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ABSTRACT:
This study aimed to improve gastric cancer (GC) diagnosis by identifying and 

validating an INflammatory PROtein-driven GAstric cancer Signature (hereafter 
INPROGAS) using low-cost affinity proteomics. The detection of 120 cytokines, 
43 angiogenic factors, 41 growth factors, 40 inflammatory factors and 10 
metalloproteinases was performed using commercially available human antibody 
microarray-based arrays. We identified 21 inflammation-related proteins (INPROGAS) 
with significant differences in expression between GC tissues and normal gastric 
mucosa in a discovery cohort of matched pairs (n=10) of tumor/normal gastric 
tissues. Ingenuity pathway analysis confirmed the “inflammatory response”, “cellular 
movement” and “immune cell trafficking” as the most overrepresented biofunctions 
within INPROGAS. Using an expanded independent validation cohort (n = 22), 
INPROGAS classified gastric samples as “GC” or “non-GC” with a sensitivity of 82% 
(95% CI 59-94) and a specificity of 73% (95% CI 49-89). The positive predictive 
value and negative predictive value in this validation cohort were 75% (95% CI 53-
90) and 80% (95% CI 56-94), respectively. The positive predictive value and negative 
predictive value in this validation cohort were 75% (95% CI 53-90) and 80% (95% CI 
56-94), respectively. Antibody microarray analyses of the GC-associated inflammatory 
proteome identified a 21-protein INPROGAS that accurately discriminated GC from 
noncancerous gastric mucosa. 

INTRODUCTION

The prognosis for most patients with gastric 
cancer (GC) is poor and has improved little over the past 
several decades [1]. Currently, GC prognosis is based on 
pathology (i.e., histological type, invasion and metastasis), 
radiological imaging (for staging) and other clinical 

factors (age and comorbidity). However, these traditional 
clinicopathological factors have significant limitations, 
and major efforts are therefore being made to develop 
molecular signature-based methods to complement the 
traditional histopathological methods for diagnosis, 
classification and prognosis in GC [2-5]. Unfortunately, 
the current molecular biomarkers of clinical GC (e.g., 
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p27, cyclin E, E-cadherin, HER2, c-Myc and p53) lack 
the sensitivity and specificity required for screening 
an asymptomatic population for the purpose of early 
detection [6-8].

With the development of microarray technologies, 
it is not surprising that the majority of molecular 
signatures for GC have been derived from gene expression 
microarray studies [9-13]. Several studies have identified 
genetic markers or gene expression profiles capable of 
distinguishing normal from malignant gastric growth, and 
these markers can aid in the prognosis and estimation of 
survival rates for GC patients. However, these signatures 
often contain large numbers of genes, which reduces 
their application in daily clinical practice. Alternatively, 
other mainstream high-throughput proteomic profiling 
techniques include gel-based methods, gel-free mass 
spectrometry (MS)-based methods and surface-enhanced 
laser desorption/ionization (SELDI) time-of-flight (TOF) 
MS, and the application of these techniques in tissue-
based clinical studies has the potential to provide efficient 
biomarkers for GC [14-20]. However, the requirement of 
sophisticated devices greatly limits their broad application 
in routine clinical practice. Moreover, technological 
limitations due to patient-to-patient variability and loss 
of signal from low-abundance proteins have negatively 
impacted the field of disease proteomics focused on 
separation techniques coupled with MS-based protein 
identification.

Routine proteomic testing in patients at risk for GC 
is not practical or realistic on a large scale. Therefore, 
other simple and inexpensive tests will be necessary 
for such purposes. The use of capture reagents such as 
antibodies in affinity proteomics has emerged as a new 
tool capable of gathering information on the global level 
in a high-throughput format using multiple versions of 
affinity reagents (e.g., full-length antibodies, aptamers, 
affibody molecules, single-chain variable fragments of 
antibodies) and various capture formats (e.g., planar 
arrays, beads, antibodies in the array format) [21,22]. 
Moreover, antibody microarray technology has rapidly 
evolved from proof-of-concept to state-of-the-art 
technology capable of targeting complex, nonfractionated 
protein samples. Therefore, antibody arrays represent 
a new paradigm for biomarker proteomics that has the 
potential to accelerate biomarker discovery and validation 
compared to traditional methods of proteomics [23-
29]. Antibody microarray-based technology, which 
can simultaneously detect the expression levels of 
multiple proteins and can combine the advantages 
of the specificity of ELISA, sensitivity of enhanced-
chemiluminescence (ECL) and high-throughput capacity 
of microspot, represents a promising tool for the field of 
oncoproteomics. One of the most important applications of 
such technology is the comparison of proteome expression 
signatures in cancerous versus normal samples. Indeed, 
an ever-growing number of publications have documented 

the suitability of sandwich-based antibody arrays; these 
arrays are the most common of the antibody arrays used 
for protein detection and can characterize differential 
protein expression patterns using various sample types 
including serum, plasma, cell conditioned media, cell and 
tissue lysates, cerebrospinal fluid, urine, abscess fluid, 
sputum, breath condensates, saliva, tears, prostatic fluids, 
milk, colostrum, etc.

