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ABSTRACT:
Control of BRAF(V600E) metastatic melanoma by BRAF inhibitor (BRAF-I) is 

limited by intrinsic and acquired resistance. Growth factor receptor up-regulation is 
among the mechanisms underlying BRAF-I resistance of melanoma cells. Here we 
demonstrate for the first time that PDGFRα up-regulation causes BRAF-I resistance. 
PDGFRα inhibition by PDGFRα-specific short hairpin (sh)RNA and by PDGFRα inhibitors 
restores and increases melanoma cells’ sensitivity to BRAF-I in vitro and in vivo. This 
effect reflects the inhibition of ERK and AKT activation which is associated with BRAF-I 
resistance of melanoma cells. PDGFRα up-regulation is mediated by Sonic Hedgehog 
Homolog (Shh) pathway activation which is induced by BRAF-I treatment. Similarly 
to PDGFRα inhibition, Shh inhibition by LDE225 restores and increases melanoma 
cells’ sensitivity to BRAF-I. These effects are mediated by PDGFRα down-regulation 
and by ERK and AKT inhibition. The clinical relevance of these data is indicated by 
the association of PDGFRα up-regulation in melanoma matched biopsies of BRAF-I 
+/- MEK inhibitor treated patients with shorter time to disease progression and 
less tumor regression. These findings suggest that monitoring patients for early 
PDGFRα up-regulation will facilitate the identification of those who may benefit from 
the treatment with BRAF-I in combination with clinically approved PDGFRα or Shh 
inhibitors.
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INTRODUCTION

Over 50% of metastatic melanomas harbor the 
BRAF(V600E) point mutation (T1799A)[1, 2]. Mutant 
BRAF(V600E) represents a constitutively active protein 
serine kinase that leads to the sustained activation of the 
BRAF→MEK1/2→ERK1/2 MAP kinase pathway[3, 4]. 
This pathway plays a critical role in the regulation of 
gene expression as well as cell proliferation and survival, 
which are all involved in the initiation and progression of 
melanoma[5, 6]. Clinical trials have demonstrated that the 
BRAF inhibitor (BRAF-I), PLX4032 (vemurafenib), and 
other inhibitors in its class (GSK2118436 or dabrafenib) 
can induce tumor regression in more than 50% of 
the patients with metastatic melanoma harboring the 
BRAF(V600E) mutation and improve both progression-
free and overall survival [7, 8]. Although the clinical 
activity of BRAF-I therapy is a major breakthrough 
in the treatment of metastatic melanoma, the median 
time to disease progression is less than 7 months due to 
acquired resistance[8]. Furthermore complete responses 
to vemurafenib are only observed in 5% of patients, as a 
consequence of intrinsic BRAF-I resistance[7, 9].

The multiple mechanisms underlying melanoma 
BRAF-I resistance, most of which have been validated 
by clinical evidence[10-14], can be classified into two 
groups. One includes ERK signaling reactivation, caused 
by point mutations in MEK1[10, 15], amplification of 
mutant BRAF(V600E)[16], elevated CRAF activity[17], 
activating NRAS mutations [11], increased levels of 
COT/Tpl2[12] and/or aberrantly spliced BRAF(V600E)
[13]. The other one includes activation of alternative pro-
tumorigenic pathways such as the PI3K/AKT pathway 
that can be caused by phosphatase and tensin homolog 
(PTEN) loss [18] or by an increase in signaling driven by 
receptor tyrosine kinases (RTK). The latter include the 
platelet-derived growth factor (PDGFR)β [11, 19] and the 
insulin-like growth factor receptor (IGF1R) [14]. To the 
best of our knowledge, PDGFRα, a RTK which markedly 
differs in its functional properties from its family member 
PDGFRβ, has not been implicated in BRAF-I resistance of 
BRAF(V600E) melanoma.

In this study we provide for the first time both in 
vitro and in vivo evidence that PDGFRα up-regulation 
causes BRAF-I resistance of BRAF(V600E) melanoma 
cells. Furthermore, we show that PDGFRα up-regulation 
is mediated by activation of the Sonic Hedgehog Homolog 
(Shh) pathway which is induced by BRAF-I treatment. 
Lastly, we describe combinatorial strategies which can be 
easily translated to a clinical setting to counteract the Shh/
PDGFRα mediated BRAF-I resistance of BRAF(V600E) 
melanoma cells.

RESULTS

ERK reactivation, AKT activation and PDGFRα 
up-regulation in melanoma cell lines with 
acquired BRAF-I resistance

The parental Colo38 and M21 cell lines were 
compared in their sensitivity to the anti-proliferative 
activity of the BRAF-I vemurafenib to the autologous 
cell lines Colo38R, and M21R and the allogeneic cell line 
TPF-10-741. Parental Colo38 and M21 cells were highly 
sensitive to the anti-proliferative activity of vemurafenib 
at the concentrations ranging between 250 nM and 2000 
nM. In contrast, Colo38R and M21R cells showed a 
markedly lower sensitivity to the growth inhibitory effects 
of vemurafenib (Supplementary Figure 1). TPF-10-741 
cells displayed an intermediate sensitivity to vemurafenib. 
This acquired resistance model was used to investigate the 
molecular mechanisms underlying disease progression 
after an initial response to vemurafenib. Since acquired 
BRAF-I resistance can be mediated by reactivation 
of the MAPK pathway or by activation of alternative 
pathways like PI3K/AKT, we evaluated signaling 
through these pathways in both parental and resistant 
cell lines (Figure 1A). Following a 1 and a 24 hour (h) 
incubation at 37°C with vemurafenib, phospho- (p)-ERK 
levels were markedly reduced in both Colo38 and M21 
cells, but were changed to a limited extent or not at all in 
Colo38R and M21R cells. The latter cells also displayed 
much higher levels of p-ERK as compared to the parental 
cells under basal conditions (P<0.05). As described by 
Lito et al. in other BRAF(V600E) melanoma cell lines 
[20], p-ERK levels rebounded after a 24 h incubation at 
37°C with vemurafenib in both Colo38 and M21 cells. 
However no changes were detected in Colo38R and 
M21R cells. Similarly to the resistant cells, in partially 
resistant TPF-10-741 cells p-ERK levels were changed 
to a limited extent rebounding just at 24 h incubation 
with vemurafenib. p-AKT levels were increased in 
Colo38R and M21R cells compared to Colo38 and M21 
cells (P<0.05). p-AKT levels were also increased in 
Colo38, M21 and TPF-10-741 cells after treatment with 
vemurafenib (P<0.05).

