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ABSTRACT

Next-generation sequencing technology enables us to analyze the complexity of 
intra- and inter-tumoral heterogeneity, which may influence to prognosis of cancer 
patients. In this study, we collected surgically-resected tumor tissues from five breast 
cancer patients and characterized three different portions of individual tumors through 
somatic mutation analysis by whole exome sequencing, T cell receptor beta (TCRB) 
repertoire analysis of tumor-infiltrating lymphocytes (TILs), and the expression 
analysis of immune-related genes at 15 different sites. This integrated analysis revealed 
distinguished patterns of somatic mutations and TIL clonotypes in the three portions of 
each tumor, implying that the tumor heterogeneity is comprised by spatially different 
somatic mutations as well as the presence of diverse T cell clones. Furthermore, higher 
numbers of the non-synonymous somatic mutations were significantly correlated with 
the higher ratio of GZMA/TCRB expression (P = 0.0004), implying that high somatic 
mutation load in tumor might be correlated to the number of immunogenic antigens 
and then functionally activate TILs with higher cytolytic activity. Our findings suggest 
that breast cancers comprise with very complex tumor heterogeneity by the spatially 
different mutational landscape and immune microenvironment, and that mutation/
neoantigen load may be strongly correlated with induction of cancer-specific TILs and 
affect the immune microenvironment in breast tumors.

INTRODUCTION

Breast cancer is the most common female cancer 
and the second leading cause of cancer death among 
women in the United States. Although the 5-year 
disease-specific survival has been improved from 
74.6 % in 1975 - 1979 to 90.6 % in 2006 [1] due to 
development of an early-detection screening systems as 
well as systemic treatments, some breast cancer cases 
are still detected at an advanced stage and show a higher 
mortality rate due to drug resistance and a high rate of 
recurrence [2].

The intra-tumoral heterogeneity in cancers is often 
a subject to discussion when molecular targeted therapies 
are not effective for all selected patients [3, 4]. Recently, 
the whole exome sequencing approach from multiple 
sites of individual tumors has revealed remarkable intra-
tumoral heterogeneity in terms of the mutational landscape 
in several types of cancer, which harbors evolutionally 
accumulated somatic mutations in individual tumor 
regions [5, 6]. Therefore, in-depth characterization and 
understanding of such molecular diversity in different 
tumor regions may improve diagnosis and design of 
effective treatment strategies.
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Tumor-infiltrating lymphocytes (TILs) are known to 
be one of the important prognostic factors in various types 
of human cancer [7, 8]. Currently, immunohistochemical 
analysis including CD3 and CD8 staining is widely used 
to evaluate infiltration of T cells into tumors, and flow 
cytometry analysis enables us to perform the quantification 
of T cell subpopulations [9]. However, these approaches 
are still far from detailed characterization of extremely 
diverse T cell repertoires which may recognize a wide 
variety of cancer-specific antigens. Therefore, aiming 
to the comprehensive analysis of T cell clonality and 
activities in tumors, we established and applied our T cell 
receptor (TCR) repertoire analysis method with a next-
generation sequencer using RNAs extracted from blood, 
ascites and tumors [10–14].

In the present study, we unraveled intra- and inter-
tumoral heterogeneity in multiregional samples from 5 
breast cancer patients through TCR sequencing, whole 
exome analysis as well as expression analysis of immune-
related genes. Here, we report that TILs in individual 
regions had unique characteristics along with somatic 
mutation patterns. We also found the HLA-A expression 
level in tumors may have a correlation to higher cytolytic 
activity of TILs as well as the composition of TCR 
repertoire in tumors. Given these findings, deciphering the 
tumor heterogeneity in both genetics and immune aspects 
may have important implications for future biomarker 
discovery and cancer treatments by identification of 
neoantigens and their corresponding T cell clones.