We hypothesized that antibody microarray analyses 
using whole-tumor samples as a starting material for 
protein profiling might provide a functional perspective to 
the view that GC emerges from active inflammatory cross-
talk between tumor cells and the surrounding stroma. 
Thus, the interactions in the GC microenvironment 
should produce inflammation-associated proteomic 
profiles able to specifically identify the absence/presence 
of tissue malignancy [30-35]. To test the hypothesis that 
pathological processes causally linking inflammation with 
GC would produce disease-specific molecular changes 
during cancer development in the gastric mucosa, we 
herein applied the innovative, simple, flexible and cost-
effective antibody-based protein array system. The aim 
of this study was to identify a unique “oncoproteomic 
signature” in a pilot study for biomarker discovery in 
patients with GC. We focused specifically on secreted 
signaling proteins including cytokines, angiogenic 
factors, growth factors, inflammatory factors and 
metalloproteinases, as these factors constitute the primary 
means of communication between cells in our body. We 
examined 120 cytokines, 43 angiogenic factors, 41 growth 
factors, 40 inflammatory factors and 10 metalloproteinases 
simultaneously in matched pairs of tumor/normal gastric 
tissues using commercially available Human Antibody 
Arrays (RayBiotech, Inc.). This system enabled the robust 
and accurate identification of more than 250 proteins in 
an inexpensive fashion. Importantly, the experiments 
were performed in a general laboratory setting without 
any specialized equipment or special training. Using this 
approach, we successfully identified a signature of 21 
proteins for discriminating GC from noncancerous gastric 
mucosa with high sensitivity and specificity; we termed 
this signature INPROGAS (Inflammatory PROtein-driven 
GAstric cancer Signature).

RESULTS

Supervised proteomic analysis identified 
differentially expressed proteins in GC.

A supervised approach has the advantage of 
identifying proteins whose expression levels best correlate 
with clinical data. Therefore, we initially grouped a 
training set of paired samples (n=10) consisting of GC 
tissues and their corresponding adjacent, non-GC sections 
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(Fig. 1A). To ensure the identification of a robust set of 
proteins differentially expressed in GC tissues, we used 
an analytic workflow with two stringent criteria. First, to 
minimize the individual differences among the patients’ 
samples, equal amounts of protein from each sample, 
either the GC or the adjacent tissue, were applied to 
several microarrays of antibodies strictly in parallel. 
Second, following processing with antibody-based 
microarrays of the pairs of samples according to their 
known “GC” and “non-GC” phenotypic status, the ratio 
of the GC sample/non-GC sample cell lysates for each 
of the > 250 antibodies on the arrays was calculated to 
determine a unique value for the specific protein. The 
inflammatory proteome was then screened for proteins 
that were significantly altered from the non-GC spot 
intensities in the paired GC sample (either upregulated 
or downregulated; Fig. 1B) from each patient. All of 
the proteins that were significantly expressed in a given 
GC tissue were arbitrarily placed into the following 
groups based on their intensities relative to the paired 
non-GC tissue: very high abundance (10-fold and over), 
high abundance (3-fold to < 10-fold), no-change (< ±3-
fold), low abundance (-3-fold to < -10-fold) and very 
low abundance (-10-fold and under). With this 2-step 
strategy, we identified 21 differentially expressed proteins 
in at least one of the paired samples in the training set, 
including 19 upregulated (GRO, MMP-9, IL-8, MMP-8, 
TIMP-1, Acrp30, ICAM-1, NAP-2, Angiogenin, HGF, 
b-FGF, RANTES, ENA-78, uPAR, sTNF RII, TIMP-2, 
EGFR, MCP-1 and IL-1β) and 2 downregulated (MIP-1δ 
and IGFBP-2) proteins in GC tissues. These identifications 
were grouped in the heat map shown in Fig. 2.

INPROGAS: An INflammatory PROtein-driven 
GAstric cancer Signature.