To investigate the mechanisms underlying the 
melanoma cell resistance to BRAF-I, the expression and 
activation of the RAF/MEK/ERK and PI3K/AKT pathway 
components were analyzed in the cell lines both under 
basal conditions and after treatment with vemurafenib. 
CRAF and MEK were reactivated in Colo38R, M21R, 
and TPF-10-741 cells. PI3K was activated in Colo38, M21 
and TPF-10-741 cells after treatment with vemurafenib 
(Figure 1B), but its levels were not affected in Colo38R 
and M21R cells. PTEN was not detected in TPF-10-741 
cells, but was expressed in the other cell lines (Figure 1B). 



Oncotarget1928www.impactjournals.com/oncotarget

Therefore the resistance of melanoma cell lines to BRAF-I 
was associated with the simultaneous reactivation of the 
MAPK pathway and with the activation of the PI3K/
AKT pathway. The latter might be caused by an upstream 
activator of MAPK and PI3K/AKT pathways. To exclude 
the presence of NRAS mutations as well as the presence 
of additional alterations in BRAF gene, a RT-PCR was 
performed in parental and resistant cell lines. No changes 
were detected in NRAS sequence and the BRAF(V600E) 
mutation was present in both parental and resistant cell 
lines (Supplementary Figure S2). Since BRAF-I resistance 
through reactivation of MAPK pathway and activation 
of PI3K/AKT pathway can be mediated by RTK up-

regulation [11], we investigated the potential role of RTK 
PDGFRα, PDGFRβ and VEGFR2 in BRAF-I resistance. 
As shown in Figure 1C, vemurafenib enhanced PDGFRα 
expression and activation in Colo38 and M21 cells 
(P<0.05). Furthermore PDGFRα levels were higher in 
Colo38R and M21R cells as compared to the parental cells 
(P<0.05). PDGFRα was expressed and activated in TPF-
10-741 cells both under basal conditions and following 
treatment with vemurafenib. PDGFRβ was up-regulated 
on TPF-10-741 cells after treatment with vemurafenib, but 
was not detectable in the other cell lines both under basal 
conditions and following treatment with vemurafenib. 
Lastly, VEGFR2 expression was not detected in any cell 

Figure 1: Association of BRAF-I resistance with MAPK reactivation, PI3K/AKT activation and PDGFRα up-
regulation in BRAF(V600E) melanoma cell lines. Cells were treated with the BRAF-I vemurafenib (1 µM). A. Following an up to 
48 h incubation at 37°C cells were harvested and lysed. Cell lysates were analyzed by western blot with the indicated mAbs. β-actin was 
used as a loading control. A representative result is shown (upper panel). The levels of p-ERK and p-AKT normalized to β-actin are plotted 
and expressed as mean ± SD of the results obtained in three independent experiments (lower panel). The asterisk (*) indicates P<0.05.  B. 
Following a 48 h incubation at 37°C cells were harvested and lysed. Cell lysates were analyzed by western blot with the indicated mAbs. 
β-actin was used as a loading control. C. Following a 48 h incubation at 37°C cells were harvested and lysed. Cell lysates were analyzed 
by western blot with the indicated mAbs. Calnexin was used as a loading control. A representative result is shown (left panel). The levels 
of PDGFRα and p-PDGFRα normalized to calnexin are plotted and expressed as mean ± SD of the results obtained in three independent 
experiments (right panel). The asterisk (*) indicates P<0.05.
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lines before or after treatment with vemurafenib. 

Induction by PDGFRα up-regulation of 
melanoma cell line resistance to BRAF-I

To test whether PDGFRα up-regulation caused 
BRAF-I resistance in Colo38R, M21R and TPF-10-741 
cells, PDGFRα was knocked down in the three cell lines 
using 5 PDGFRα-specific short hairpin RNA (shRNAs). 
As shown in Figure 2A, lentiviral transduction of M21R 
cells with a PDGFRα-specific shRNA(#4) construct 
knocked down p-PDGFRα and PDGFRα expression 
(p<0.05). PDGFRα down-regulation was associated 
with a minimal decrease in p-ERK and p-AKT levels 
(P<0.05) as compared to untreated cells. However, this 
effect was markedly enhanced when the cells transduced 
with PDGFRα-specific shRNA(#4) were treated with 
vemurafenib (P<0.05) which slightly decreased p-ERK 
levels and increased p-AKT expression. Additionally, 
as shown in Figure 2B, M21R and TPF-10-741 cells 
transduced with the PDGFRα-specific shRNA(#4) 
displayed a significantly increased sensitivity to the anti-

proliferative effect of vemurafenib when compared to the 
autologous cells transduced with a GFP-shRNA (P<0.01) 
(IC50 ≤ 20 times). 

Association of PDGFRα up-regulation in 
melanoma patient derived biopsies with BRAF-I 
resistance

To assess the potential clinical significance of our 
in vitro results, we tested PDGFRα expression in biopsies 
obtained from 9 melanoma patients treated with BRAF-I 
or with the novel combination of BRAF-I and MEK 
inhibitor (MEK-I) [21]. Tumor biopsies were performed 
pre-treatment (day 0), at 10-14 days on treatment, and/or 
at the time of disease progression. Immunohistochemical 
(IHC) staining demonstrated PDGFRα up-regulation in 
5 out of 9 patients following treatment with BRAF-I +/- 
MEK-I (Figure 3A). In 3 of the 5 patients a significant 
increase in PDGFRα expression (>1+) was observed 
after treatment. Patients with a significant (>1+) increase 
in PDGFRα expression after treatment with BRAF-I +/- 
MEK-I had less tumor regression (Figure 3B) and shorter 

