
Oncotarget87033www.impactjournals.com/oncotarget

EPMDA: an expression-profile based computational model for 
microRNA-disease association prediction

Yu-An Huang1,*, Zhu-Hong You1,*, Li-Ping Li2, Zhi-An Huang3, Lu-Xuan Xiang4, 
Xiao-Fang Li1 and Lin-Tao Lv1

1College of Information Engineering, Xijing University, Xi’an 710123, China
2Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, China
3College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China
4Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China
*The first two authors should be regarded as joint First Authors

Correspondence to: Zhu-Hong You, email: zhuhongyou@gmail.com

Li-Ping Li, email: cs2bioinformatics@gmail.com
Keywords: disease, MicroRNA, expression profile, biomarker
Received: April 25, 2017    Accepted: May 29, 2017    Published: June 28, 2017
Copyright: Huang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 
3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

ABSTRACT

MicroRNA has become a new star molecule for understanding multiple biological 
processes and the mechanism of various complex human diseases. Even though a 
number of computational models have been proposed for predicting the association 
between microRNAs and various human diseases, most of them are mainly based on 
microRNA functional similarity and heterogeneous biological networks which suffer 
from inevitable computational error and bias. In this work, considering the limitation 
of information resource used by existing methods, we proposed EPMDA model which 
is the first computational method using the expression profiles of microRNAs to 
predict the most potential microRNAs associated with various diseases. Based on 
the dataset constructed from HMDD v2.0 database, EPMDA obtained AUCs of 0.8945 
and 0.8917 based on the leave-one-out and 5-fold cross validation, respectively. 
Furthermore, EPMDA was applied to two important human diseases. As a result, 80% 
and 88% microRNAs in the top-25 lists of Colon Neoplasms and Kidney Neoplasms 
were confirmed by other databases. The performance comparison of EPMDA with 
existing prediction models and classical algorithms also demonstrated the reliable 
prediction ability of EPMDA. It is anticipated that EPMDA can be used as an effective 
computational tool for future biomedical researches.

INTRODUCTION

MicroRNAs (abbreviated miRNAs) are a kind of small 
non-coding RNA molecule which contains ~22 nucleotides 
and can be found in plants, animals and some viruses [1, 
2]. As a breakthrough medical discovery, microRNA has 
been found to get involved in various biological processes 
[3, 4]. Specifically, it can cause degradation and repression 
of RNA transcripts through complete or partial sequence 
complementarity, and further negatively regulates gene 
expression at the levels of messenger RNAs (mRNAs) [5, 6]. 

Even though the majority of biological functions are directly 
carried out by the proteins which are coded by the protein-
coding genes, these genes only take up an extremely minority 
of the human genome (approximately 1.5%). Besides, 
according to the report of international Encyclopedia of 
DNA Elements (ENCODE) project, it is shown that at least 
80% of human genomic DNA has biochemical activity [7, 8]. 
Therefore, microRNAs, along with other kinds of noncoding 
RNA (i.e. lncRNA, circularRNA and snoRNA), has been 
considered as an important supplement for higher level of 
complexity and subtlety in human gene function.
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The study of microRNAs has obtained a big 
progress for the past decade since the first microRNA, lin-
4, and the second microRNA, let-7, were discovered in 
1993 and 2000 [9, 10]. So far, the amount of identified 
mature microRNAs has been achieved to 2588 according 
the latest version of miRBase database [6]. Previous 
biological studies and researches offer great insights into 
the complex mechanism of microRNA functions, which 
is engaged by various microRNA-target interactions. 
Accumulating evidences have shown that various kinds 
of biological molecules can interact with microRNAs 
which function in RNA silencing, and therefore further 
influence the post-transcriptional regulation of gene 
expression. Recently, the novel hypothesis of CeRNA 
(competing endogenous RNA) gives a new explanation 
for how other RNA transcripts interact with microRNAs 
[11, 12]. According to this hypothesis, the pool of 
transcribed psedogenes, lncRNAs, circRNAs compete to 
cooperatively sequester microRNAs through microRNA 
response elements (MREs). Specially, the ceRNA 
network of PTEN, which is a critical tumor suppressor 
gene, has been systematically studied. CNOT6L, VAPA 
and ZEB2 have been identified as ceRNAs to regulate 
PTEN expression level in a microRNA-dependent 
manner [13–15].