When the 21 proteins with highly significant 
differences in expression between GC and non-GC tissues 
were assigned into categories based on Gene Ontology 
(GO) Consortium-defined molecular function, more than 
one-third (36%) of the proteins demonstrated cytokine/
chemokine activity. When the proteins were classified 
based on GO Consortium-defined biological process, 
more than one-third (35%) of the proteins were involved 
in inflammatory/immune and chemotactic responses. 
Next, to reveal the key signaling pathways or networks 
related to the set of biomarkers identified in the training 
set, we imported the list of these 21 proteins into the 
IPA software (Fig. 3). According to the IPA knowledge 
base, 3 major signaling networks comprised of 35 nodes 
each were associated with this set of proteins (Fig. 
3, top panels). Network 1 (cell morphology, cellular 
development, embryonic development) included 8 out 
of the 21 differentially expressed proteins (P-score=17) 
and mainly involved MMP- or tissue inhibitor of 
metalloproteinase (TIMP)-associated signaling. Network 2 
(cell-to-cell signaling and interaction, cellular movement) 
included 7 out of the 21 differentially expressed proteins 
(P-score=15) and mainly involved MCP-1 (CCL2)- and 
CCL5-associated signaling. Network 3 (cellular growth 
and proliferation, cellular movement) included 5 out of 
the 21 differentially expressed proteins (P-score=10) 
and mainly involved interleukin (IL)-8- and IL-1-
associated signaling. The pro-inflammatory action of the 
chemokines MCP-1 and IL-1 was central in a merged 
network combining the top 3 signaling networks with 

Figure 1: INPROGAS: Study outline and representative antibody-based array chips. A. Informed consent was obtained 
from all human subjects according to the ethics committee guidelines at the Hospital Dr. Josep Trueta, Girona (Spain). A total of 32 paired 
GC/non-GC samples were separated into a training set (n=10) and a validation set (n=22), as indicated. B. This figure shows antibody-based 
array chips encompassing 120 cytokines, 43 angiogenic factors, 41 growth factors, 40 inflammatory factors and 10 metalloproteinases in 
duplicates probed with whole lysates from paired GC and non-GC mucosae in patients #3 and #22 (NM: Normal mucosa; GC: Gastric 
carcinoma). The membranes were treated with antibody cocktails, developed by an ECL kit and exposed to an X-ray film as described in 
the “Materials and Methods”. The intensity of each signal was evaluated photometrically using integrator software and normalized to the 
background noise in each spot relative to the negative controls. The spot intensities of each protein in replicates were then merged and 
expressed as a mean value relative to the average signals of the positive controls (membrane-bound biotin-conjugated antibodies) on the 
array chip analyzed for each experimental (GC) and control (NM) paired group. 
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Figure 2:INPROGAS: A 21-protein signature that discriminates GC from noncancerous gastric mucosa. Upon calculation 
of fold-changes for expression in GC relative to the matched non-GC sample, all proteins that were significantly expressed in a given GC 
tissue were arbitrarily placed into several “expression groups” based on their intensities relative to the paired non-GC tissue. We analyzed 
normalized array measurements in the training set to discover differences in protein abundance between samples of GC and those of non-
GC to generate a signature of the inflammatory proteome (INPROGAS). Patient data were arranged in columns, and the proteins are listed 
in rows. Red shades, very high abundance (10-fold and over); orange shades, high abundance (3-fold to < 10-fold); blue shades, no-change 
(< ±3-fold); light green, low abundance (-3-fold to < -10-fold); dark green, very low abundance (-10-fold and under).

Figure 3: INPROGAS: a functional analysis. Network analysis of differentially expressed proteins included in INPROGAS. A 
dataset containing the differentially expressed biomarkers in GC tissues (called the focus molecules, n=21) was overlaid onto a global 
molecular network developed from information contained in the IPA Knowledge Base. Networks of these focus molecules were then 
algorithmically generated based on their connectivity. Top. The figure shows the networks with the 3 highest IPA scores (a composite 
measure indicating the statistical significance of the interconnection between the molecules depicted in the network). The focus molecules 
are colored according to the gene expression (fold change) value; red gene symbols indicate upregulation, and green gene symbols indicate 
downregulation. The nodes are displayed using various shapes that represent the functional class of the gene product. Edges with dashed 
lines indicate indirect interactions, while continuous lines represent direct interactions. Bottom. Merged network combining major signaling 
networks depicted in top panels associated with the proteins included in INPROGAS. 
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the highest IPA scores (Fig. 3, bottom panels). When 
we overlaid “diseases and disorders”, “molecular and 
cellular functions” and “physiological system” onto the 
merged core networks in IPA, 19 proteins were associated 
with the “inflammatory response” (p value = 6.98E-21), 
20 proteins were associated with “cellular movement” 
(p value = 1.77E-23), and 18 proteins were associated 
with “immune cell trafficking” (p value = 1.77E-23), 
respectively. We termed this signature of 21 predictors that 
could discriminate GC from noncancerous gastric mucosa 
“INPROGAS” (INflammatory PROtein-driven GAstric 
cancer Signature; Fig. 4, top panel).