RESULTS

Intra-tumoral genetic heterogeneity in three 
different portions of breast cancer

To examine intra- and inter-tumoral genetic 
heterogeneity in breast cancer tissues, we performed the 
whole-exome sequencing using genomic DNAs extracted 
from three separated portions (A, B, C) of surgically-
resected tumors. The clinical characteristics of all patients 
are summarized in Table 1. We obtained an average 

sequencing depth of 82.3× per base, and identified a 
total of 498 non-silent mutations and insertions/deletions 
(indels) (15-252 mutations per sample, Supplementary 
Table 1). We found that 1.6% - 52.9% of somatic 
mutations, including well-known cancer driver genes 
such as PIK3CA and TP53 that have been reported to 
be generally common in parental clones in many types 
of cancer, were shared among three portions (Figure 1 
and Supplementary Figure 1) [15–18]. In contrast, 
some portions of cancer tissues such as BC1-A, BC2-A 
and BC5-A had their unique mutations including DNA 
mismatch repaired genes, SETX and ERCC4 (Figure 1), 
which might be acquired during the clonal evolution for 
cancer cells and contributed to high genetic intra-tumoral 
heterogeneity in these tumor portions. We subsequently 
selected only non-synonymous mutations (Figure 2A) to 
examine correlation between the genetic heterogeneity 
and immune signature in each tumor sample. With respect 
to predicted potential neoantigen epitopes, which were 
generated by non-synonymous somatic mutations, we 
identified 0 to 51 potential neoantigen candidates (the 
binding affinity to either of HLA-A, B and C molecules 
of less than 500 nM, an average number of 22.9) in each 
tumor portion (Supplementary Figure 2). We detected 
unique neoantigens in each portion of individual tumor, 
whereas in two of five cases (BC2 and BC4), we found 
neoantigens which were shared by all three portions.

Heterogeneity of TCR repertoire and immune-
related gene signature in three different portions 
of breast cancer

To further characterize T cell repertoire and their 
relationship with the intra-tumoral heterogeneity of breast 
cancer, we performed TCRB repertoire analysis using the 
next generation sequencing method and estimated the 
frequency of individual TCRB CDR3 clonotypes. Through 
cDNA sequencing of TCRB, we obtained total sequence 
reads of 2,481,978 ± 1,744,671 (average ± one standard 
deviation) mapped to V, D, J, and C segments for TCRB. 
From these TCRB reads, we identified 80,604 ± 87,011 

Table 1: Clinical information of 5 breast cancer patients

Patients Age Subtype
Tumor 

size
(mm2)

Menopause Birth 
history

Neo-hormone 
therapy Procedure Pathology Stage Recurrence Status

Follow-up 
duration

(dy)

BC1 72 TNBC 29 × 15 post 3 - LtBt Lobular carcinoma 2B
+

(bone 
metastasis)

Alive 614

BC2 94 TNBC 19 × 10 post 4 - RtBp Scirrhous carcinoma 2A - Alive 359

BC3 41 Luminal A 20 × 15 pre 3 - LtBt Scirrhous carcinoma 2A - Alive 685

BC4 47 Luminal A 19 × 10 post 0 - LtBt Scirrhous carcinoma 2A - Alive 703

BC5 75 Luminal A 15 × 8 post 2 Aromatase
Inhibitor LtBt Scirrhous carcinoma 2A - Alive 720

TNBC: triple-negative breast cancer, Luminal A: luminal A type of breast cancer, Lt: left, Rt: right, Bt: total mastectomy, Bp: partial mastectomy.
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unique CDR3 clonotypes for TCRB (Supplementary Table 
2) and calculated the TCRB diversity index in each portion 
of tumors (Figure 2B). After sorting out the most abundant 
100 CDR3 clonotypes according to their frequencies in 
tumor tissue samples (Figure 2B), we found common 
CDR3 clonotypes (detected in all three portions) as well 
as spatially unique CDR3 clonotypes (detected in only one 
portion), indicating the intra-tumoral heterogeneity in the 
immune signature. Similarly, gene expression analysis of 
immune-related genes showed distinguished expression 
patterns of multiple immune-related genes, such as TCRB, 
CD4, CD8, FOXP3, granzyme A (GZMA), perforin 1 
(PRF1), HLA-A and HLA-DQA1, and the ratios of CD8/
TCRB, GZMA/TCRB, PRF1/TCRB, FOXP3/TCRB and 
CD8/FOXP3 among three different portions in individual 
tumors (Figure 2C), further suggesting that the immune 
microenvironment is spatially heterogeneous in these five 
breast cancer cases.