Along with the progress of molecular biology study, 
increasing researches show that microRNAs can carry 
out essential functions in various biological processes 
including metabolism[16, 17], differentiation [18], 
proliferation [19], signal transduction [20] and apoptosis 
[21]. However, for the majority of identified microRNAs, 
their biological functions are still unclear partially due 
to the extreme complexity of microRNA regulation 
networks. Even though the specific regulation mechanism 
of most microRNAs is still unclear, increasing evidences 
have shown that the expression level of microRNAs has a 
close relationship with the development of diverse human 
diseases. Therefore, it is feasible to regard microRNAs as 
biomarkers to help to understand the underlying molecular 
and pathological mechanisms of complex human diseases. 
The relationship between microRNAs and disease 
incidence has been widely studied. For examples, miR-
195 with higher expression level was found to reduce 
breast tumor cell survival and increase apoptosis by 
downregulating the expression of Raf-1, Bcl-2, and 
P-glycoprotein [22]. The overexpression of miR-145 
was confirmed to inhibit the proliferation of transfected 
lung adenocarcinoma cell through the downregulation 
of mRNA expression of EGFR and NUDT1 [23]. 
Furthermore, overly-expressed miR-135a and miR-335 
were shown to contribute to the progression of colorectal 
cancer [24]. Discovering disease-associated microRNAs 
can not only lead to new approaches for disease diagnosis, 
treatment and prevention at the molecular level but can 
also discover effective molecular targets for the drug 
development.

However, the mainstream experiment-based 
approaches for microRNA-disease interaction 
identification are still inefficient since the identification 
work usually needs to collect sufficient clinical data which 
need time and money. Even though some biomarkers 
for specific diseases have been confirmed, the function 
mechanism of microRNAs in most complex diseases is 
still unclear yet. Therefore, as an important supplement 
for biological experiments, computational model-
based methods for microRNA-disease association have 
been attracting increasing attention from researches in 
this field. Specially, some important databases storing 
experimentally-confirmed microRNA-disease associations 
have been built, which provides essential data resources 
for extensive studies in this field [25–27].

So far, there are several computational models 
have been proposed for inferring new microRNA-
disease associations, which can be mainly classified 
into three categories. The first category is mainly based 
on network similarity measurement. For example, 
Xuan et al. have proposed the model of MIDP which is 
mainly based on the assumption that functionally similar 
microRNAs tend to be involved in similar diseases 
[28]. Specifically, MIDP model constructs a microRNA 
functional similarity network (i.e. Mnet) by measuring 
the semantic similarities of diseases. The second category 
uses machine learning algorithms to predict the most 
potential microRNA associated with specific diseases. 
For examples, Xu et al. have develop a supervised 
learning-based classification model which constructs 
4-dimension vectors to represent microRNA features and 
then applies support vector machine to predict whether a 
query microRNA is associated with specific disease or not 
[29]. The final category tries to combine different extra 
biological information for predicting microRNA-disease 
association, which are motivated by the consideration 
that the amount of experimentally-confirmed microRNA-
disease association data are still far from sufficient for 
training. For example, Mørk et al. have developed the 
model of miRPD which is mainly based on a constructed 
microRNA-protein-disease heterogeneous association 
network [30]. Even though most of known microRNA-
disease associations are confirmed by detecting the 
change of expression level of microRNA along with 
different disease development statuses, there has been 
no computational model considering the information of 
microRNA expression distribution in human tissues.