Figure 2: Restoration by PDGFRα down-regulation of BRAF-I sensitivity of BRAF(V600E) melanoma cell lines with 
acquired BRAF-I resistance. A. M21R transduced with PDGFRα-specific shRNA (#4) or GFP-shRNA lentiviral particles were treated 
with the BRAF-I vemurafenib (1µM). Following a 3 day incubation at 37°C cells were harvested and lysed. Cell lysates were analyzed 
by western blot with the indicated mAbs. β-actin was used as a loading control. A representative result is shown (left panel). The levels of 
PDGFRα, p- PDGFRα, p-ERK and p-AKT normalized to β-actin are plotted and expressed as mean ± SD of the results obtained in three 
independent experiments (right panel). The asterisk (*) indicates P<0.05.  B. PDGFRα-specific shRNA (#4) transduced M21R and TPF-
10-741 cells were treated with the indicated vemurafenib concentrations. GFP-shRNA transduced M21R and TPF-10-741 cells were used 
as controls. Cell proliferation was determined by MTT assay following a 3 day incubation at 37°C. Percentage of cell proliferation was 
calculated as the ratio of treated cells to untreated GFP-shRNA transduced cells. Data are expressed as mean ± SD of the results obtained 
in three independent experiments. The asterisks (***) indicate P<0.01.
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time to disease progression (Figure 3C) (P=0.07) when 
compared to patients who had no change or a small change 
in PDGFRα expression (≤1+). 

Increase by PDGFRα-I of the anti-tumor activity 
of BRAF-I in BRAF-I sensitive and resistant 
melanoma cell lines

To investigate whether the anti-tumor activity 
of BRAF-I could be enhanced by PDGFRα inhibition, 
Colo38, Colo38R, M21, M21R and TPF-10-741 cells 

were treated with vemurafenib in combination with 
the PDGFRα inhibitor (PDGFRα-I) sunitinib [22], 
imatinib [23] or crenolanib  [24]. A titration experiment 
established the dose of the PDGFRα-I to be combined 
with vemurafenib in the 5 cell lines. The IC50 doses of 
sunitinib, imatinib and crenolanib were found to be 2, 15 
and 1.5 µM, respectively (Supplementary Figure 3).  In 
line with the data in the literature [25-35], the doses of 1.5 
and 3 µM for sunitinib, 10 and 20 µM for imatinib and 
1 and 2 µM for crenolanib, were tested in combination 
with vemurafenib for their anti-proliferative effect and 

Figure 3: PDGFRα expression in melanoma metastases obtained from patients who acquired BRAF-I resistance.  
Melanoma tumors were biopsied before treatment (day 0), at 10-14 days on treatment, and/or at the time of disease progression following 
treatment with BRAF-I or with BRAF-I and MEK-I. Tumor sections were stained with H&E and PDGFRα-specific rabbit antibody. 
Scores were recorded semiquantitatively as 1+, 2+, 3+ and 4+, when 1–25%, 26–50%, 51-75% and >75% of melanoma cells were stained, 
respectively. Patients were divided in two groups based on change of PDGFRα expression, as measured by IHC staining of melanoma 
biopsies: those whose PDGFRα staining score had no or 1 point increase after treatment (≤1+) and those whose PDGFRα staining score 
increased 2 or more points after treatment (>1+). A. Representative IHC staining of PDGFRα expression in melanoma patients before 
treatment, at 10-14 days on treatment and at the time of disease progression in 5 out of 9 tumor biopsies. Tissue from a human GIST and 
its lymphocyte infiltrate were used as a positive and a negative control, respectively, for PDGFRα expression. The magnification used is 
indicated in the panels of the figure. B. Two groups of patients were graphed based upon RECIST (complete response (CR), partial response 
(PR) and stable disease (SD)) and compared as a percent of the total population of the PDGFRα stain score group. C. Two groups of patients 
were graphed based upon the time to disease progression utilizing Kaplan–Meier method. 
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induction of apoptosis. As shown in Figure 4A and 
Supplementary Figure 4, vemurafenib and PDGFRα-I 
combination inhibited the proliferation of Colo38 and 
M21 cells to a significantly greater extent (P<0.05) 
than each agent alone. Furthermore, as observed with 
cells transduced with the PDGFRα-specific shRNA, 
PDGFRα-I synergized (P<0.05) with vemurafenib in 
the inhibition of Colo38R, M21R and TPF-10-741 cell 
growth. Lastly, vemurafenib and PDGFRα-I (crenolanib 
or sunitinib) combination (Figure 4B and Supplementary 
Figure 5) induced apoptosis in a significantly (P<0.05) 
higher percentage of cells than each agent alone in both 
BRAF-I sensitive and resistant cell lines. It is worth noting 

that crenolanib and sunitinib induced apoptosis in both 
BRAF-I sensitive and resistant cell lines (P<0.05), while 
vemurafenib had no detectable effect.

Inhibition by BRAF-I and PDGFRα-I of ERK and 
AKT activation in BRAF-I sensitive and resistant 
melanoma cell lines

We next investigated whether the enhanced anti-
proliferative and pro-apoptotic activity of BRAF-I and 
PDGFRα-I combination was mediated by an increased 
inhibition of ERK and AKT activation in BRAF-I sensitive 
and resistant cells. As shown in Figure 5, p-ERK and 

