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ABSTRACT

Vitamin D deficiency could cause insulin resistance. However, the underlying
mechanisms are unclear. The 1e-Hydroxylase [“1a(OH)ase”] is a key enzyme for
activate vitamin D3 synthesis. Here, we show that 1¢(OH)ase stable knockdown
by targeted shRNA led to vitamin D3 depletion in LO2 hepatocytes. 1¢(OH)ase
silence also inhibited insulin-induced downstream signaling (IRS-1, ERK and AKT)
transduction and glucose transporter 4 expression. Further, 1¢(OH)ase shRNA in
L02 hepatocytes led to significant reactive oxygen species production, p53-p21
activation and DNA damages. Such effects were almost completely reversed
with co-treatment of n-acetylcysteine, which is an established anti-oxidant.
Remarkably, insulin-induced downstream signaling transduction and glucose
transporter 4 expression were recovered with n-acetylcysteine co-treatment in
1a(OH)ase-silenced L0O2 hepatocytes. Together, our results suggest that vitamin
D deficiency-induced insulin resistance is possibly caused by oxidative stress in
hepatocytes.

INTRODUCTION

Insulin resistance is a major reason of type-II
diabetes [1, 2]. It is also a characteristic manifestation of
a wide range of other clinical diseases [3—5]. A number of
genetic and/or environmental factors could cause insulin
resistance [3-5]. Epidemic studies have suggested
that that vitamin D deficiency is also associated with
insulin resistance [6]. The supplementation of active
vitamin D3 may help to improve the insulin resistance
[6]. However, the underlying mechanism is largely
unknown [6].

The function of reactive oxygen species (ROS)
in insulin resistance has been well established [7-9].
Studies have demonstrated that ROS level is significantly
increased in both clinical samples and experimental

settings of insulin resistance [10—12]. Meanwhile,
exogenous oxidative stress would lead to insulin
resistance. These results suggest that oxidative stress
might play a key function in insulin resistance [7, 9].
Inhibition of ROS, on the other hand, could improve
insulin sensitivity and glucose homeostasis in insulin-
resistant mice [10—12]. Clinical studies have also shown
that supplement with anti-oxidant may improve insulin
sensitivity [10-12].

25-Hydroxyvitamin D3 1a-Hydroxylase [“1a(OH)
ase”] is a key enzyme for activate vitamin D3 synthesis
[13, 14]. In the current study, 1a(OH)ase was silenced in
human L02 hepatocytes to mimic vitamin D deficiency.
Our results suggest that vitamin D deficiency induces
insulin resistance probably by provoking oxidative
stress.
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RESULTS

Knockdown of 1a(OH)ase leads to vitamin D3
depletion in L.02 hepatocytes

In order to mimic vitamin D deficiency in vitro,
shRNA strategy was applied to knockdown vitamin D3
lo-Hydroxylase [“1a(OH)ase”] in human L02 hepatocytes.
la(OH)ase is required for vitamin D3 synthesis [13].
As described, two distinct lentiviral shRNAs (“-1/-27),
targeting non-overlapping sequences of human 1a(OH)
ase, were applied. Western blotting assay results showed
that stable introduction (via lentiviral infection) of either
shRNA led to dramatic downregulation of 1a(OH)ase
protein in LO2 hepatocytes (Figure 1A). Meanwhile,
la(OH)ase mRNA was almost completely depleted by
the targeted shRNA (Figure 1B). Consequently, the
cellular content of vitamin D3 was dramatically reduced
in la(OH)ase-silenced L02 hepatocytes (Figure 1C).
Notably, the scramble control shRNA (“sh-SCR”) had no
significant effect on la(OH)ase expression nor vitamin D3
content. Together, these results demonstrate that 1a(OH)
ase knockdown by targeted shRNAs leads to vitamin D3
depletion in human L02 hepatocytes.