Clustering analysis to assess intra-tumoral 
heterogeneity between somatic mutations and 
TCRB repertoires in breast cancer

To address the correlation between the intra-tumoral 
heterogeneity in somatic mutation patterns and that in 
TCRB repertoires among the three tumor portions, we 
conducted unsupervised clustering analysis by calculating 
the similarity index (SI) of somatic mutation profiles as 
well as TCRB profiles in the three portions. As shown in 
Figure 3A, while common somatic mutations in all three 
portions (clonal mutations) were detected, some mutations 
were uniquely observed in one or two tumor portions 
(subclonal mutations). Proportions of the subclonal 
mutations varied among the patients as 64.3 ± 21.2 %. 
Interestingly, 61 of 62 mutations were subclonal mutations 
in the BC5 case, indicating the very high level of the intra-
tumoral heterogeneity probably due to clonal selection of 

Figure 1: Genetic intra-tumoral heterogeneity in five breast tumors. Multiregional profiles of mutations were visualized as 
heat maps (blue colored genes: driver gene mutations in many types of cancers including breast cancer; red colored genes: DNA mismatch 
repair genes). ASH1L: ASH1 Like Histone Lysine Methyltransferase; BPTF: Bromodomain PHD Finger Transcription Factor; BRCA2: 
Breast Cancer Susceptibility gene II; COL1A1: Collagen Type I Alpha I chain; CREBBP: CREB Binding Protein; ERCC4: ERCC excision 
repair 4; GATA3: GATA Binding Protein 3; HLA-A: Human Leukocyte Antigen A; HLA-B: Human Leukocyte Antigen B; MED12: Mediator 
Complex Subunit 12; MED23: Mediator Complex Subunit 23; MTOR: Mechanistic target of rapamycin; PIK3CA: Phosphatidylinositol-
4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha; SETX: Senataxin; SPOP: Speckle Type BTB/POZ Protein; TP53: Tumor Protein 53.
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resistant cancer cell subpopulations through pre-treatment 
of aromatase inhibitor. The clustering patterns based on 
TCRB repertoires of the three different portions (Figure 
3B) were quite similar to those based on somatic mutations 
in two cases (BC3 and BC4) where common somatic 
mutations were more frequently detected. In contrast, 
other three cases (BC1, BC2 and BC5) showed different 
clustering patterns between somatic mutations and TCRB 
clonotypes. To clarify this inconsistency, we examined 
the HLA-A expression level as HLA class I molecules are 
required for the presentation of tumor-associated antigens 
to cytotoxic CD8+ T cells. Interestingly, we found the 
transcriptional level of HLA-A was significantly lower 
in the three cases that showed the inconsistency between 
the clustering patterns of somatic mutations and those 
of TCRB repertoires (P = 0.02, Figure 3C). The HLA-A 
expression level also showed a positive correlation with 

CD8, GZMA and PRF1 expression levels in tumors 
(Supplementary Figure 3). Therefore, these results 
indicated that HLA-A expression could be one of important 
determinants to define immune microenvironment.

Correlation between non-synonymous somatic 
mutations and immune-related gene expressions

To analyze a relationship between non-synonymous 
somatic mutations and immune microenvironment, we 
compared the number of non-synonymous mutations 
with mRNA expression levels of immune-related genes 
(Figure 4). The non-synonymous mutation load showed 
a strong positive correlation with GZMA/TCRB ratio 
(Figure 4A), indicating that higher numbers of somatic 
mutation were correlated with higher cytolytic activity of 
T cells, likely to be CD8+ cells. We also found the higher 