Accumulating evidences show that the deregulation 
of microRNAs can usually cause diverse human diseases 
since microRNAs expression pattern can play a significant 
role in chromatin dynamics and gene silencing [31–33]. 
Therefore, the information of microRNA expression can 
offer important insights into the relationship between 
microRNAs and diseases. In this work, we proposed a 
novel computational model called EPMDA for inferring 
microRNA-disease associations, which is mainly based 
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on the assumption that microRNAs sharing similar 
distribution in human tissues are more possible to get 
involved in similar diseases. Specifically, we first used the 
expression profile data to calculate the similarity scores 
between microRNAs. Following Li’s work, EPMDA 
model constructs a disease similarity matrix by introducing 
the semantic similarity [34]. Finally, we further adopted a 
two-way diffusion approach to calculate the association 
possibility of the unknown microRNA-disease association. 
To evaluate the performance of EPMDA model, we have 
adopted two cross validation frameworks of leave-one-
out cross validation (LOOCV) and 5-fold cross validation 
(5-fold CV) to use the proposed method to predict the 
most potential microRNA-disease associations based 
on the HMDD v2.0 database [26]. Furthermore, we 
have also analyzed the predicted microRNA lists of two 
kinds of important diseases. The ROC curves (receiver-
operating characteristic curves) and AUC (area under 
ROC curve) values were calculated for each experiments. 
As a result, the EPMDA model yielded AUCs of 0.8945 
and 0.8914+/-0.0004 based on LOOCV and 5-fold cross 
validation, respectively. By comparing the previously-
proposed prediction models and the proposed method, 
the outstanding performance demonstrated the effective 
prediction ability of EPMDA model. It is anticipated that 
EPMDA can be applied to be used to predict the most 
potential microRNA-disease associations on a large scale, 
which facilitates future disease biomarker discovery and 
new drug development.

RESULTS

Performance evaluation

To evaluate the performance of EPMDA model, 
we implemented the method of LOOCV to predict the 
microRNA-disease association possibility based on 
the dataset downloaded from HMDD v2.0 database. 
Specifically, each known microRNA-disease association 
was left out in turn as a test sample and the other known 
microRNA-disease associations were used for training. 
For each testing round, the test sample obtaining higher 
ranks than the given threshold would be considered as a 
successful prediction while those with ranks lower than 
the threshold was regarded as unsuccessful predictions. 
We calculate the corresponding true positive rates (TPR, 
sensitivity) and false positive rates (FPR, 1-specificity) 
by setting different thresholds. The ROC curves for each 
experiment were computed by plotting TPR versus FPR 
at different thresholds. The values of area under ROC 
curve were also computed. AUC of 0.5 means a purely 
random prediction and a higher AUC value means a better 
prediction result.

Furthermore, we compared the performance of 
EPMDA with some classical recommended algorithms 
(i.e., user-based collaborative filtering, item-based 

collaborative filtering, neighbor-based collaborative 
filtering, latent factor model, svd-based model) and 
social network prediction algorithm (i.e., Katz-based 
method) [35]. Since the task of microRNA-disease 
association prediction can be regarded as a matrix filling 
problem, we can obtain the most potential microRNA-
disease association through applying the collaborative 
filtering methods on the adjacency matrix constructed 
by the known microRNA-disease associations. User-
based and item-based CF are two basic memory-based 
recommendation algorithms which respectively computes 
the average ratings for each item rated by similar users and 
the average ratings for each user rated by similar items. 
And neighbor-based CF is an integrated version of user-
based and item-based CF and takes the weighted average 
of all the ratings of these two CFs. Similarly, we can also 
regard the known microRNA-disease association network 
as a classical social network and implement the social 
network prediction model on it. Specifically, Katz method 
which was previously used to predict microbe-disease and 
lncRNA-disease associations was also explored in this 
work [35, 36]. In this series of comparison experiments, 
all algorithms were implemented by introducing the 
same inputs (i.e., microRNA expression similarity matrix 
and disease semantic similarity matrix). As a result, the 
proposed model of EPMDA yielded the best performance 
among all method, with the highest AUC of 0.8945 while 
the rest methods (i.e. user-based collaborative filtering, 
item-based collaborative filtering, neighbor-based 
collaborative filtering, latent factor model, svd-based 
model and Katz-based method) yielded poorer prediction 
performance with AUCs of 0.8287, 0.7959, 0.8703, 
0.8555, 0.5939 and 0.8711, respectively (see Figure 1).