Figure 4: Enhancement by PDGFRα-I of the in vitro anti-proliferative and pro-apoptotic activity of BRAF-I in BRAF-I 
sensitive and resistant melanoma cell lines harboring BRAF(V600E). A. Cells were treated with the BRAF-I vemurafenib (500 
nM) and/or the indicated concentration of PDGFRα-I sunitinib (left panel) or imatinib (right panel). Cell growth inhibition was determined 
by MTT assay following a 3 day incubation at 37°C. Percentage of cell growth inhibition was calculated as ratio of treated to untreated 
cells for each treatment. Data are expressed as mean ± SD of the results obtained in three independent experiments. The asterisk (*) 
indicates P<0.05. B. Cells were treated with the BRAF-I vemurafenib (500 nM) and/or the PDGFRα-I crenolanib (1 µM). Following a 24 
h incubation at 37°C cells were harvested and stained with Annexin V and PI. A representative result is shown (left panel). The levels of 
apoptosis are plotted and expressed as mean fraction of apoptotic cells ± SD of the results obtained in three independent experiments (right 
panel). The asterisk (*) indicates  P<0.05. 
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p-AKT levels were markedly decreased in both BRAF-I 
sensitive and resistant melanoma cells after treatment with 
vemurafenib and PDGFRα-I combination. Specifically, 
p-ERK levels were dramatically decreased in Colo38 and 
M21 cells treated with vemurafenib. In contrast p-ERK 
levels were minimally decreased in Colo38 and M21 
cells treated with PDGFRα-I. In addition, p-AKT levels 
were increased in M21 cells treated with vemurafenib, 
but were reduced in Colo38 and M21 cells treated with 
PDGFRα-I. However both p-ERK and p-AKT levels 
were markedly inhibited in Colo38 and M21 cells treated 
with vemurafenib and PDGFRα-I combination. On the 
other hand, p-ERK levels were minimally inhibited by 
vemurafenib in TPF-10-741 cells as well as in Colo38R 
and M21R cells when compared with parental cell lines. 
As observed with cells transduced with the PDGFRα-
specific shRNA, PDGFRα-I decreased p-ERK and p-AKT 
levels in Colo38R, M21R and TPF-10-741 cells. However, 
vemurafenib and PDGFRα-I combination markedly 
decreased both p-ERK and p-AKT levels to a greater 
extent than each agent alone in all of the BRAF-I resistant 
cell lines (Figure 5).

Enhancement by PDGFRα-I of the in vivo anti-
tumor activity of BRAF-I in BRAF-I sensitive and 
resistant BRAF(V600E) melanoma cell lines

To assess the in vivo relevance of our in vitro results, 
vemurafenib and sunitinib combination was tested for its 
ability to inhibit the growth of M21 and M21R cells in 
severe combined immunodeficiency (SCID) mice. The oral 
administration of the drugs, either in combination or as 
individual agents, caused no overt side effects (data not 
shown). In the mice grafted with M21 cells (Figure 6A) 
vemurafenib (12.5 mg/kg twice per day) and sunitinib 
(20 mg/Kg/day) combination inhibited tumor growth to 
a significantly (P<0.001) greater extent than each single 
agent. Both vemurafenib and sunitinib inhibited tumor 
growth as single agents to a similar extent (P<0.001). 
It is noteworthy that sunitinib was administered at a 
lower dose (20 mg/Kg/day) as compared to the dose 
used by other investigators (40 mg/Kg/day)[26, 27, 36]. 
Nevertheless, sunitinib was effective in enhancing the 
anti-tumor activity of vemurafenib. Analysis of the tumor 
cell lysates removed from treated and untreated mice 
(Figure 6B) demonstrated that vemurafenib and sunitinib 
combination markedly reduced both p-ERK and p-AKT 
levels. Sunitinib by itself slightly decreased p-ERK and 
p-AKT levels, while vemurafenib decreased p-ERK levels 
but increased p-AKT levels. IHC analysis of the primary 

Figure 5: Enhancement by PDGFRα-I of the signaling pathway inhibition by BRAF-I in BRAF-I sensitive and resistant 
melanoma cell lines harboring BRAF(V600E). Cells were treated with the BRAF-I vemurafenib (1 µM) and/or the PDGFRα-I 
sunitinib (1.5 µM) and/or imatinib (10 µM) and/or crenolanib (1 uM). Following an up to 72 h incubation at 37°C, cells were harvested and 
lysed. Cell lysates were analyzed by western blot with the indicated mAbs. β-actin was used as a loading control. Representative results are 
shown (upper panel). The levels of p-ERK and p-AKT normalized to β-actin are plotted and expressed as mean ± SD of the results obtained 
in two independent experiments (lower panel). 
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tumors demonstrated a marked reduction in the number 
of mitoses in tumors from mice treated with vemurafenib 
and sunitinib combination (Figure 6C) when compared to 
tumors from mice treated with each single agent (P<0.001) 
or from untreated mice (P<0.001). Both vemurafenib and 
sunitinib reduced significantly the number of mitoses in 
tumors as compared to untreated mice (P<0.001).  The 
number of apoptotic cells (Figure 6D) in tumors from 
mice treated with vemurafenib and sunitinib combination 
was significantly higher than in tumors from untreated 

mice or from mice treated with vemurafenib or sunitinib 
individually (P<0.001). Sunitinib, but not vemurafenib 
induced apoptosis in a significantly higher number of cells 
in tumors when compared to untreated mice (P<0.001).

In the mice grafted with M21R cells (Figure 6E), 
as expected, vemurafenib did not inhibit tumor growth 
as compared to untreated mice. In contrast, sunitinib 
significantly inhibited tumor growth as compared 
to untreated mice (P<0.001) or to mice treated with 
vemurafenib (P<0.001). This effect was significantly 

Figure 6: Enhancement by PDGFRα-I of the anti-tumor activity of BRAF-I in human BRAF(V600E) melanoma 
cells grafted in immunodeficient mice. A, E. M21 and M21R cells were each implanted subcutaneously in 20 SCID mice. When 
tumors became palpable, mice were randomly divided into 4 groups (5 mice/group). One group was treated with the BRAF-I vemurafenib 
(12.5 mg/kg/twice per day), one with the PDGFRα-I sunitinib (20 mg/kg/day) and one with vemurafenib (12.5 mg/kg/twice per day) in 
combination with sunitinib (20 mg/kg/day). One group of mice was left untreated as a reference for the natural course of the disease. 
Efficacy data are plotted as mean tumor volume (in mm3) ± SD. The asterisks (***) indicate P<0.001. B, F. Tumors harvested from 
untreated and treated mice were lysed and analyzed for expression and activation of the indicated signaling pathway components. β-actin 
was used as a loading control. Three representative tumor cell lysates for each group of mice are shown (left panel). The levels of p-ERK 
and p-AKT normalized to β-actin are plotted and expressed as mean ± SD of the results obtained with the five tumor cell lysates in each 
group (right panel). C, G. Tissue sections obtained from the harvested tumors were analyzed for the content of mitotic cells by staining with 
p-Histone H3 (Ser10) protein-specific antibody. Mitotic tumor cells were quantified by counting 5 randomly selected high-power fields per 
section (magnification ×200). D, H. Tissue sections obtained from the harvested tumors were analyzed for the content of apoptotic cells by 
staining with Cleaved Caspase-3 (Asp175)-specific antibody. Apoptotic tumor cells were quantified by counting 5 randomly selected high-
power fields per section (magnification ×200). Data are presented as means ± SD. The asterisks (***) indicate P<0.001.