Figure 2: Integrated analysis of non-synonymous mutations, TCRB repertoire and immune-related gene expression 
levels for intra-tumoral heterogeneity. Integrated data from three different portions (A, B, C) of the five breast tumors. (A) 
Commonality of non-synonymous mutations. (B) TCRB diversity index (DI) and heatmaps of TCRB CDR3 clonotypes which were sorted 
according to their frequencies (higher to lower) in the order of tumor portions, (A, B and C). (C) the transcriptional levels of immune-
related genes. The expression level of each gene was calculated relative to that of GAPDH.
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Figure 3: Clustering analysis of the multiregional non-synonymous mutation profiles and TCRB repertoires. Three 
different portions of individual tumors were shown as hierarchical clustering by calculating their similarity in the datasets of non-
synonymous mutations (A) and TCRB repertoires (B). Vertical length of dendrogam indicates the similarity between two datasets. (C) 
Comparison of HLA-A expression levels in the three tumor tissues where clustering patterns based on somatic mutations were different from 
those based on TCRB repertoire (left) and those in tumors showing the similar clustering patterns (right).
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numbers of non-synonymous mutations were correlated 
with higher ratio of an immune suppressive marker 
FOXP3/TCRB along with lower CD8/FOXP3 ratio (Figure 
4B, 4C), which might reflect counter-immunosuppressive 
mechanisms to protect cancer cells from a host immure 
attack. These results indicated a possibility that 
accumulation of non-synonymous mutations probably 
caused higher cytolytic activity of infiltrated TILs along 
with immune escape mechanism by cancer cells.

DISCUSSION

Drug resistance is one of the most important 
issues in the clinical management of cancer patients at 
an advanced stage or with recurrent metastatic tumors. 
Genetic heterogeneity within or between tumors as 
well as their tumor microenvironment are considered 
to play critical roles in the drug resistance. By means 
of next generation sequencing technologies, we are 

able to examine intra- and inter-tumoral heterogeneity 
in depth [5, 6]. However, such heterogeneity has been 
focused on somatic mutational landscapes, but not much 
on the immune environment. Hence, in this study, we 
characterized the T cell repertoires of tumor-infiltrating 
lymphocytes and expression levels of immune-related 
genes, and compared them with somatic mutation 
profiles of three separated portions of individual tumor 
tissues and found some evidences that may evoke further 
understanding of various aspects of the heterogeneity in 
breast tumors.

Firstly, TILs revealed a relatively large diversity 
among the different portions in a single tumor according 
to somatic mutation profiles. In addition, the clustering 
analysis showed the similarities between TCRB clonal 
patterns and non-synonymous mutational patterns in two 
cases (BC3 and BC4), but in the remaining three cases, 
BC1, BC2 and BC5, the clustering patterns based on non-
synonymous mutation among three portions were different 

Figure 4: Correlation analysis between non-synonymous mutations and the mRNA expression level of immune-related 
genes in tumors. Correlation of non-synonymous mutation loads in five breast tumors (N = 15) to the ratios of (A) GZMA/TCRB (B) 
FOXP3/TCRB (C) CD8/FOXP3.
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from those based on TCRB clonotypes. Interestingly, 
we found that HLA-A expression levels in these three 
cancer tissues were very low. Hence, we considered poor 
immune responses (particularly CD8 responses) in these 
cancer tissues, and then the clustering patterns based on 
T cell clonotypes lost the correlation with those based on 
non-synonymous mutations. We previously reported that 
intra-tumoral high expression of HLA-A might be one of 
the predictive markers for clinical responses to anti PD-1 
therapy in metastatic melanoma [19]. Given that CD8+ 
T cells play a central role in cancer immunosurveillance 
and the loss or down-regulation of HLA class I molecule 
expression is one of major immune escape mechanisms 
of cancer cells [20, 21], our findings collectively indicate 
that HLA class I expression levels should be considered 
as one of important determinants for the intra-tumoral 
heterogeneity of TILs.

Secondly, likely as The Cancer Genome Atlas 
(TCGA) data which showed the correlation between the 
increasing somatic mutation burden and T cell effector 
function [22], we confirmed that higher non-synonymous 
mutation load was significantly correlated with higher 
cytolytic activity of T cells as shown by increasing 
GZMA/TCRB expression ratio. We also found higher 
FOXP3/TCRB ratio in tumor portions was significantly 
correlated with higher mutation load, which indicates a 
kind of immune balance between the cytolytic T cells 
and regulatory T cells in these tumors where immune 
checkpoint blockades may effectively work by activating 
pre-existing anti-cancer immunity.

