge and to assist in finding solutions to 
clinical problems or disappointments, and often raises 
new questions of interest. Indeed, the reduction in pERK 
(a marker of MAPK pathway activity) noted in tumors of 
patients treated with XL765 and XL147 was unexpected, 
raising the possibility of hitherto unrecognized crosstalk 
between the PI3K and MAPK pathways [54,61]. 

At present, an important concern is that many 
biomarker assays have been neither standardized nor 
validated. They add to the cost of the trial and may involve 
invasive procedures that carry a degree of risk to the 
patient. Evaluation of PTEN status is a prime example. 
Because functional PTEN loss can occur through a variety 
of mechanisms, detection of PTEN protein expression by 
immunohistochemistry (IHC) on tumor samples is the 
preferred method. However, the antibodies used to stain 
samples are not uniform between laboratories, nor has 
a definitive cut-off been defined below which PTEN is 
considered to be lost. Further, the adequacy of archival 
compared to fresh tissue has not been delineated. And 
given that tumor samples are often small and difficult to 
obtain, how biomarker studies ought to be prioritized is 
not clear. 

One solution is to find adequate surrogate markers. 
Imaging modalities provide an option. Patients on the 
NVP-BKM120 trial underwent FDG-PET scans. Reduced 
PET avidity in was seen in lesions of most patients [60]. 
This seems encouraging, but whether it represents true anti-
cancer activity or merely the impact that PI3K inhibition 
has on glucose homeostasis remains to be seen. Biomarkers 
detectable in peripheral blood have the advantage of being 
minimally invasive and accessible for repeat samples. 
Mechanism-based toxicities of PI3K/Akt/mTOR inhibitors 
that could potentially be used as PD biomarkers include 
hypertriglyceridemia and hyperglycemia [83]. The NVP-
BZ235 and BKM-120 trials found an increase in plasma 
C-peptide levels following treatment as a surrogate for 
the insulin resistance anticipated from pathway inhibition 
[53,60]. Also, a reduction in pAkt was seen in platelet-rich 
plasma obtained from patients treated with GDC-0980 
[55]. These are promising examples, but require further 
analysis. Regardless, provided biomarker studies are 
employed with careful forethought and selectivity, their 
place in clinical trials is justified.

FUtUrE strAtEGIEs
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The preliminary clinical data from phase I trials 
presented to date have not demonstrated significant 
response rates with any of the inhibitors when employed 
as single agent therapy. The potential reasons for this 
finding include poor patient selection, inadequate dosing 
schedules, and resistance mechanisms.

Regarding patient selection, strong preclinical 
work has suggested that those patients whose tumors 
harbor genetic aberrations that result in increased PI3K 
pathway activity should be most sensitive to these agents 
[52,62,70,84]. Indeed, many of the clinical studies have 
retrospectively analyzed pathway genetics sourced from 
archival or fresh tumor tissue (in particular, but not 
restricted to, PTEN and PIK3CA status). However, the 
majority of patients with detected PTEN loss or PIK3CA 

mutations have not responded to monotherapy. In addition, 
the few confirmed clinical responses seen have occurred 
in both those with and those without PI3K pathway 
activating mutations. Nonetheless, it seems a reasonable 
strategy to enrich patient populations with those harboring 
such genetic changes and prospective analysis of these 
potential predictive biomarkers should be employed.

A second area of contention relates to dosing 
schedules. PD biomarker studies have shown robust PI3K 
pathway inhibition following treatment but complete 
pathway shutdown is not achieved. There is ongoing 
discussion regarding whether this is an inadequate 
strategy. Intermittent dosing schedules employing higher 
doses for shorter durations (thus potentially minimizing 
the risk of cumulative toxicity) may boost the clinical 

table 3: Phase I clinical trials of PI3K pathway inhibitors in combination with targeted agents and chemotherapeutics. 
Legend: HEr2 - human epidermal growth factor receptor 2; Hr - hormone receptor; NHL – non-Hodgkin’s lymphoma; 
cLL – chronic lymphocytic leukemia.