Furthermore, 5-fold cross validation was also 
adopted for evaluating the prediction performance of 
EPMDA. All known microRNA-disease associations 
would be first randomly separated into 5 groups of roughly 
same size. In each round of 5-fold cross validation, 4 
groups of samples were used for training while the rest 
one was used as testing samples. We further plotted the 
ROC curve and computed corresponding AUC value 
for each round. To avoid the bias of random division, 
we repeated the 5-fold cross validation for 20 times and 
computed the average AUC values as the final evaluation 
values for prediction performance. Similar with LOOCV 
experiments, we implemented six other classical methods 
and EPMDA model to predict the microRNA-disease 
associations based on HMDD database. As a result, we 
obtained the best prediction performance by using the 
EPMDA model with the high average AUC of 0.8914+/-
0.0004 (see Table 1 ). User-based collaborative filtering, 
item-based collaborative filtering, neighbor-based 
collaborative filtering, latent factor model, svd-based 
model and Katz-based method yielded poorer prediction 
results with average AUCs of 0.8250, 0.7900, 0.8664, 
0.8546, 0.5079 and 0.8570, respectively.
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So far, there have been some computational models 
proposed for predicting microRNA-disease associations. 
Some of them were performed by using the data of HMDD 
v2.0, which is the same data resource we explored in this 
work [34, 37–42]. Therefore, we simply compared the 
prediction performance of these methods. Most of models 
previously proposed make prediction by introducing the 
microRNA-microRNA functional similarity scores which 

can be downloaded from Wang’s work [43]. However, 
the biological functions of most of microRNAs have not 
been well studied yet, and therefore it is inevitable to 
cause prediction bias if we simply introduce the computed 
function similarity of microRNAs. Instead of following 
Wang’s previous work [43], we introduced a new kind of 
data, microRNA expression similarity, which is yielded by 
direct biological experiments and therefore can lead to less 
error. As can be seen from Table 2, the model of EPMDA 
yielded the highest prediction performance with the highest 
AUC of 0.8945 in LOOCV experiment and average AUC 
of 0.8917+/-0.0004 in 5-fold cross validation experiments. 
The compared methods of RLSMDA, HDMP, WBSMDA, 
MCMDA, HGIMDA, RWRMDA and RBMMMDA yielded 
smaller AUCs of 0.8426, 0.8366, 0.8030, 0.8749, 0.8781, 
0.8617 and 0.8606 in terms of LOOCV. Furthermore, we 
further publicly released the rank list of microRNA-disease 
associations which was yielded by EPMDA based the 
dataset of HMDD (see Supplementary Table S1). The heat 
map of all the final prediction result is shown as Figure 2. 
It is anticipated that those microRNA-disease association 
obtaining high ranks will be verified by further research and 
experimental validtation.

Case studies

In this section, to evaluate the effectiveness of our 
proposed method, we further analyzed the prediction 
results of two important diseases (i.e., colon neoplasms 

Figure 1: Performance comparison between EPMDA and six other classical prediction models in terms of ROC curves 
and AUCs based on leave-one-out cross validation. As a result, EPMDA yielded the best performance with the highest AUC of 0.8945.

Table 1: Performance comparisons between EPMDA 
and six other classical recommendation algorithms 
and graph-based prediction model in term of average 
AUC based on 5-fold cross validation.

METHOD AVERAGE AUC

Used-based collaborative filtering 
method

0.8250+/-0.0007

Item-based collaborative filtering 
method

0.7900+/-0.0010

Neighbor-based collaborative 
filtering method

0.8664+/-0.0005

Latent factor model 0.8546+/-0.0004

SVD-based method 0.5079+/-0.0013

Katz-based social network 
prediction model

0.8570+/-0.0003

EPMDA model 0.8917+/-0.0004
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and kidney neoplasms). Specifically, we focused on 
the microRNAs which obtained the top25 ranks for the 
diseases of colon and kidney neoplasms and verified 
their accuracy by checking two other databases, 
miRNA2Disease and dbDEMC.