In summary, our integrated analysis from three 
different portions in individual tumors demonstrated 
that not only somatic mutational profiles, but also T cell 
clonotypes and expression levels of immune-related genes, 
which define immune microenvironment, revealed the 
relatively high levels of heterogeneity. Our data clearly 
indicate that the accumulation of integrated analysis of 
somatic mutation profiles and characterization of immune 
microenvironment is critically important in the further 
understanding of human cancers.

MATERIALS AND METHODS

Study design

Between January 2015 and March 2015, a total 
of five breast cancer patients were enrolled in this 
study and received surgery. Four cases had received no 
treatment before surgery and one had received letrozole 
and exemestane (aromatase inhibitors) for 3 months and 
1.5 months respectively. The clinical characteristics of all 
patients are summarized in Table 1.

The study protocol was approved by the Institutional 
Review Board of University of Chicago (approval number 
13-0797 and 13-0526) and Hyogo College of Medicine 

(approval number 106). All patients provided written 
informed consents.

Whole-exome sequencing and data analysis

We selected three cancer cell-enriched portions 
from each of five frozen tumor tissues, and extracted 
genomic DNAs and total RNAs using AllPrep DNA/RNA 
mini kit (Qiagen, Valencia, CA). As germline control 
DNAs, genomic DNAs were extracted from peripheral 
blood mononuclear cells (PBMCs). Whole-exome 
libraries were prepared from 1,000 ng of genomic DNAs 
using SureSelectXT Human All Exon V5 kit (Agilent 
Technologies, Santa Clara, CA) and the prepared whole-
exome libraries were sequenced by 100-bp paired-end 
reads on HiSeq2500 Sequencer (Illumina, San Diego, CA).

In the analysis of sequencing data, we firstly 
excluded low-quality reads (base quality of < 20 for 
more than 80% of bases) using FASTX toolkit (http://
hannonlab.cshl.edu/fastx_toolkit/), and mapped sequence 
reads to the human reference genome GRCh37/hg19 using 
Burrows-Wheeler Aligner (BWA) (v0.7.10) [23]. Possible 
PCR duplicated reads were removed using Picard v1.91 
(http://broadinstitute.github.io/picard/), and read pairs 
with a mapping quality of < 30 and with mismatches of 
more than 5% of nucleotides were also excluded. Finally, 
somatic variants (single nucleotide variations (SNVs) and 
indels) were called using the Fisher’s exact test-based 
method with the following parameters, (i) base quality of 
≥ 15, (ii) sequence depth of ≥ 10, (iii) variant depth of ≥ 
2, (iv) variant frequency in tumor of ≥ 10%, (v) variant 
frequency in normal of < 2%, and (vi) Fisher P value of 
< 0.05.[24] SNVs and indels were annotated based on 
RefGene using ANNOVAR as previously described [25, 
26].

Prediction of neoantigens

Based on whole-exome sequence data from the 
germline DNAs of breast cancer patients, HLA class I 
genotypes were estimated by OptiType algorithm [27]. 
Then, non-synonymous somatic mutations identified 
through the whole-exome sequencing data of 15 tumor 
samples were utilized for the prediction of the HLA 
genotypes-restricted neoantigens. Briefly, we examined 
all 8- to 11-mer peptides harboring each substituted 
amino acid by applying the filtering with the predicted 
binding affinity to HLA-A, B and C of <500 nM, using 
NetMHCv3.4 and NetMHCpanv2.8 software [11, 28–30].

TCR sequencing and data analysis

Total RNAs from tumor tissues were isolated 
using AllPrep DNA/RNA Mini kit (Qiagen). Sequencing 
libraries of TCRB were prepared as described previously 
[11, 30] and subjected to sequencing on the Illumina 
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Miseq platform, using 600 cycles Miseq Reagent Kit V3 
(Illumina).