Performance of INPROGAS in the classification 
of unknown gastric samples.

Unlike gene expression profiles, in which the 
numbers of features vastly outnumber the size of the 

sample cohort, the limited number of features included 
on a protein array notably reduces the risk of over fitting 
when correlating expression with diagnosis. Nevertheless, 
we sought to validate the performance of INPROGAS in 
an independent sample cohort and performed GC profiling 
on a new set of 22 pairs of samples. None of these samples 
were included in the training set. Thus, to assess the 
predictive performance of INPROGAS in the classification 
of unknown samples, we performed a prediction for 
“GC” or “non-GC” phenotype (a so-called “2-class” 
prediction) in a blinded set containing paired samples of 
GC and normal mucosae obtained from 22 patients. For 
each sample, INPROGAS was performed, and samples 
were classified into “GC” or “non-GC” groups according 
to the discovery of positive biomarkers (positivity for at 
least 80% of the INPROGAS biomarkers was considered 
a “GC” identification) (Fig. 4, bottom panel). Using this 
expanded independent validation cohort, INPROGAS 
classified gastric samples as “GC” or as “non-GC” with 

Figure 4: Classification and prediction of GC diagnosis using INPROGAS. A. This figure shows antibody-based array 
INPROGAS chips for assessing the performance of the in the classification of unknown samples. B. The INPROGAS predictors identified 
in the training set were used for GC and non-GC class prediction in a blinded test set including 22 paired samples. This figure shows 
representative antibody-based array chips encompassing the 20 INPROGAS predictors (Acrp30 was excluded from the INPROGAS chip 
due to technical issues) in duplicates probed with whole lysates from non-tumor tissue (NT) and tumoral tissue (TT). The figure shows 
several representative images of tissues catalogued as true positive, true negative, false negative, and false positive. 
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a sensitivity of 82% (95% CI 59-94) and a specificity of 
73% (95% CI 49-89) (Table 2). Moreover, INPROGAS 
demonstrated a high positive predictive value (75%; 95% 
CI 53-90) and negative predictive value (80%; 95% CI 
56-94) in the validation cohort. 

DISCUSSION

Rudolph Virchow first suggested a causal link 
between inflammation and cancer in 1863 when he 
demonstrated the presence of leucocytes in neoplastic 
tissue. Although Virchow’s original hypothesis 
was repeatedly revisited and there were ample data 
corroborating inflammation-mediated oncogenesis, 
inflammation was not recognized among the 6 bona fide 
hallmarks of cancer in a seminal contribution by Hanahan 
and Weinberg more than a decade ago [36]. Interestingly, 

recent years have seen a renaissance of the inflammation-
cancer connection, leading to a generally accepted 
paradigm for inflammation in tumorigenesis, i.e., an 
inflammatory microenvironment is an essential component 
of all tumors, including GC [37-44]. We now acknowledge 
that aberrant proliferation is insufficient to cause 
cancer, which additionally requires a cancer-promoting 
microenvironment rich in factors that support cellular 
survival, growth and angiogenesis. In fact, many cancer-
related cytokines, chemokines, metalloproteinases, growth 
factors and angiogenic factors are produced not only by the 
tumor cells themselves but also by activated stroma and 
immune cells associated with tumors. All of these factors 
that accumulate in situ during chronic inflammation not 
only exert profound effects on (transformed) epithelial, 
endothelial and mesenchymal cells but also recruit 
immune cells. These findings highlight the close parallels 
between tumor initiation and wound inflammation (i.e., 

Table 1: Patient Demographics and Gastric Cancer Characteristics
Clinicopathological characteristics Patient number (%) 
Age
        ≤60 years
        >60 years

11 (34)
21 (66)

Sex
        Male
        Female

18 (56)
14 (44)

Histology
        Moderately differentiated adenocarcinoma
        Poorly differentiated adenocarcinoma

14 (44)
18 (56)

Vascular invasion
        Yes
        No

14 (44)
18 (56)

AJCC TNM stage*
        I
        II
        III
        IV

9 (28)
6 (19)
12 (37)
5 (16)

Primary tumor
        T1
        T2
        T3
        T4 

6 (19)
12 (37)
11 (34)
3 (9)

Node status
        N0
        N1
        N2
        N3

12 (37)
7 (22)
8 (25)
5 (16)

Metastasis
        M0
        M1a

30 (94)
2 (6) 