Knockdown of 1a(OH)ase leads to insulin
resistance in L02 hepatocytes

The aim of this study is to test the potential effect
of vitamin D deficiency on insulin resistance. The
la(OH)ase-silenced L0O2 hepatocytes (See Figure 1) were
thereby treated with insulin. Western blotting assay was

A. B.

performed to test insulin signalings [15, 16]. Results in
Figure 2A demonstrated that insulin (1 pg/mL, 10 min)-
induced activation of downstream signalings, including
IRS-1 (insulin receptor substrate-1), ERK1/2 and AKT,
was largely inhibited with la(OH)ase knockdown.
Phosphorylated (“p-") IRS-1, p-AKT and p-ERK1/2
by insulin were all dramatically reduced in 1o(OH)
ase-depleted LO2 hepatocytes (Figure 2A). Expression
of above total kinases was yet unchanged (Figure 2A).
Quantified results summarizing three sets of repeated blot
data further confirmed inhibition of insulin-induced IRS-
1, ERK1/2 and AKT activations with 1a(OH)ase silence
in LO2 hepatocytes (Figure 2B). Meanwhile, as shown in
Figure 2C, expression of glucose transporter 4 (GLUT4),
a key glucose transporter protein, was also downregulated
in la(OH)ase-silenced L02 hepatocytes (Figure 2C).
Together, these results imply that knockdown of 1a(OH)
ase might lead to insulin resistance in L02 hepatocytes.

Knockdown of 1a(OH)ase leads to ROS
production, p53-p21 activation and DNA damage
in L.02 hepatocytes

It has been previously shown that vitamin D and
la(OH)ase are both involved in prevention of oxidative
stress [17—-19]. Vitamin D activates vitamin D receptor
(VDR) to increase activity of superoxide dismutase
(SOD), phospholipid hydroperoxide glutathione
peroxidase (GSH-Px) and other anti-oxidant enzymes
[19], thereby suppressing oxidative stresses [19]. Further,
ROS production could be an important contributor of
insulin resistance [8, 9]. Here, we found that SOD activity
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Figure 1: Knockdown of 1a(OH)ase leads to vitamin D3 depletion in L02 hepatocytes. Puromycin-selected stable L02
hepatocytes, expressing sShRNA against human 1a-Hydroxylase [“sh-1a(OH)ase-1/-2"] or the scramble control shRNA (“sh-SCR”), were
subjected to Western blotting assay (A) and qRT-PCR assay (B) to test 1a(OH)ase expression; Vitamin D3 content in the conditional
medium was also analyzed (C). Relative 1a(OH)ase expression (vs. loading control ERK1/2) was quantified (A). Data were expressed as
mean + SD (n=5). * p <0.05 vs. “sh-SCR” cells. Experiments in this and all following figures were repeated three times, and similar results
were obtained.
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was also significantly decreased in 1a(OH)ase-silenced
L02 hepatocytes (Figure 3A). Consequently, cellular ROS
content and subsequent lipid peroxidation intensity were
both dramatically increased (Figure 3B and 3C). Thus,
la(OH)ase knockdown apparently provoked oxidative
stress in human LO2 hepatocytes (Figure 3B and 3C).
Further studies showed that 1a(OH)ase silence in L02
hepatocytes also activated p53-p21 signaling (Figure
3D), which is a key downstream pathway following
oxidative stress [20, 21]. Further, level of DNA damage,
tested by y-H2AX FACS assay, was also increased in L02
hepatocytes expressing 1a(OH)ase shRNAs (Figure 3E).

N-acetylcysteine blocks ROS production,
p53-p21 activation and DNA damage in 1a(OH)
ase-silenced L.02 hepatocytes

To study the potential effect of oxidative
stress on insulin resistance in loa(OH)ase-depleted
L02 hepatocytes, the well-established anti-oxidant
n-acetylcysteine (NAC) [22, 23] was applied. Results in
Figure 4A confirmed that co-treatment with NAC almost
completely blocked oxidative stress in loa(OH)ase-
silenced LO2 hepatocytes (by “shRNA-1", see Figure
1). ROS level reduced to even lower than control level
with NAC co-administration (Figure 4A). Consequently,
lipid peroxidation by la(OH)ase shRNA was almost
completely nullified by NAC (Figure 4B). p53-p21
activation in 1a(OH)ase-silenced cells was also blocked
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(Figure 4C). Similarly, 1a(OH)ase silence-induced
DNA damage, tested again by the y-H2AX FACS
assay (Figure 4D), was also significantly alleviated
with co-treatment of NAC. As expected, NAC co-
treatment failed to rescue 1a(OH)ase expression in L0O2
hepatocytes (Figure 4C). Together, these results indicate
that co-treatment with NAC almost blocked 1a(OH)ase
depletion-induced ROS production, p53-p21 activation
and DNA damage in L0O2 hepatocytes.