To identify V, D, J and C segments in individual 
TCRB sequencing reads, each of the sequence reads in 
FASTQ files were mapped to the reference sequences 
provided by IMGT/GENE-DB [31] using Bowtie2 aligner 
(Version 2.1.0) [32, 33]. To define amino acid sequences 
of complementarity determining region 3 (CDR3) in the 
TCRB, raw FASTQ files were also analyzed using Tcrip 
software [30].

Gene expression analysis

cDNA was synthesized from tumor-derived RNAs 
using Superscript III first-strand synthesis kit (Invitrogen, 
Carlsbad, CA). The expression level of immune-related 
genes, TCRB, CD4, CD8, FOXP3, GZMA, PRF1, 
HLA-A and HLA-DQA1, were measured by real-time 
RT-PCR using Taqman gene expression assay (Life 
Technologies, Grand Island, NY) in the ABI ViiA 7 system 
(Applied Biosystems, Foster City, CA), according to the 
manufacturer’s instructions.

Clustering analysis

To examine similarity (or distance) of datasets 
from the 3 different breast tumor regions, we conducted 
unsupervised hierarchical clustering analysis using 
Cluster 3.0 and TreeView software [34]. Briefly, the 
similarity metric was computed by the Pearson correlation 
coefficient of each somatic mutation or TCRB clonotypes, 
which then generated similarity index (SI) between two 
datasets based on the mean of all pairwise distances 
between two items (average linkage method). According 
to the SI and clustered nodes, dendrogram figures were 
generated by TreeView software.

Statistical analysis

The diversity index (inverse Simpson’s index) in 
CDR3 sequences was calculated as follows:

Where K is the total number of CDR3 clonotypes, ni is 
the number of sequences belonging to the i-th clonotype, 
and N is the total number of identified CDR3 sequences.

Pearson correlation (R) was used to analyze the 
association between all parameters examined. Statistical 
analysis was carried out using GraphPad Prism version 6.0 
(GraphPad software, La Jolla, CA). P value of < 0.05 was 
considered to be statistically significant.

Author contributions

Y.N. planned and supervised the entire project; J.P. 
provided the study design and the working hypothesis and 
completed the article; T.K. designed the study, conducted 
experiments, performed data analysis, and drafted the 
article; K.K. and Y.I. conducted data analysis and provided 
scientific advice; Y.M. provided the study design, provided 
scientific advice and completed the article.

ACKNOWLEDGMENTS

We thank Drs. Rui Yamaguchi, Seiya Imoto, and 
Satoru Miyano in The University of Tokyo for developing 
the algorithm of TCR repertoire analysis and helpful 
support in data management. The super-computing 
resource (http://sc.hgc.jp/shirokane.html) was provided by 
Human Genome Center, the Institute of Medical Science, 
The University of Tokyo.

CONFLICTS OF INTEREST

We have no potential conflicts of interest related to 
this study.

REFERENCES

1. Chen L, Linden HM, Anderson BO, Li CI. Trends in 5-year 
survival rates among breast cancer patients by hormone 
receptor status and stage. Breast Cancer Res Treat. 2014; 
147:609-616.

2. Marquette C, Nabell L. Chemotherapy-resistant metastatic 
breast cancer. Curr Treat Options Oncol. 2012; 13:263-275.

3. Russnes HG, Navin N, Hicks J, Borresen-Dale AL. Insight 
into the heterogeneity of breast cancer through next-
generation sequencing. J Clin Invest. 2011; 121:3810-3818.

4. Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: 
implications for targeted therapeutics. Br J Cancer. 2013; 
108:479-485.

5. Uchi R, Takahashi Y, Niida A, Shimamura T, Hirata 
H, Sugimachi K, Sawada G, Iwaya T, Kurashige J, 
Shinden Y, Iguchi T, Eguchi H, Chiba K, et al. Integrated 
Multiregional Analysis Proposing a New Model of 
Colorectal Cancer Evolution. PLoS genetics. 2016; 
12:e1005778.