Oncotarget1934www.impactjournals.com/oncotarget

enhanced when sunitinib was combined with vemurafenib 
(P<0.001). Analysis of the tumor lysates (Figure 6F) 
demonstrated that, while vemurafenib had no detectable 
effect on p-ERK and p-AKT levels, sunitinib inhibited 
both of them. This effect was more marked in tumors from 
mice treated with vemurafenib and sunitinib combination.  
IHC analysis of the primary tumors showed a significantly 
lower number of mitoses in tumors from mice treated with 
sunitinib (Figure 6G) when compared to that in tumors 
from vemurafenib treated or untreated mice (P<0.001). 
In addition, sunitinib strongly increased the number of 
apoptotic cells in tumors as compared to vemurafenib 
or untreated mice (P<0.001) (Figure 6H). However 
vemurafenib and sunitinib combination decreased the 
number of mitotic cells and increased that of apoptotic 
cells to a significantly (P<0.001) greater extent than 
sunitinib alone.

To prove that the results obtained with sunitinib 
did not reflect potential off target effects of sunitinb we 
tested the therapeutic efficacy of the other PDGFRα-I 
imatinib in combination with a higher dose of vemurafenib 
(25 mg/kg twice per day). Imatinib was administered at 
a dose (100 mg/kg/day) which has been used by other 
investigators [31, 32]. As expected vemurafenib and 
imatinib combination inhibited tumor growth of M21 
cells to a significantly (P<0.001) greater extent than each 
single agent, although imatinib displayed lower anti-tumor 
activity than sunitinib and vemurafenib had a higher anti-
tumor effect. (Supplementary Figure 6).

Figure 7: Association of Gli1 activation with PDGFRα up-regulation mediating BRAF-I resistance in melanoma cell 
lines harboring BRAF(V600E). A. Cells were treated with the BRAF-I vemurafenib (1 µM). Following an up to 72 h incubation at 
37°C cells were harvested and lysed. Cell lysates were analyzed by western blot with the indicated mAbs. β-actin was used as a loading 
control. A representative result is shown (left panel).  The level of Gli1 normalized to β-actin is plotted and expressed as mean ± SD of the 
results obtained in three independent experiments (right panel). The asterisk (*) indicates P<0.05. B. Cells were treated with vemurafenib 
(1 uM) and/or the Shh-I LDE225 (10 uM). Cell growth inhibition was determined by MTT assay following a 3 day incubation at 37°C. 
Percentage of cell growth inhibition was calculated as the ratio of treated to untreated cells. Data are expressed as the mean ± SD of the 
results obtained in three independent experiments. The asterisk (*) indicates P<0.05. C. M21 and M21R cells were treated with vemurafenib 
(1 µM) and/or LDE225 (10 uM). Following a 48 h incubation at 37°C cells were harvested and lysed. Cell lysates were analyzed by 
western blot with the indicated mAbs. β-actin was used as a loading control. The data shown are representative of the results obtained in 
two independent experiments. D. M21 cells were implanted subcutaneously in 20 SCID mice. When tumors became palpable, mice were 
randomly divided into 4 groups (5 mice/group). One group was treated with the BRAF-I vemurafenib (12.5 mg/kg/twice per day), one with 
the Shh-I LDE225 (40 mg/kg/day) and one with vemurafenib (12.5 mg/kg/twice per day) in combination with LDE225 (40 mg/kg/day). 
One group of mice was left untreated as a reference for the natural course of the disease. Efficacy data are plotted as mean tumor volume 
(in mm3) ± SD. The asterisks (***) indicate P<0.001.
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Role of Shh pathway activation in PDGFRα 
up-regulation mediated BRAF-I resistance of 
melanoma cells

The previously described role of the Shh pathway 
and Gli1 activation[37-40] in PDGFRα up-regulation 
associated with the MAPK and PI3K/AKT pathway 
activation prompted us to investigate whether Gli1 
activation is involved in PDGFRα up-regulation in 
BRAF(V600E) melanoma cells. As shown in Figure 
7A, vemurafenib enhanced Gli1 expression in Colo38, 
Colo38R, M21, M21R, and TPF-10-741 cells as compared 
to untreated cells (P<0.05). Similarly to PDGFRα 
inhibition, inhibition of Gli1 activation by the novel 
clinically available Shh inhibitor (Shh-I) LDE225[41] 
restored (P<0.05) and increased (P<0.05) melanoma 
cells’ sensitivity to BRAF-I (Figure 7B). Furthermore, 
LDE225 in combination with vemurafenib down-
regulated PDGFRα expression and inhibited ERK and 
AKT activation in the BRAF-I sensitive and resistant 
melanoma cells (Figure 7C). Lastly LDE225 (40 mg/
Kg/day) enhanced (p<0.001) the ability of vemurafenib 
to inhibit the growth of M21 cells in SCID mice (Figure 
7D). These results validated the association between Gli1 
activation and PDGFRα up-regulation mediating BRAF-I 
resistance.

DISCUSSION

PDGFRα is overexpressed in sarcoma and glioma. 
It is involved in tumor growth, metastasis and neo 
angiogenesis, as well as in the development of resistance 
to cytotoxic therapy [42]. These functional properties 
of PDGFRα are likely to reflect its ability to engage 
signaling pathways, such as RAS/RAF/MEK/ERK and 
PI3K/AKT which play a role in tumor cell proliferation 
and aggressive phenotype. The present study demonstrates 
that human melanoma cells express PDGFRα both in vitro 
and in vivo. PDGFRα up-regulation in human melanoma 
cells harboring the BRAF(V600E) mutation is shown 
for the first time to be associated with the loss of their 
sensitivity to the anti-proliferative and pro-apoptotic 
activity of the BRAF-I vemurafenib both in vitro and in 
vivo. The association between PDGFRα up-regulation and 
vemurafenib resistance reflects a cause-effect relationship.  
Vemurafenib resistance is overcome in melanoma cells 
which down-regulate PDGFRα expression following 
transduction with a PDGFRα-specific shRNA. An 
association between the PDGFRα and BRAF(V600E) 
mutation is also observed in wild type PDGFRα 
gastrointestinal stromal tumors (GISTs) which acquire the 
BRAF(V600E) mutation when they develop resistance to 
PDGFRα-I imatinib [43-46].