*According to the American Joint Committee on Cancer (AJCC)
a Peritoneal metastasis
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“cancers as wounds that do not heal”).
The inflammatory mediators produced by 

immunocompetent cells and cancer cells can directly 
stimulate carcinogenesis (e.g., via the induction of genetic 
instability in the epithelium of the human stomach), cancer 
proliferation, angiogenesis, cell adhesion, migration 
and invasion. In addition, the tumor microenvironment 
contributes to the systemic anti-inflammatory state 
associated with cancer (i.e., inflammatory cytokines and 
chemokines leaking into the systemic circulation are 
likely to desensitize circulating leukocytes), actively 
promotes the tumor cells’ ability to subvert the host’s anti-
tumorigenic innate and adaptive immune responses and 
indirectly leads to cancer progression [37-44]. Increasing 
evidence supports the hypothesis that the seventh hallmark 
of cancer, i.e., cancer-related inflammation, is a key 
component of GC formation and progression. Our study 
hypothesized that processes such as aberrant cell growth, 
cell invasion, alterations in immune system function and 
the inflammatory response actively generate an altered or 
unbalanced stoichiometry of numerous molecules (i.e., 
growth factors, pro-inflammatory molecules, cytokines, 
metalloproteinases and angiogenic/lymph angiogenic 
factors) in the tumor microenvironment compared to the 
“normal” microenvironment. We further speculated that 
these qualitative and/or quantitative changes could be 
characterized in the form of proteomic profiles that could 
differentiate GC from non-GC in the human stomach 
mucosae. The description of proteomic profiles specifically 
representative of the molecular interactions that occur 
in the GC tumor microenvironment may significantly 
increase the specificity and sensitivity provided by 
existing GC diagnostic markers, especially during early 
disease stages. Our current study confirmed that antibody-
based microarray analyses of complex proteomes in 
gastric tissue-based studies are useful tools to define 
GC disease-associated protein signatures. Moreover, our 
proteomic profiling using whole-tumor samples supported 
the view that GC emerges from active cross-talk between 
tumor cells and the surrounding stroma, as many of the 
differentially regulated proteins were pro-inflammatory 
chemokines and MMPs. 

A large number of the GC samples included 
in the training set revealed a role for the chemokine 
GRO/CXCL1, which plays a key role in inflammation, 
immunity, angiogenesis and cell movement [32, 45, 
46]. In addition, MMP-9 and MMP-8, which act on pro-
inflammatory cytokines, chemokines and other proteins 
to regulate varied aspects of inflammation and immunity 
[47, 49], showed a high prevalence among GC samples. 
Very high incidence rates were also observed for the 
pro-inflammatory factor IL-8, which has an established 
role in the chronic inflammation that underpins the 
development of a number of human cancers [50-52]. 
Moreover, TIMP-1, which has recently emerged as an 
important multifunctional protein capable of regulating 

inflammation, also reached a high prevalence among 
GC samples [53-55]. Paradoxically, Acrp30/adiponectin, 
an adipokine regulating glucose and lipid metabolism 
with well-known anti-inflammatory properties [56, 
57], was found to be upregulated in a significant 
number of GC samples. Adiponectin has been shown 
to have antiproliferative effects on GC, and adiponectin 
expression is inversely correlated with clinical staging 
of the disease [58, 59]. Nevertheless, it should be noted 
that due to problems with combinatorial optimization 
during the design and production of the INPROGAS 
signature by RayBio Inc., the Acrp30/adiponectin marker 
was not included in custom microarrays. Therefore, the 
actual impact of Acrp30/adiponectin on GC diagnosis 
was not assessed in the current study. Similarly, one of 
the 21 predictors included in the INPROGAS signature 
was hepatocyte growth factor (HGF). HGF is a potent 
angiogenic factor that stimulates growth and motility 
of endothelial cells and has potent anti-inflammatory 
effects in multiple animal models of disease in various 
organs; in particular, HGF functions by suppressing 
NF-κB and downstream endothelial inflammation [60-
62]. However, whether adiponectin and/or HGF act to 
protect the organism from systemic inflammation as part 
of the paradoxical local inflammation and systemic anti-
inflammation during the development of GC remains to be 
answered in forthcoming studies. A high incidence rate was 
also found for intracellular adhesion molecule-1 (ICAM-
1), a key contributor to vascular inflammation, as ICAM-
1 ligation produces pro-inflammatory effects such as 
inflammatory leukocyte recruitment [63, 64]. In addition, 
angiogenin, a heparin-binding 14-kDa plasma protein 
that has been demonstrated to stimulate angiogenesis 
and is induced by pro-inflammatory cytokines to mediate 
local inflammation [65-67], was found to be significantly 
upregulated in GC samples. High incidence rates were 
also observed for the CXC chemokine neutrophil-
activating peptide-2 (NAP-2), a chemoattractant that 
is rapidly generated within the vasculature early during 
inflammation and potently induces effector functions in 
neutrophils, such as chemotaxis and degranulation [68, 
69]. The platelet-derived pro-inflammatory chemokines 
RANTES and ENA-78 were found to be significantly 
co-upregulated among GC samples, and significant 
incidence rates were also detected for the urokinase-type 
plasminogen activator receptor (uPAR). uPAR expression 
is elevated during inflammation and tissue remodeling and 
in many poor-prognosis human cancers [70-72]. The anti-
angiogenesis and anti-inflammatory factor TIMP-2 was 
also significantly upregulated in GC samples [73].