6. Makohon-Moore AP, Zhang M, Reiter JG, Bozic I, Allen 
B, Kundu D, Chatterjee K, Wong F, Jiao Y, Kohutek ZA, 
Hong J, Attiyeh M, Javier B, et al. Limited heterogeneity 
of known driver gene mutations among the metastases of 
individual patients with pancreatic cancer. Nat Genet. 2017; 
49:358-366.

7. Jochems C, Schlom J. Tumor-infiltrating immune cells and 
prognosis: the potential link between conventional cancer 
therapy and immunity. Exp Biol Med (Maywood). 2011; 
236:567-579.

1
1

1

1

1

/
( )

( )
D

n n
N NS
i

K
i i=

−

−















=

−

∑



Oncotarget62037www.impactjournals.com/oncotarget

8. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo 
F, Rouas G, Francis P, Crown JP, Hitre E, de Azambuja E, 
Quinaux E, Di Leo A, et al. Prognostic and predictive value 
of tumor-infiltrating lymphocytes in a phase III randomized 
adjuvant breast cancer trial in node-positive breast cancer 
comparing the addition of docetaxel to doxorubicin with 
doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol. 
2013; 31:860-867.

9. Brown M, Wittwer C. Flow cytometry: principles and 
clinical applications in hematology. Clin Chem. 2000; 
46:1221-1229.

10. Park JH, Jang M, Tarhan YE, Katagiri T, Sasa M, Miyoshi 
Y, Kalari KR, Suman VJ, Weinshilboum R, Wang L, 
Boughey JC, Goetz MP, Nakamura Y. Clonal expansion of 
antitumor T cells in breast cancer correlates with response to 
neoadjuvant chemotherapy. Int J Oncol. 2016; 49:471-478.

11. Choudhury NJ, Kiyotani K, Yap KL, Campanile A, Antic 
T, Yew PY, Steinberg G, Park JH, Nakamura Y, O'Donnell 
PH. Low T-cell Receptor Diversity, High Somatic Mutation 
Burden and High Neoantigen Load as Predictors of Clinical 
Outcome in Muscle-invasive Bladder Cancer. European 
Urology Focus. 2015; 2:445-452.

12. Tamura K, Hazama S, Yamaguchi R, Imoto S, Takenouchi 
H, Inoue Y, Kanekiyo S, Shindo Y, Miyano S, Nakamura 
Y, Kiyotani K. Characterization of the T cell repertoire by 
deep T cell receptor sequencing in tissues and blood from 
patients with advanced colorectal cancer. Oncol Lett. 2016; 
11:3643-3649.

13. Jang M, Yew PY, Hasegawa K, Ikeda Y, Fujiwara K, 
Fleming GF, Nakamura Y, Park JH. Characterization of 
T cell repertoire of blood, tumor, and ascites in ovarian 
cancer patients using next generation sequencing. 
Oncoimmunology. 2015; 4:e1030561.

14. Yew PY, Alachkar H, Yamaguchi R, Kiyotani K, Fang 
H, Yap KL, Liu HT, Wickrema A, Artz A, van Besien 
K, Imoto S, Miyano S, Bishop MR, et al. Quantitative 
characterization of T-cell repertoire in allogeneic 
hematopoietic stem cell transplant recipients. Bone Marrow 
Transplant. 2015; 50:1227-1234.

15. Gonzalez-Perez A, Perez-Llamas C, Deu-Pons J, Tamborero 
D, Schroeder MP, Jene-Sanz A, Santos A, Lopez-Bigas N. 
IntOGen-mutations identifies cancer drivers across tumor 
types. Nature methods. 2013; 10:1081-1082.

16. Cancer Genome Atlas Network. Comprehensive molecular 
portraits of human breast tumours. Nature. 2012; 490:61-70.

17. Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie 
SK, Pastore A, Zhang H, McLellan M, Yau C, Kandoth 
C, Bowlby R, Shen H, Hayat S, et al. Comprehensive 
Molecular Portraits of Invasive Lobular Breast Cancer. Cell. 
2015; 163:506-519.

18. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik 
D, Zou X, Martincorena I, Alexandrov LB, Martin S, 
Wedge DC, Van Loo P, Ju YS, Smid M, et al. Landscape 

of somatic mutations in 560 breast cancer whole-genome 
sequences. Nature. 2016; 534:47-54.