Vemurafenib resistance of melanoma cells harboring 
a BRAF mutation reflects ERK and AKT activation 

induced by PDGFRα up-regulation, since inhibition of its 
synthesis by PDGFRα-specific shRNA causes a reduction 
of ERK and AKT activation and restores sensitivity to 
BRAF-I. A similar effect has been demonstrated for the 
HGF mediated resistance to BRAF-I [47]. This conclusion 
is corroborated by the in vitro and in vivo results obtained 
by inhibiting the function of PDGFRα with the clinically 
approved tyrosine kinase inhibitors sunitinib, imatinib 
and crenolanib. Sunitinib is an inhibitor of PDGFRα, 
PDGFRβ and VEGFR2. Imatinib is an inhibitor of 
PDGFRα, PDGFRβ. Crenolanib is a novel and potent 
inhibitor of PDGFRα and PDGFRβ. It is worth noting that 
the BRAF(V600E) melanoma cell lines with a PDGFRα 
up-regulation mediated BRAF-I resistance did not express 
PDGFRβ and VEGFR2. Vemurafenib and PDGFRα-I 
combination markedly inhibits in vitro proliferation and 
induces apoptosis of melanoma cells with a PDGFRα 
up-regulation mediated BRAF-I resistance. These results 
are paralleled by our in vivo findings. Vemurafenib and 
PDGFRα-I combination inhibited the growth and induced 
apoptosis in human melanoma cells with PDGFRα up-
regulation mediated BRAF-I resistance engrafted in 
immunodeficient mice. These effects are mediated by 
the inhibition of the RAF/MEK/ERK and PI3K/AKT 
signaling pathways. The levels of p-ERK and p-AKT were 
markedly reduced in melanoma cells with PDGFRα up-
regulation mediated BRAF-I resistance following in vitro 
or in vivo treatment with vemurafenib and PDGFRα-I 
combination. It is noteworthy that this combination has 
a significantly greater anti-proliferative and pro-apoptotic 
effect than either agent alone both in vitro and in vivo 
also with BRAF-I sensitive human melanoma cells which 
express PDGFRα. Therefore, our results suggest that the 
combinatorial strategy we have designed may overcome 
not only the acquired, but also the intrinsic BRAF-I 
resistance if PDGFRα is expressed. Furthermore they 
confirm that simultaneous inhibition of both the ERK and 
AKT pathways is more effective in suppressing tumor cell 
proliferation and in inducing apoptosis in both BRAF-I 
sensitive and resistant melanoma cells[14, 48-54].

In agreement with the information in the literature 
[37-40], we have found that PDGFRα up-regulation 
associated with MAPK and PI3K/AKT activation is 
regulated by the Shh pathway and by Gli1 activation. Our 
data confirm this relationship since treatment with BRAF-I 
enhances Gli1 expression. The latter results are associated 
with PDGFRα up-regulation mediated BRAF-I resistance 
since treatment with the novel clinically approved Shh-I 
LDE225 down-regulates the expression of PDGFRα by 
inhibiting Gli1 activation. Furthermore, PDGFRα down-
regulation by the Shh-I LDE225 in combination with 
vemurafenib enhances tumor growth inhibition in vitro 
and in vivo and decreases ERK and AKT activation in both 
sensitive and resistant cell lines.

PDGFRα is not the only growth factor receptor 
which plays a role in BRAF-I resistance. IGFR1[14] and 
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PDGFRβ[11, 19] are involved in the acquired BRAF-I 
resistance of melanoma. BRAF-I resistance induced by 
IGFR and PDGFRβ, similar to PDGFRα, is mediated 
by ERK and AKT activation. However as reported 
by others[19] and as found by us (data not shown) the 
PDGFRα/PDGFRβ inhibitors sunitinib and imatinib 
are not able to overcome BRAF-I resistance mediated 
by PDGFRβ up-regulation. The latter finding reflects 
the lack of inhibition of ERK activation in spite of the 
inhibition of AKT activation since the inhibition of 
these two downstream components of the RAF/MEK/
ERK and PI3K/AKT signaling pathways by a PDGFRβ-
specific shRNA restored sensitivity of melanoma cells to 
vemurafenib.

The potential clinical relevance of our results is 
suggested by two lines of evidence. First, PDGFRα 
expression was up-regulated in 5 out of the 9 matched 
melanoma lesions with a BRAF(V600E) mutation, 
surgically removed from patients who had developed 
BRAF-I resistance. Second, the extent of PDGFRα 
increase in melanoma lesions, as measured by the 
increase in the percentage of stained melanoma cells, 
was associated with the clinical course of the disease. 
Specifically a marked increase in PDGFRα expression 
was associated with a shorter time to progression and 
less tumor regression based on RECIST criteria. Notably, 
baseline expression of PDGFRα did not correlate with 
response or time to progression. In order to utilize the 
phenomenon we have observed as a method for patient 
selection, one would need to monitor PDGFRα up-
regulation in tumor biopsy specimens or to develop a 
noninvasive or surrogate method to detect PDGFRα up-
regulation.

The evidence we provide represents a strong 
rationale to translate to a clinical setting the combinatorial 
strategy we have shown to be effective in counteracting 
the BRAF-I Gli1/PDGFRα-mediated resistance of 
melanoma cells both in vitro and in vivo. The translation 
of this approach into the clinic is facilitated by the 
availability of Food and Drug Administration (FDA) 
approved drugs to use in combination. Furthermore, these 
data suggest that PDGFRα may be a useful biomarker to 
identify patients with BRAF-mutant melanoma who will 
or will not respond to BRAF-I or combination BRAF-I 
and MEK-I. Lastly PDGFRα up-regulation has therapeutic 
implications since BRAF(V600E) melanoma patients 
with PDGFRα up-regulation may potentially benefit from 
treatment with BRAF-I in combination with PDGFRα-I 
or Shh-I.