Colon Neoplasms

Colon Neoplasms has come to be one of the 
deadliest threats to human life in all over the world. It is 
reported that around 50% patients of Colon Neoplasms 
cannot survive more than five years from first diagnosis 
due to the metastatic diseases [44, 45]. So far, there are 
some microRNAs having been identified to be associated 
with the development of Colon Neoplasms, and some of 

them could be regarded as the biomarkers for the early 
diagnosis and prevention. As can be seen from the Table 3, 
80% of the microRNAs in the top 25 prediction list yielded 
by EPMDA model could be verified by the miR2Disease 
and dbDECMC database [25, 27]. Five microRNAs (i.e., 
hsa-mir-499a, hsa-mir-150, hsa-mir-208b, hsa-mir-103a 
and hsa-mir-151a) which obtained 3rd, 10th, 19th, 20th and 
23th ranks were failed to be confirmed.

Kidney Neoplasms

Kidney Neoplasms is another common cause 
leading to death, which is usually accompanied by high 
rates of metastatic recurrences (~30% of localized renal 
cell carcinoma cases) and death (5-year survival rate 

Figure 2: Heat map of microRNA-disease association possibility predicted by EPMDA in which rows and column 
denote microRNAs and diseases.

Table 2: Performance comparisons between EPMDA and seven existing computational models (RLSMDA, HMDP, 
WBSMDA, MCMDA, HGIMDA RWRMDA and RBMMMDA) for predicting microRNA-disease association in 
terms of AUCs based on leave-one-out and 5-fold cross validations. All the eight models adopt the disease semantic 
similarity based on disease MeSH annotations.

METHOD LOOCV 5-fold cross validation

RLSMDA[38] 0.8426 0.6953

HDMP[42] 0.8366 0.7702

WBSMDA[37] 0.8030 0.8031

MCMDA[34] 0.8749 0.8767

HGIMDA[41] 0.8781 0.8077

RWRMDA[39] 0.8617 0.7891

RBMMMDA[40] 0.8606 N/A

EPMDA (The proposed method) 0.8945 0.8917+/-0.0004
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of 60-70%) [46]. It is reported that there are more than 
250,000 new cases diagnosed as Kidney Neoplasms with 
more than 40% mortality in the current years [47]. Along 
with the development of high-throughput sequencing 
technologies, researchers have discovered some 
microRNAs which are associated with the development 
and progression of Kidney Neoplasms. For example, 
miR-1233 has been identified as a potential biomarker 
for renal cell carcinoma (RCC) by using the technique of 
TaqMan Low Density Array and confirmed to be highly 
expressed in RCC patients by using quantitative real-time 
PCR [48]. Table 4 shows the top 25 prediction results for 
microRNA candidates associated with Kidney Neoplasms. 
There 88% microRNAs in the list have been confirmed 
by miRNA2Disease and dbDECMC database. The three 
unfirmed microRNAs (i.e., hsa-mir-208b, hsa-mir-103a 
and hsa-mir-151a) obtained respectively low ranks (i.e., 
19th, 20th and 25th), compared with the confirmed ones.

DISCUSSION

In the past several years, microRNA has come to be 
a new star molecule in the studies on disease mechanism 
and bioinformatics and there are more and more 
researches focusing on using computational methods to 
predict novel microRNA-disease associations. EPMDA 
is a computational model for inferring the most potential 
microRNA biomarkers for specific human diseases by 
using the experimentally-confirmed microRNA-disease 
associations and introducing the expression profile data 
of microRNAs for the first time. Compared with the 
microRNA functional similarity and microRNA Gaussian 
interaction profile kernel similarity which have been 

widely used by previously-proposed prediction models, 
as the information resource of microRNA expression 
similarity, the expression profiles of microRNA is directly 
collected from the biological experiments and therefore 
causes less prediction error and bias for the prediction. 
The excellent prediction performance of EPMDA has been 
demonstrated by the cross validation experiments, case 
studies and the comparison with some classical algorithms 
and existing prediction models. It could be anticipated that 
EPMDA can be used as a useful tool for further biological 
researches and drug developments.