NAC restores insulin sensitivity in 1a(OH)ase-
silenced L02 hepatocytes

Oxidative stress is proposed as the major cause of
insulin resistance [7]. If ROS production is the reason
of insulin resistance in 1o(OH)ase-silenced hepatocytes,
inhibition of ROS by NAC (see Figure 4) should restore
insulin sensitivity. Indeed, as shown in Figure 5A
(quantified blot results), insulin-induced downstream
signaling activation was recovered with NAC co-treatment
in the 1a(OH)ase-silenced cells. In 1a(OH)ase-silenced
cells, after co-treatment of NAC, activations of IRS-1,
AKT and ERK1/2 by insulin returned to control level (“sh-
SCR”) (Figure 5A, quantified blot results). Furthermore,
downregulation of GLUT4 by 1a(OH)ase silence was also
reversed with NAC co-treatment (Figure 5B). Thus, these
results indicate that oxidative stress should be the reason
of insulin resistance in 1o(OH)ase-silenced cells, which
was reversed with co-treatment of NAC.
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Figure 2: Knockdown of 1a(OH)ase leads to insulin resistance in L02 hepatocytes. Puromycin-selected stable L02 hepatocytes,
expressing shRNA against human 1a-Hydroxylase [“sh-1a(OH)ase-1/-2"] or the scramble control shRNA (“sh-SCR”), were treated with
insulin (1 pg/mL) for 10 min, expressions of listed proteins were tested by Western blotting assay (A); quantified results summarizing three
sets of repeated blot data were also shown (B); expressions of GLUT4 and (B-) tubulin were also tested, results were also quantified (C).
Data were expressed as mean = SD (n=3). * p <0.05 vs. “sh-SCR” cells.
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Figure 3: Knockdown of 1a(OH)ase leads to ROS production, pS3-p21 activation and DNA damage in L.02 hepatocytes.
Puromycin-selected stable L02 hepatocytes, expressing shRNA against human la-Hydroxylase [“sh-1a(OH)ase-1/-2""] or the scramble
control shRNA (“sh-SCR”), were subjected to listed assays to test SOD activity (A), ROS content (DCFH-DA assay) (B), lipid peroxidation
level (TBAR assay) (C), p53-p21 signaling (Western blotting assay) (D), and DNA damage (y-H2AX FACS assay) (E). Data were expressed
as mean + SD (n=5). * p <0.05 vs. “sh-SCR” cells.
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Figure 4: N-acetylcysteine blocks ROS production, p5S3-p21 activation and DNA damage in 1a(OH)ase-silenced
L02 hepatocytes. L02 hepatocytes, infected with shRNA against human la-Hydroxylase [“sh-1a(OH)ase-1"], were also exposed to
n-acetylcysteine (NAC, 500 uM, renewed daily) or PBS. After 10 days, relative ROS content (DCFH-DA assay) (A), lipid peroxidation
level (TBAR assay) (B) p53-p21 signaling (Western blotting assay) (C), and DNA damage (y-H2AX FACS assay) (D) were tested. Data
were expressed as mean + SD (n=5). * p <0.05 vs. “PBS” cells.
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DISCUSSION