METHODS

Cell cultures 

The parental BRAF(V600E) melanoma cell lines 
Colo38 and M21 were cultured in RPMI 1640 medium 
(Mediatech) supplemented with 2 mmol/L L-glutamine 
(Mediatech) and 10% fetal calf serum (FCS; Atlanta 
Biologicals). The cell lines M21 and Colo38 were 
originated by the late Dr. Donald Morton (when he 
was at the University of California) and by the late Dr. 
George Moore (when he was at University of Colorado), 
respectively, from metastatic lesions of patients with 
melanoma. The BRAF(V600E) melanoma cell line TPF-
10-741 was cultured in DMEM (Mediatech) supplemented 
with 2 mmol/L L-glutamine and 10% FCS. This cell line 
was started from a cutaneous metastasis of the melanoma 
patient TPF-10-741 who had developed BRAF-I resistance 
following treatment with vemurafenib. Melanoma cell 
lines with acquired vemurafenib resistance (Colo38R and 
M21R) were generated by propagating parental Colo38 
and M21 cells in increasing concentrations of BRAF-I 
(up to 2 µM). At the end of 2 months, resistant cells were 
isolated from each of the two cell lines and cultured in 
RPMI 1640 medium supplemented with 2 mmol/L 
L-glutamine, 10% FCS and 500 nM vemurafenib. All cells 
were cultured at 37°C in a 5% CO2 atmosphere.

Chemical reagents, antibodies and shRNAs

Vemurafenib was purchased from ChemieTek. 
Sunitinib, imatinib, crenolanib and LDE225 were 
purchased from Selleck Chemicals LLC. MTT was 
purchased from Sigma. p-AKT (Ser473)-, AKT-, p-PI3K 
p85 (γ458)-, p-CRAF(S289/296/301)-, p-MEK 1/2 
(S217/221)-,  p-ERK 1/2 (Thr202/Tyr204)-, ERK1/2-, 
PDFGRβ-, p-PDGFRα-, PDGFRα-, PTEN-, VEGFR2-, 
Cleaved Caspase-3 (Asp175)-, p-Histone H3 (Ser10)-
, Gli1- and β-actin-specific monoclonal antibodies 
(mAbs) were purchased from Cell Signaling Technology. 
The calnexin-specific mAb TO-5 was developed and 
characterized as described [55]. PDGFRα-specific shRNA 
and GFP-shRNA were provided by the- Vector Core 
Facility of the University of Pittsburgh Cancer Institute.

Patient Samples

Patients with metastatic melanoma harboring the 
BRAF(V600E) mutation (confirmed by genotyping) were 
enrolled in clinical trials with the BRAF-I (vemurafenib) 
or with the BRAF-I (dabrafenib) and MEK-I (trametinib) 
combination. Patients were consented for tissue acquisition 
per institutional review board (IRB)-approved protocol. 
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Tumor biopsies were performed pre-treatment (day 0), 
at 10-14 days on treatment, and/or at the time of disease 
progression as defined by Response Evaluation Criteria 
In Solid Tumors (RECIST) if applicable. Formalin-fixed 
tissue was analyzed to confirm that viable tumor was 
present via hematoxylin and eosin (H&E) staining.

Cell proliferation and MTT assay

Cells were plated in triplicate in 96-well microtiter 
plates at the density of 2.5 x 103 per well in 100ul of RPMI 
1640 or DMEM medium supplemented with 2% FCS and 
treated with vemurafenib and/or PDGFRα-I (sunitinib, 
imatinib and crenolanib) and/or Shh-I LDE225. Dimethyl 
sulfoxide (DMSO) (vehicle of the drugs) concentration 
was maintained at 0.02% in all wells. Doses of drugs to 
be used in the combinatorial treatment were chosen based 
on their IC50 determined with  the melanoma cell lines 
tested. Cell proliferation was evaluated at the indicated 
time points utilizing the MTT assay which was carried out 
as reported elsewhere [56]. Data are expressed as percent 
of inhibition or percent of proliferation of treated cells as 
compared to untreated control cells. All experiments were 
performed three independent times in triplicates.

Western Blot analysis

For sample preparation from cell lines, cells were 
seeded at the density of 1 x 105 per well in a 6-well plate 
in medium supplemented with 2% FCS and the indicated 
doses of each drug or their combinations at 37°C in a 5% 
CO2 atmosphere for up to 72 h. The DMSO (vehicle of 
the drugs) concentration was maintained at 0.02% in all 
wells. Untreated cells were used as a control. Cells were 
collected and lysed in lysis buffer [10 mM Tris–HCl 
(pH 8.2), 1% NP40, 1 mM EDTA, 0.1% bovine serum 
albumin (BSA), 150 mM NaCl) containing 1/50 (vol/vol) 
of protease inhibitor cocktail (Calbiochem). For sample 
preparation from tumor xenografts, tumors were harvested 
from the mice when they were sacrificed and stored at 
-80°C. Proteins were extracted by homogenization in the 
presence of 2 to 5 ml lysis buffer. Western blot assay for 
signaling-related proteins was carried out as described 
[57]. The investigator who analyzed the sample from 
tumor xenografts was blinded to the type of treatment 
received by the mice used as the source of the tumor.

RT-PCR

Total RNA was isolated from melanoma cells 
using the RNeasy kit (Qiagen). Reverse transcription 
was performed using SuperScript II Reverse 
Transcriptase (Invitrogen) followed by qPCR using 
Fast SYBR Green Master Mix (Applied Biosystems). 

The following primers were used: NRAS fragment 
from 41-312 fwd:GCCGCATGACTCGTGGTTC 
rev:TCAGTGCGCTTTTCCCAACA; BRAF fragment 
from 1526-1934 fwd:GCACCTACACCTCAGCAGTT 
rev:TGACTTCTGGTGCCATCCAC. Sequences were 
aligned to the human reference sequence using the 
ClustalW2 v2.1 algorithm.