The reasons of good performance of EPMDA may 
come from the following factors. Firstly, EPMDA is the 
first computational model which introduces microRNA 
expression profiles as inputs. Compared with the 
other kinds of microRNA similarity, the similarity of 
microRNA expression level can be directly computed 
by the experimental data and therefore is more reliable 
for predicting microRNA-disease associations. Specially, 
it should be noted that the expression profiles of some 
microRNAs are still unavailable partially because the 
database of microRNA.org has not been updated for a 
long time. We anticipate that EPMDA can achieve better 
prediction performance with more complete information 
resource in the future. In addition, the basic assumption 
of EPMDA that microRNAs sharing similar distribution 
in different human tissues and cell lines tend to be 
involved in similar disease is reasonable and feasible for 
the problem of microRNA-disease association prediction. 
Finally, the two-way diffusion method proposed in this 
work and the kind of input data fit well together, which 
has been demonstrated by the comparison with other 
recommendation algorithms and social network prediction 

Table 3: Prediction results of microRNAs associated with Colon Neoplasms in top-25 ranking list

Rank microRNA Evidence Rank microRNA Evidence

1 hsa-mir-125a miR2Disease 14 hsa-mir-1 miR2Disease dbDEMC

2 hsa-mir-196a miR2Disease 15 hsa-mir-133a miR2Disease dbDEMC

3 hsa-mir-499a Unconfirmed 16 hsa-mir-133b miR2Disease dbDEMC

4 hsa-mir-198 dbDEMC 17 hsa-mir-146a dbDEMC

5 hsa-mir-29a miR2Disease dbDEMC 18 hsa-mir-155 miR2Disease dbDEMC

6 hsa-mir-29b miR2Disease dbDEMC 19 hsa-mir-208b Unconfirmed

7 hsa-let-7a miR2Disease dbDEMC 20 hsa-mir-103a Unconfirmed

8 hsa-mir-141 miR2Disease dbDEMC 21 hsa-mir-10b miR2Disease dbDEMC

9 hsa-mir-143 miR2Disease dbDEMC 22 hsa-mir-135a dbDEMC

10 hsa-mir-150 Unconfirmed 23 hsa-mir-151a Unconfirmed

11 hsa-mir-15a dbDEMC 24 hsa-mir-152 dbDEMC

12 hsa-mir-16 dbDEMC 25 hsa-mir-181b miR2Disease dbDEMC

13 hsa-mir-21 miR2Disease dbDEMC
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Table 4: Prediction results of microRNAs associated with Kidney Neoplasms in top-25 ranking list