In contrast, other biomarkers included in the 
INPROGAS signature displayed lower incidence rates, 
including the cytokine inhibitor soluble tumor necrosis 
factor receptor II (sTNFRII) and the epidermal growth 
factor receptor (EGFR). EGFR is a signaling hub for 
an increasing list of growth factors, cytokines and 
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inflammatory mediators that connects the inflammatory 
reaction to tumor development [74, 75]. Basic fibroblast 
growth factor (bFGF) is known to potentiate leukocyte 
recruitment to sites of inflammation by enhancing 
endothelial adhesion molecule expression [76]. The pro-
inflammatory cytokine IL-1β is a key component of the 
multiprotein inflammasome complexes [77, 78]. Monocyte 
chemoattractant protein (MCP)-1 is a key chemokine of 
the C-C type that recruits circulating monocytes to sites 
of inflammation [79, 80], and MIP-1δ (CCL15) is a 
member of the macrophage inflammatory protein (MIP) 
family of CC-type chemokines that are mainly produced 
by leukocytes after exposure to inflammatory cytokines 
[81]. MIP-1δ play a major role in the recruitment of 
immune cells to sites of injury or infection and was 
found to be downregulated in 20% of the training set 
samples. Of note, in 70% of the training set samples, the 
binding protein for insulin-like growth factor (IGFBP)-2 
was underexpressed. IGFBP-2 is crucial for modulating 
the levels of the IGF-1R ligand IGF-2, and loss of this 
regulatory protein leads to an increased availability of 
IGF-2 and thus constitutive activation of IGF-1R [82, 
83]. The IGF-1R signaling pathway is involved in the 
carcinogenesis of GC through inhibiting cell apoptosis 
[84]. In the complex inflammatory scenario captured by 
the INPROGAS signature, it is reasonable to suggest 
that the local inflammatory network in GC is determined 
according to the expressed inflammation-related proteins, 
inflammatory receptor expression patterns and relative 
concentrations of pro- and anti-inflammatory biomarkers. 
Thus, the net inflammatory environment likely fluctuates 
during various stages of GC development. 

Early diagnosis is likely to improve the outcome 
and prognosis of most solid tumors, including biologically 
aggressive, chemotherapy-refractory GC. Moreover, there 
is an urgent need to develop new approaches to detect and 
measure biomarkers in tissues and/or the blood because 
these markers could lead not only to early detection of GC 
but also to improved targeted treatments for GC patients. 
In this regard, because the discovery and validation 
of GC-associated proteomic profiles could transcend 
the problems of tumor heterogeneity and population 
dynamics, there is an urgent need to develop and validate 
new, simple, flexible, effective and highly sensitive 
proteomic analysis techniques. New techniques will also 
allow for the simultaneous analysis of several biomarkers 
in a single assay in a low-cost format for proper carcinoma 
diagnosis and/or staging during routine hospital practice. 
Here, we demonstrated that low-cost proteomic analysis 
using antibody-based protein microarrays represents 
a useful new tool for the routine early detection, 
diagnosis and perhaps therapeutic intervention of GC 
in hospitalized patients. To elucidate the core molecular 
networks underlying INPROGAS, the 21 biomarkers 
were analyzed using the Ingenuity Knowledge Base, 
which consists of expert-curated molecular interactions. 

By merging the three INPROGAS-associated core 
networks, we identified MCP-1 and IL-1β as hub 
proteins related to the “inflammatory response”, “cellular 
movement” and “immune cell trafficking” biofunctions. 
The IPA Knowledge Database further suggested that the 
involvement of these signaling networks could be essential 
for cancer development in the human stomach. Because 
perturbations of these hub proteins have functional effects 
on GC, small molecule inhibitors of nodes in INPROGAS-
related networks may lead to dynamic changes in protein 
expression. This possibility could open new avenues for 
the manipulation of cytokine expression and function in 
cancer immunotherapy for GC. 