Transduction of melanoma cells with Lentiviral 
vectors encoding shRNA

M21R and TPF-10-741 cells were seeded at the 
density of 6 x104 per well in a 6-well plate and incubated 
in culture medium for 24 h at 37ºC in a 5% CO2 
atmosphere prior to viral infection. Cells were transduced 
with PDGFRα-specific shRNA lentiviral particles 
[Target sequence: CCAGCCTCATATAAGAAGAAA 
(#1), CCAGCTTTCATTACCCTCTAT (#2), 
CGGTGAAAGACAGTGGAGAT (#3), 
CCCAACTTTCTTATCCAACTT (#4), 
CAATGGACTTACCCTGGAGAA (#5)] (1 x 106 per well) 
in presence of polybrene (2 μg/ml) as described elsewhere 
[58]. Cells transduced with GFP-shRNA were used as a 
control. Following an 18 h incubation at 37ºC, culture 
medium was removed and replaced with fresh culture 
medium. Following an additional up to 72 h incubation at 
37ºC, cells were analyzed for GFP expression under the 
microscope, split, enriched for infected cells by selection 
with puromycin (2.5 ug/ml) and collected for further 
analysis.

Immunohistochemistry

Patient biopsies and tumors generated in mice were 
formalin fixed and paraffin embedded and then used as 
substrates in immunohistochemical reactions. Five-µm 
thick xenograft tissue sections were fixed on silane-coated 
glass slides, deparaffinized, and subjected to antigen 
retrieval (Target retrieval solution, DAKO). Following 
blocking, slides from mice were incubated with Cleaved 
Caspase-3 (Asp175) and p-Histone H3 (Ser10) –specific 
mAbs overnight. Four-µm thick sections from patient-
derived samples were fixed on silane-coated glass slides, 
deparaffinized, and subjected to antigen retrieval (Target 
retrieval solution, DAKO). Sections were then incubated 
with PDGFRα-specific mAb (sc-338, Santa Cruz) 
(1:400) overnight. All sections were then washed with 
PBS, and the primary antibody was amplified using the 
VECTASTAIN ABC Kit (Peroxidase rabbit IgG, Vector 
Laboratories, PK-4001). The detection of this antibody 
was performed with the DAB Peroxidase Substrate Kit 
from DAKO and the sections were counterstained with 
H&E. Tissue from a human GIST and its lymphocyte 
infiltrate were used as a positive and a negative control, 
respectively, for PDGFRα expression. PDGFRα 
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expression, as measured by the percentage of stained 
melanoma cells, in tumors harvested from BRAF-I treated 
patients either on treatment or at the time of disease 
progression, was compared to that in pretreatment tumors. 
Scores were recorded semiquantitatively as 1+, 2+, 3+ 
and 4+, when , 1–25%, 26–50%, 51-75% and >75% of 
melanoma cells were stained, respectively. Mitotic and 
apoptotic tumor cells in the sections of primary tumors 
harvested from mice were detected by staining p-Histone 
H3 (Ser10) and Cleaved Caspase-3 proteins, respectively, 
and quantified by counting 5 random fields per section 
(magnification ×200). Data are expressed as the mean 
number of mitotic or apoptotic tumor cells in each group. 
The number of mitotic and apoptotic tumor cells was 
counted by an investigator who was blinded to the type 
of treatment received by the mice from which tumors had 
been harvested.

Assessment by flow cytometry of apoptosis 
induction

Apoptosis was detected by cytometric staining 
performed as described [59]. Briefly, apoptotic cells were 
identified by staining with Annexin -V and propidium 
iodide (PI) (BD Bioscience) for 15 min at room 
temperature. Flow cytometry data were analyzed using 
Summit v4.3 software (DAKO).

In vivo studies

C.B-17 SCID female mice (8–10 week old) were 
purchased from Taconic Farms, Inc. Parental and BRAF-I 
resistant cell lines M21 and M21R (1 x 106 cells/mouse) 
were implanted subcutaneously in the right lateral flank of 
mice. A total of 20 SCID mice was challenged with each 
cell line. Body weight and tumor volume were measured 
twice per week. Tumor volume was measured by vernier 
caliper. Treatment was initiated 10 days after cell 
inoculation when the tumor developed and had a diameter 
of around 0.4 cm. Doses of sunintib and imatinib were 
chosen based on data available in the literature [26, 27, 
31, 33]. To test vemurafenib and sunitinib combination, 
mice were randomly divided into 4 groups of 5 mice each. 
Mice in Group 1 were treated with vemurafenib (12.5 mg/
kg/twice per day [60]), those in Group 2 with sunitinib (20 
mg/kg/day)[22] and those in Group 3 with vemurafenib 
(12.5 mg/kg/twice per day) and sunitinib (20 mg/kg/
day) combination. Mice in Group 4 were left untreated 
as a reference for the natural course of the disease. To 
test vemurafenib and imatinib combination, mice were 
randomly divided into 4 groups of 5 mice each. Mice 
in Group 1 were treated with vemurafenib (25 mg/kg/
twice per day [60]), those in Group 2 with imatinib (100 
mg/kg/day)[23] and those in Group 3 with vemurafenib 
(25 mg/kg/twice per day) and imatinib (100 mg/kg/

day) combination. Mice in Group 4 were left untreated 
as a reference for the natural course of the disease. To 
test vemurafenib and LD225 combination, mice were 
randomly divided into 4 groups of 5 mice each. Mice 
in Group 1 were treated with vemurafenib (12.5 mg/kg/
twice per day), those in Group 2 with LDE225 (40 mg/
Kg/day) [41], and those in Group 3 with vemurafenib 
(12.5 mg/kg/twice per day) plus LDE225 (40 mg/kg/day). 
Mice in Group 4 were left untreated as a reference for the 
natural course of the disease. Drugs were administered by 
oral gavage. When a tumor from untreated mice reached 
the maximum diameter as approved by the Institutional 
Animal Care and Use Committee (IACUC) all mice were 
sacrificed. Primary tumors and organs were collected for 
further analysis. Animal studies have been approved by 
the IACUC. 

Statistical analysis

Averages, standard deviations, and unpaired t-test 
were calculated using MS-Excel. Data are shown as mean 
± SD of the results obtained in at least three independent 
experiments. Time of disease progression (time to 
progression) of BRAF-I treated patients was studied 
using the Kaplan-Meier method and difference between 
groups was calculated using the log-rank test. Differences 
between groups were considered significant when the P 
value was < 0.05. The asterisk (*) indicates P<0.05.
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