19. Inoue H, Park JH, Kiyotani K, Zewde M, Miyashita A, 
Jinnin M, Kiniwa Y, Okuyama R, Tanaka R, Fujisawa Y, 
Kato H, Morita A, Asai J, et al. Intratumoral expression 
levels of PD-L1, GZMA, and HLA-A along with 
oligoclonal T cell expansion associate with response to 
nivolumab in metastatic melanoma. Oncoimmunology. 
2016; 5:e1204507.

20. Khong HT, Restifo NP. Natural selection of tumor variants 
in the generation of “tumor escape” phenotypes. Nat 
Immunol. 2002; 3:999-1005.

21. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape 
of human solid tumors from T-cell recognition: molecular 
mechanisms and functional significance. Adv Immunol. 
2000; 74:181-273.

22. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. 
Molecular and genetic properties of tumors associated with 
local immune cytolytic activity. Cell. 2015; 160:48-61.

23. Li H, Durbin R. Fast and accurate short read alignment 
with Burrows-Wheeler transform. Bioinformatics. 2009; 
25:1754-1760.

24. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, 
Yamamoto R, Sato Y, Sato-Otsubo A, Kon A, Nagasaki M, 
Chalkidis G, Suzuki Y, Shiosaka M, et al. Frequent pathway 
mutations of splicing machinery in myelodysplasia. Nature. 
2011; 478:64-69.

25. Wang K, Li M, Hakonarson H. ANNOVAR: functional 
annotation of genetic variants from high-throughput 
sequencing data. Nucleic Acids Res. 2010; 38:e164.

26. Leisegang M, Engels B, Schreiber K, Yew PY, Kiyotani K, 
Idel C, Arina A, Duraiswamy J, Weichselbaum RR, Uckert 
W, Nakamura Y, Schreiber H. Eradication of large solid 
tumors by gene therapy with a T-cell receptor targeting a 
single cancer-specific point mutation. Clin Cancer Res. 
2016; 22:2734-2743.

27. Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, 
Kohlbacher O. OptiType: precision HLA typing from 
next-generation sequencing data. Bioinformatics. 2014; 
30:3310-3316.

28. Hoof I, Peters B, Sidney J, Pedersen LE, Sette A, Lund O, 
Buus S, Nielsen M. NetMHCpan, a method for MHC class I 
binding prediction beyond humans. Immunogenetics. 2009; 
61:1-13.

29. Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl 
M, Justesen S, Roder G, Peters B, Sette A, Lund O, Buus 
S. NetMHCpan, a method for quantitative predictions of 
peptide binding to any HLA-A and -B locus protein of 
known sequence. PLoS One. 2007; 2:e796.

30. Fang H, Yamaguchi R, Liu X, Daigo Y, Yew PY, 
Tanikawa C, Matsuda K, Imoto S, Miyano S, Nakamura 
Y. Quantitative T cell repertoire analysis by deep cDNA 
sequencing of T cell receptor alpha and beta chains using 



Oncotarget62038www.impactjournals.com/oncotarget

next-generation sequencing (NGS). Oncoimmunology. 
2014; 3:e968467.

31. Giudicelli V, Chaume D, Lefranc MP. IMGT/GENE-DB: 
a comprehensive database for human and mouse 
immunoglobulin and T cell receptor genes. Nucleic Acids 
Res. 2005; 33:D256-261.

32. Langmead B, Salzberg SL. Fast gapped-read alignment with 
Bowtie 2. Nature methods. 2012; 9:357-359.

33. Lefranc MP, Giudicelli V, Kaas Q, Duprat E, Jabado-
Michaloud J, Scaviner D, Ginestoux C, Clement O, Chaume 
D, Lefranc G. IMGT, the international ImMunoGeneTics 
information system. Nucleic Acids Res. 2005; 33:D593-597.

34. Juan HF, Huang HC. Bioinformatics: microarray data 
clustering and functional classification. Methods in 
molecular biology. 2007; 382:405-416.