Rank microRNA Evidence Rank microRNA Evidence

1 hsa-mir-125a miR2Disease dbDEMC 14 hsa-mir-1 dbDEMC

2 hsa-mir-196a dbDEMC 15 hsa-mir-133a dbDEMC

3 hsa-mir-499a miR2Disease 16 hsa-mir-133b dbDEMC

4 hsa-mir-198 miR2Disease dbDEMC 17 hsa-mir-146a miR2Disease

5 hsa-mir-29a miR2Disease dbDEMC 18 hsa-mir-155 dbDEMC

6 hsa-mir-29b miR2Disease dbDEMC 19 hsa-mir-208b Unconfirmed

7 hsa-let-7a miR2Disease dbDEMC 20 hsa-mir-103a Unconfirmed

8 hsa-mir-141 miR2Disease 21 hsa-mir-106a miR2Disease dbDEMC

9 hsa-mir-143 miR2Disease dbDEMC 22 hsa-mir-10b miR2Disease dbDEMC

10 hsa-mir-150 dbDEMC 23 hsa-mir-126 miR2Disease dbDEMC

11 hsa-mir-15a miR2Disease dbDEMC 24 hsa-mir-135a dbDEMC

12 hsa-mir-16 miR2Disease dbDEMC 25 hsa-mir-151a Unconfirmed

13 hsa-mir-21 miR2Disease dbDEMC

Figure 3: Flowchart of computational process of EPMDA based on the disease semantic similarity and microRNA 
expression similarity.
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algorithm. It is effective to use the proposed method to 
retain the important information based on the known 
microRNA-disease association network which can be 
regarded as a classical bipartite graph. However, there are 
also some limitations existing in the model of EPMDA. 
For example, the EPMDA cannot be applied to the new 
disease which has no record of associated microRNAs. 
Besides, the problem of selecting parameter values is 
still not well solved since the damping coefficients were 
roughly set as 0.5 in this work.

MATERIALS AND METHODS

The dataset explored in this work was downloaded 
from HMDD v2.0 database (http://www.cuilab.cn/hmdd). 
The current version of HMDD has collected 10368 entries 
covering 572 microRNA genes and 378 kinds of disease 
from 3511 papers. We downloaded the microRNA-disease 
association from HMDD and removed the repetitive 
records[26]. The final explored dataset consists of 5430 
known microRNA-disease associations covering 495 
microRNAs and 383 diseases. To obtain the information 
of expression distribution of microRNAs, we downloaded 
the expression profile data from the latest released version 
of microRNA.org database (http://www.microrna.org/
microrna/home.do). In each record of microrna.org 
database, the expression level of microRNAs in 172 
human tissues and cell lines is recorded [49]. As a result, 
we obtained the expression profile data of 315 microRNAs 
which are recorded in HMDD database.

MicroRNA expression similarity

Based on the assumption that microRNAs which 
share similar expression distribution in human tissues 
are more possible to get involved in the mechanism of 
similar disease, we first proposed a microRNA similarity 
measure for predicting microRNA-disease associations. 
Specifically, all microRNAs were represented by 
172-dimension vectors which record the expression 
level in 172 human tissues and cell lines. In this work, 
the expression profile data of 315 out of 495 microRNAs 
recorded in HMDD database were collected from 
microrna.org database. We further adopted the Pearson 
correlation coefficient to measure the expression similarity 
of each microRNA pairs. Given the expression profiles 
of two microRNA (say emi and emj), we calculated their 
similarity as follow:

∑
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which one microRNA expression profile is unavailable, 
we simply set its similarity as the mean of the similarities 
of rest computable pairs. As a result, we constructed a 
microRNA expression similarity matrix SMmicroRNA in which 
entity SMmicroRNA(i,j) is the computed expression similarity 
between microRNA mi and mj. To further evaluate the 
prediction results of EPMDA in the case study section, we 
also explored two other databases (i.e., miR2Disease and 
dbDEMC) which totally store 3273 and 2224 microRNA-
disease associations, respectively.

Disease semantic similarity

Mesh database (http://www.ncbi.nlm.nih.gov/) offer 
a comprehensive annotation for diverse human complex 
disease, which help researchers to study the relationship 
among different diseases from different perspectives [50]. In 
this work, we simply adopted the popular disease semantic 
similarity measure which has been widely used in previous 
works [37–41]. Specifically, the features of diseases were 
represented by the corresponding Directed Acyclic Graph 
(DAG) composed of disease Mesh descriptors. As the first 
step to calculate disease semantic similarity, we computed 
the semantic contribution of each DAG term (say t) to the 
disease d based on its DAG D as follow:
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where A(di) and A(dj) denote the sets of ancestor nodes of 
disease term di and dj, respectively. As a result, we finally 
obtained a disease similarity matrix SMdisease whose size 
was 378×378.