Vitamin D is a key hormone that is vital in the
regulation of mineral homeostasis. It is mainly involved
in bone and calcium/phosphorus balance. Recent studies
have implied its function in the pathogenesis of insulin
resistance and type II diabetes [6, 24—27]. It has been
implied that vitamin D level is negatively associated with
insulin resistance, glucose intolerance and obesity [6, 24,
26]. Meanwhile, clinical trials have also suggested an
inverse link between vitamin D concentration and type 11
diabetes [0, 25]. In the experimental mice with 1a(OH)
ase deficiency, insulin resistance and hyperglycemia were
also developed [28, 29]. More importantly, exogenous
supplementation of active vitamin D3 could decrease the
incidence of insulin resistance [6, 24—27]. Thus, vitamin D
deficiency could be associated with insulin resistance and
type II diabetes, yet the underlying mechanisms are largely
unknown [6, 24-27]. In the current study, we showed that
vitamin D deficiency via stably silencing 1a (OH)ase also
caused insulin resistance in L02 hepatocytes, showing
impaired insulin signaling and downregulation of GLUT4.

It has been proposed that vitamin D could increase
the release of some anti-inflammatory cytokines, whiling
decreasing the production of some pro-inflammatory

A.

cytokines [25, 30, 31]. Other studies, however, showed
that vitamin D supplementation in humans showed no
beneficial effect on inflammation [6]. Existing studies
have also proposed vitamin D, especially its active
D3 form, as an effective antioxidant [17, 18, 32, 33].
Systemic administration of vitamin D3 attenuated iron-
induced oxidative damage in brains [17, 18, 32, 33].
Vitamin D3 could promote expression of several anti-
oxidative genes, including y-glutamyl transpeptidase
(GGT), glutathione, glutathione peroxidase (GPx), and
SOD, among others [17, 18, 32, 33]. On the other hand,
vitamin D-deficiency would lead to oxidative stresses [17,
18, 32, 33].

In the current study, we proposed that oxidative
stress could be the main reason of insulin resistance in
vitamin D-deficient cells. Vitamin D depletion via stably
silencing 1o (OH)ase in LO2 hepatocytes led to significant
ROS production, as well as subsequent p53-p21 activation
and DNA damage. Such effects were almost completely
nullified with co-treatment of NAC, the known anti-
oxidant. Remarkably, insulin resistance was also abolished
with co-treatment of NAC in 1a(OH)ase-depleted L02
hepatocytes. Together, our results suggest that vitamin D
deficiency-induced insulin resistance is possibly caused by
oxidative stress in L02 hepatocytes.
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Figure 5: NAC restores insulin sensitivity in 1a(OH)ase-silenced L.02 hepatocytes. L02 hepatocytes, infected with SIRNA
against human 1a-Hydroxylase [“sh-1a(OH)ase-17], were also exposed to n-acetylcysteine (NAC, 500 uM, renewed daily) or PBS; After
10 days, cells were treated with insulin (1 pg/mL) for 10 min, expressions of listed proteins were tested by Western blotting assay, and
results of three sets of repeats were quantified (A); expressions of GLUT4 and tubulin were also tested. (B) Quantified results summarizing
three sets of repeated blot data were also shown). Data were expressed as mean + SD (n=3). * p <0.05 vs. “PBS” cells.
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MATERIALS AND METHODS

Chemicals and reagents

Insulin, n-acetylcysteine (NAC) and puromycin
were provided by Sigma Aldrich Chemicals (Nanjing,
China). The antibodies of this study were provided by
Cell Signaling Technology (Danvers, MA) and Abcam
(Shanghai, China). The reagents for cell culture were
obtained from Gibco Co. (Nantong, China).

Cell culture

Human L02 hepatocytes were provided by the Cell
Bank of Shanghai Biological Institute (Shanghai, China).
LO02 cells were cultured in RPMI 1640 with 10% FBS and
antibiotics, in a humidified atmosphere at 37 °C with 5%
CO,,. Cells were subjected to mycoplasma and microbial
contamination examination every 2-3 months. Population
doubling time, colony forming efficiency, and morphology
were routinely checked to confirm the genotype.

la(OH)ase shRNA

The two lentiviral 1a(OH)ase shRNAs with non-
overlapping sequences were designed and verified by
Genepharm (Shanghai, China). The shRNA (10 pL/mL
medium, per well) was added to L02 hepatocytes for 24
hours. Stable cells were selected by puromycin (0.5 pg/
mL, Sigma) for a total of 10 days. Puromycin-containing
medium was renewed every two days. Silence of 1a(OH)
ase in the stable L02 hepatocytes was confirmed by both
qRT-PCR assay and Western blotting assay. Control cells
were infected with lentiviral scramble control shRNA
(Santa Cruz Biotech).