In summary, we measured the relative abundance 
of more than 200 signaling proteins in an initial set of 
samples from 10 matched pairs of tumor/normal gastric 
tissues and found significantly different expression 
patterns of 21 proteins, which we have termed the 
INPROGAS (Inflammatory PROtein-driven GAstric 
cancer Signature). When INPROGAS was tested in 22 
independent samples, gastric mucosae were classified 
as “tumor” or “normal” with a sensitivity of 82% 
and a specificity of 72%. Although further tests are 
needed before this approach can be used in patients, 
the identification of a disease-specific biomarker panel 
early during gastric mucosa cancer development could 
facilitate more effective interventions against GC. Because 
the candidate biomarkers identified through antibody 
microarray-based oncoproteomics of the tumor-host GC 
microenvironment were found to mostly belong to the 
secreted class of proteins present in tissue and body fluids 
(i.e., the secretome), our current findings may provide a 
great basis for non-invasive, blood-based identification of 
GC biomarkers for screening purposes. Thus, imbalances 
in the network of communication between cells in disease 
states may not only serve as a diagnostic indicator but 
could potentially reveal mechanistic insight into cancer 
development in the human stomach. 

METHODS

Patients and tissue samples

This was a prospective, controlled, single blind 
analysis study. Pairs of GC and adjacent noncancerous 
mucosa were obtained after informed consent was 
received from patients (n=32) who underwent D2 
gastrectomy (i.e., radical gastrectomy with level 2 
extended lymphadenectomy) between January 2009 
and July 2011 at the Hospital Universitari de Girona Dr. 
Josep Trueta in Girona, Catalonia, Spain. The study was 
reviewed and approved by the institutional review board 
and ethics committee. The prospective subject cohort 
consisted of matched pairs of tumor/normal gastric tissues 
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from GC patients who fulfilled the following criteria: a) 
histological diagnosis of GC; b) any tumor node metastasis 
(TNM) stage; c) gastric resection with curative/radical 
intention; d) no chemotherapy or radiotherapy treatment 
prior to surgery; and e) signed informed consent. The 
clinicopathological data of the patients are summarized in 
Table 1.

To ensure the purity of the GC tissues, the specimens 
were excised from the cancerous cores. Thus, tumor 
samples of 3 x 3 x 5 mm3 were taken from areas without 
gross necrosis. Adjacent nontumor mucosa samples of 3 x 
3 x 5 mm3 were taken from the same patient at a location 
5 cm away from the tumor margin and were defined as 
the controls for each GC patient. The representative 
tumors and adjacent normal tissues of these patients were 
washed with physiological saline and subsequently frozen 
within 30 minutes of removal in a liquid nitrogen tank 
after immediate pathological examination. The senior 
pathologists routinely conducted the diagnosis for GC 
based upon Hematoxylin and Eosin (HE) staining. The 
TNM stage of the tumor was assigned according to the 
American Joint Committee on Cancer.

Summary of experimental design

Thirty-two paired tumor and adjacent normal tissue 
samples were extracted, all of which were used to assess 
the expression level of more than 200 proteins with 5 
different proteomic microarrays (see below). These 32 

paired samples were divided into a training set (n=10), 
which was used to select the protein panel to distinguish 
between normal and GC tumor tissues of GC, and a 
validation set (n=22), which was used to confirm the 
ability of candidate proteins selected in the training set 
to classify blinded gastric samples as “GC” or “non-GC”. 

Proteomic chip-based analysis of protein 
expression in gastric mucosa 

We employed protein arrays based on recently 
developed antibodies by RayBiotech (Norcross, GA, 
USA), which are capable of rapidly and specifically 
detecting the expression levels of numerous cytokines, 
growth factors, soluble receptors of growth factors, 
angiogenic factors, metalloproteinases and other proteins 
using small amounts of experimental samples in a 
single experiment. This technology is designed around 
the “sandwich immunoassay” principle. A panel of 
antibodies (capture antibodies) is immobilized at specific 
locations scored on the surface of a solid membrane, 
and incubation of the membrane arrays with biological 
samples results in the capture of soluble proteins by 
their corresponding antibodies. The bound proteins are 
detected by incubation with a cocktail of biotinylated 
antibodies, and corresponding signals are then visualized 
using enhanced chemiluminescent (ECL) techniques, 
colorimetry or infrared fluorescence. The following 
microarrays were used for each of the samples from 

Table 2: GC diagnostic test using INPROGAS. The results are shown in modified 2 x 2 contingency tables that 
were used to calculate the percentage of classifications that agreed with the clinicopathological diagnosis. The values 
in parentheses represent 95% confidence intervals. 