EPMDA

Based on the assumption that microRNAs which 
have similarity expression distribution in human tissues 
tend to get involved in similar diseases, we developed 
EPMDA which is the first computational model 
introducing expression profile data of microRNAs for 
microRNA-disease association prediction. Specifically, 
EPMDA applies a two-way diffusion algorithm to calculate 
the association possibility of each microRNA-disease pair 
by combing microRNA expression similarity, disease 
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semantic similarity, and known microRNA-disease 
associations (see Figure 3). Specifically, the information 
resource of microRNA and disease nodes flow back 
and forth between each other by two steps based on the 
bipartite graph. In the stage of data preprocessing, EPMDA 
first computes two similarity matrixes (i.e. microRNA 
similarity matrix and disease similarity matrix) based on 
MeSH DAGs and microRNA expression profiles, and then 
constructs two weighted microRNA-disease association 
networks with corresponding adjacency matrixes, Ad and 
Am, respectively:

 
( )= ⋅A SM A 4d disease

 

 ( )= ⋅A SM A 5m microRNA
 

where A is the adjacency matrix of the known microRNA-
disease association network recorded in HMDD v2.0 
database. There are three main steps for prediction 
computing in the model of EPMDA. In the first step, 
we computed the resource vectors for microRNA and 
disease nodes based on disease-based weighted network 
as follows:
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where A(*,j) denote the j-th row vector in matrix A; nd is 
the number of diseases; nm is the number of microRNAs. 
The resource vector r1(miRNAi) which is a nd-dimension 
column vector describes the weights diffusing from all 
disease nodes to the node of i-th microRNA. Similarly, 
the row vector of r1(diseasem) describes the weights 
diffusing from all microRNA nodes to the node of m-th 
disease. Based on the microRNA-based weight network, 
we computed the resource vectors for miRNA and disease 
nodes in a similar way:
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Then we computed the integrated resource vectors of 
microRNAs and diseases based on the two weighted networks:

α α ( )= + −S miRNA r miRNA r miRNA( ) ( ) (1 ) '( ) 10i i i1 1 1

β β ( )= + −S disease r miRNA r miRNA( ) ( ) (1 ) '( ) 11m m m1 1 1

where α and β is damping coefficient for balancing the 
contribution between disease-based weighted network 
and microRNA-based weighted network. In this work, 
we simply set α and β as 0.5. In the second step, 
EPMDA model calculates feedback resource vectors 
for microRNAs and diseases based on disease-based 
network and the computed S1(miRNAi) and S1(diseasem) 
as follows:
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Similarly, the feedback resource vectors for 
microRNAs and diseases were also computed based on 
the microRNA-based weighted network:
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We can further obtain final prediction scores by 
combining the feedback resource vectors:

( )α α= + −S miRNAi r miRNAi r miRNAi2( ) 2( ) (1 ) 2 '( ) 16

β β ( )= + −S disease r miRNA r miRNA( ) ( ) (1 ) '( ) 17m m m2 2 2

Clearly, S2(miRNAi) is a nd-dimension column 
vector which describes prediction scores for nd diseases 
to be associated with i-th microRNA, and S2(diseasem) 
describes to possibility of nm microRNAs to be associated 
with m-th disease. In the third step, EPMDA constructs 
two prediction matrixes, SSmiRNA and SSdisease, by simply 
concatenating two kinds of feedback resource vectors of 
microRNAs and diseases:

( )= …SSmiRNA S miRNA S miRNA S miRNAnm[ 2 ( 1),  2 ( 2 ), , 2 ( )] 18

( )= …SS S disease S miRNA S miRNA[ ( ) ,  ( ) , , ( ) ] 19disease
T T

n
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Finally, the final prediction matrix SS yielded by 
EPMDA model is computed by simply averaging SSmiRNA 
and SSdisease:

( )= ⋅A SM A 4d disease

( )= ⋅A SM A 5m microRNA
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( )=
+

SS
SSmiRNA SSdisease

2
20

where the entity SS(i,j) of matrix SS denote the predicted 
association possibility for i-th microRNA to be associated 
with j-th disease.
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