Vitamin D3 assay

The level of vitamin D3 in the conditional medium
of L02 hepatocytes were tested via a commercial available
enzyme linked fluorescent assay (ELFA) kit from Roche
(Shanghai, China), according to the manufacturer's
guidelines.

RNA isolation and qRT-PCR

As described in our previous studies [34, 35],
Trizol reagents (Invitrogen) was applied to extract the
total RNA of L0O2 hepatocytes. RNA was then reverse-
transcribed (RT) with RT-PCR kit (Toyobo, Osaka,
Japan). Quantitative Real-time PCR (“qRT-PCR”) assay
using the SYBR green kit was performed using the
ABI-7600 PCR system (Applied Biosystems, Shanghai,
China). mRNA primers of /a(OH)ase and GAPDH were
described previously [36, 37]. We utilized the 224¢ method

to calculate relative /a(OH)ase mRNA expression (vs.
GAPDH). All the primers were synthesized by Genepharm
(Shanghai, China).

Western blotting assay

First, the lysis buffer (Biyuntian, Wuxi, China) was
applied to achieve protein lysates from L0O2 hepatocytes.
For each condition, 30 ug total lysate proteins per lane
were separated by the SDS-PAGE gels (10-12%) [16,
38], which were then transferred to the polyvinylidene
difluoride (PVDF, Millipore, Suzhou, China) membranes.
Afterwards, the blots were blocked (in 10% of milk), and
were incubated with designated primary and corresponding
secondary antibodies. Enhanced chemiluminescence
(ECL) reagents (Pierce, Nantong, China) were utilized
to visual the interested bands [39-41]. Total gray of each
band was quantified via the Imagel software, and the
value was normalized to that of loading control (ERK1/2
or B-Tubulin).

SOD activity assay

The superoxide dismutase (SOD) activity in L02
hepatocytes was assayed by the NWLSS kit, which is an
extremely sensitive SOD kit, using WST-1 to generate
a water-soluble formazan dye upon reduction with
superoxide anion. The detailed procedure was described
previously [42]. The final mixture was subjected to
spectrophotometer detection at the absorbance at 560 nm.

Reactive oxygen species (ROS) assay

ROS content was tested by the DCFH-DA
fluorescent dye assay (Invitrogen). The detailed protocol
was described in our previous studies [34, 35, 41]. Briefly,
after applied treatment, L02 hepatocytes were incubated
with 10 uM of DCFH-DA for 30 min under the dark,
which were thereafter tested for fluorescence under a
Fluorescence Microplate Reader (Synergy 2, BioTek,
Winooski, VT).

Lipid peroxidation assay

As described previously [43], cellular lipid
peroxidation was evaluated by the thiobarbituric acid
reactive substances (TBAR) assay [44]. Briefly, after the
indicated treatment, L02 hepatocytes protein lysates (20
ug per condition) were mixed with 20% of acetic acid and
thiobarbituric acid solution. After heating, the mixtures
were centrifuged, and then in the supernatant the red
pigment dye was tested via a microplate reader. TBAR
activity was expressed as nM of malondialdehyde per
mg protein. The values of treatment group were always
normalized to control.
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v-H2AX FACS assay

v-H2AX assay was performed to test DNA damage.
Briefly, L02 hepatocytes were first trypsinized and fixed
in ice-cold ethanol, which were then exposed to the anti-
v-H2AX antibody (Cellular Signaling Tech) for 6 hours.
Cells were then incubated with the FITC-conjugated
secondary antibody. FACS assay was performed to
determine y-H2AX percentage, as the quantitative
measurement of DNA damage [45].

Statistical analysis

The results were expressed as mean =+ standard
deviation (SD). The statistical analysis among different
groups was done using one-way ANOVA with Scheffe's
test [46, 47].
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