Diseased No-Disease Totals

Test POSITIVE 18 a 6 b 24 PPV g 
75% [53-90]

LR-PT i 
3 [1.5-6.1]

Test NEGATIVE 4 c 16 d 20 NPV h 
80% [56-94]

LR-NT j 
0.25 [0.0990-0624]

Totals 22 22

Sensitivity e

82% [53-90]    
Specificity f

73% [49-89]

a True Positive
b False Positive
c False Negative
d True Negative
e a/(a+c)
f d/(b+d)
g Positive Predictive Value = a/(a+b)
h Negative Predictive Value = d/(c+d)
i Likelihood Ratio Positive Test
j Likelihood Ratio Negative Test
[95% Confidence Interval] calculated with Binomial Expansion
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patients enrolled in the study (i.e., tumor tissue lysates 
versus adjacent normal tissue lysates): RayBio® Human 
Cytokine Antibody Array C Series 1000 (Array VI + 
VII, which detects the expression of 120 cytokines in 2 
membranes); RayBio® Human Angiogenesis Antibody 
Array C Series 1000 (Array 1 + Array 2, which detects 
the expression of 43 angiogenic factors in 2 membranes); 
RayBio® Human Matrix Metalloproteinases (MMPs) 
Antibody Array 1 (which detects the expression of 10 
MMPs in a single membrane); RayBio® Human Growth 
Factor Antibody Array 1 (which detects the expression of 
41 growth factors in a single membrane); and RayBio® 
Human Inflammation Antibody Array 3 (which detects 
the expression of 40 inflammatory factors in a single 
membrane). The information provided by the 5 proteomic 
microarrays was monitored in a quantitative manner (see 
below), and the expression levels of over 200 proteins 
were analyzed in each sample.

The protein test using antibody-based microarrays 
was performed according to the manufacturer’s 
instructions. Briefly, prior to the start of the analysis, 
the membranes were blocked with 5% bovine serum 
albumin (BSA) in Tris-buffered saline (TBS; 0.01 M 
Tris HCl, pH 7.6, 0.15 M NaCl) for 1 h. After blocking 
to reduce the amount of non-specific binding, membranes 
were incubated with 750 µg total protein/tissue sample 
or 1 ml of serum for 2 h. After extensively washing the 
membranes with 0.1% Tween-20 in TBS (v/v) (i.e., 3 
times for 5 minutes each) and TBS (2 times for 5 minutes 
each) to remove non-bound material, the membranes were 
incubated with a cocktail of biotin-labeled antibodies 
directed against the immobilized proteins by capture 
antibodies. Following antibody incubation, the membranes 
were washed as described above and subsequently 
incubated with horseradish peroxidase (HRP)-conjugated 
streptavidin (2.5 pg/ml) for 1 h at room temperature. 
Excess HRP-streptavidin was removed by washing in 
0.1% TBS/Tween 20 and TBS. Finally, specific expression 
signals were detected using the ECL system.

The results obtained in each of the microarrays 
were evaluated using Analysis Tool Software, a data 
analysis program specifically designed for RayBio® 
Antibody Arrays. This analytical tool allows the user to 
perform the following tasks: a) locate the signal intensities 
(expression levels) in the antibody array map; b) provide 
a list of differentially expressed proteins (i.e., candidate 
markers); c) calculate mean signal intensities; d) analyze 
and subtract background data (i.e., noise); e) standardize 
data from different samples; and f) obtain comparative 
patterns of expression levels between different samples. 
This program operates based on Microsoft (MS) Excel 
computer software.

Ingenuity analysis. Signaling networks were 
constructed using Ingenuity Pathway Analysis (Ingenuity® 
Systems, Redwood City, CA, USA). Data sets containing 
identifiers of proteins that were significantly up- or 

downregulated were uploaded into the application. The 
‘focus genes’ were then overlaid on the global molecular 
network developed from information in the Ingenuity 
Pathway Knowledge Base. Networks of these ‘focus 
genes’ (nodes) were algorithmically generated based on 
the principle that highly connected gene networks are the 
most biologically meaningful networks. All edges were 
supported by at least one reference from the literature 
stored in the Ingenuity Pathway Knowledge Base (the 
IPA interaction database is manually curated by scientists 
and updated quarterly). Briefly, the user-input or ‘focus 
genes’ list was compared to the ‘global molecular network’ 
(GMN) database consisting of thousands of genes and 
interactions. The focus genes were sorted based on highest 
to lowest connectivity within the GMN, and networks of 
approximately 35 genes were generated starting with the 
most connected focus gene. IPA assigns a p-value for a 
network of size n and an input focus gene list of size f by 
calculating the probability of finding f or more focus genes 
in a randomly selected set of n genes from the GMN. 
The intensity of the node color indicated the degree of 
expression (green scale for downregulated nodes; red scale 
for upregulated nodes). The nodes were displayed using 
various shapes, each of which represented a functional 
class of the gene products. The score indicated the 
likelihood of the genes in a network being found together 
due to random chance. Using a 99% confidence interval, 
scores of ≥ 3 were deemed significant.
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