Target Agent Study Population Combination Clinical Trial

PI3K/mTOR NVP-BEZ235 Advanced breast cancer HER2 + Trastuzumab NCT00620594

XL765
Advanced solid tumors and non-small cell lung cancer Erlotinib NCT00777699

High-grade gliomas Temozolomide NCT00704080

pan-PI3K
NVP-BKM120 

Advanced breast cancer HER2 + Trastuzumab NCT01132664

Advanced solid tumors with RAS/RAF mutations and 
triple negative breast cancer GSK1120212 (MEK inhibitor) NCT01155453

XL147

Advanced solid tumors Erlotinib NCT00692640

Advanced solid tumors Paclitaxel and Carboplatin NCT00756847

Advanced breast cancer HER2 + Trastuzumab or Paclitaxel 
and Trastuzumab NCT01042925

Advanced breast cancer HR + Letrozole NCT01082068

GDC-0941 

Advanced solid tumors and non-small cell lung cancer Erlotinib NCT00975182

Advanced non-small cell lung cancer
Paclitaxel and Carboplatin
with or without 
Bevacizumab

NCT00974584

Advanced breast cancer HER2 + Trastuzumab-MCC-DM1 NCT00928330

Advanced breast cancer Paclitaxel and Bevacizumab NCT00960960

Advanced solid tumors GDC-0973 (MEK inhibitor) NCT00996892

PI3K - p110δ specific CAL-101 Indolent B-cell NHL or CLL Bendamustine and 
Rituximab NCT01088048

Akt

MK-2206

Advanced solid tumors Paclitaxel and Carboplatin or 
Docetaxel or Erlotinib NCT00848718

Advanced breast cancer HER2 + Trastuzumab and Lapatinib NCT00963547

Advanced solid tumors AZD6244 (MEK inhibitor) NCT01021748
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outcomes if 100% pathway inhibition can be attained.
A third strategy that is well underway is the use of 

drug combinations. Signaling pathways in human cancer 
are complex. Frequent cross-talk and feedback loops 
add to complexity and promote avenues for resistance. 
Except for the relatively uncommon scenario of genuine 
oncogenic addiction, it seems unlikely that blocking a 
single pathway will be sufficient to switch off the drive 
for malignant growth and progression in a tumor. There 
is much optimism that use of rationale drug combinations 
should overcome some of these deficiencies. This 
could imply any of the drug classes described here co-
administered with either targeted therapies against RTKs, 
key nodes in parallel pathways, or cytotoxic agents.

The rapalogs have shown early encouraging data. 
PI3K pathway activation has been found to lead to 
resistance to trastuzumab in HER2-overexpressing breast 
cancer [52]. Accordingly, studies have investigated adding 
everolimus to trastuzumab and paclitaxel in women 
with prior resistance to the latter two agents. Confirmed 
partial responses were seen in 20% of subjects and 
stable disease in a further 56% in a phase II study [85]. 
The same strategy has been evaluated in a phase I trial 
of everolimus, trastuzumab and vinorelbine, achieving a 
disease control rate of 80% (37 of 46 evaluable patients) 
[86]. The combination of a rapalog (ridaforolimus) 
and a monoclonal antibody targeting the IGF1-R 
(dalotuzumab, MK-0646) has been studied in a phase I 
trial of patients with solid tumors [87]. Stomatitis was the 
DLT. Importantly, partial responses were seen in 6 of 62 
patients (10%), despite the relatively poor response rates 
of either agent as monotherapy, supporting the notion 
that combinations can lead to better outcomes. There are 
many more combinations with rapalogs currently under 
evaluation. 

Amongst the PI3K pathway inhibitors, a host of 
phase I studies evaluating combination strategies are 
underway. As seen in table 3, co-administration with 
either molecular targeted therapies, as well as cytotoxic 
agents, is being evaluated. Finally, there is some evidence 
showing that inhibition of the PI3K pathway can lead 
to hyperactivation of the MAPK pathway, and hence 
combinations of PI3K inhibitors and MEK inhibitors may 
be a promising therapeutic strategy. 

cONcLUsION

The rapalogs provide one avenue for inhibiting the 
PI3K/Akt/mTOR pathway. They have had some success 
but left much room for improvement. As the newer agents 
progress through clinical evaluation – inhibitors of PI3K, 
Akt, and mTOR kinase inhibitors – the early findings 
suggest the drugs are relatively well tolerated and that 
pathway downregulation is being achieved. However, 
there have been relatively few clinical responses, even 
amongst those patients with PTEN loss or activating 

mutations of PI3K. Irrespective, investigators are devising 
and employing new strategies to enhance outcomes, in 
particular by enriching patient populations and testing a 
multitude of drug combinations based on sound rationale. 
In addition, agents targeting other components of the 
pathway are under development. These include PDK1 
inhibitors (to prevent AktT308 phosphorylation and non-
PI3K dependent phosphorylation of other kinases that can 
promote cancer progression), SHIP agonists (to promote 
PIP3 degradation), and heat shock protein inhibitors (Akt 
is a client protein of the molecular chaperone). Given 
the importance of the PI3K pathway in the malignant 
phenotype, further optimization of the clinical use of 
these new compounds in the coming years is warranted 
and should lead to better patient outcomes.
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