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ABSTRACT

mRNA expression profiles provide important insights on a diversity of biological 
processes involved in rectal carcinoma (RC). Our aim was to comprehensively map 
complex interactions between the mRNA expression patterns and the clinical traits 
of RC. We employed the integrated analysis of five microarray datasets and The 
Cancer Genome Atlas rectal adenocarcinoma database to identify 2118 consensual 
differentially expressed genes (DEGs) in RC and adjacent normal tissue samples, and 
then applied weighted gene co-expression network analysis to parse DEGs and eight 
clinical traits in 66 eligible RC samples. A total of 16 co-expressed gene modules 
were identified. The green-yellow and salmon modules were most appropriate to 
the pathological stage (R = 0.36) and the overall survival (HR =13.534, P = 0.014), 
respectively. A diagnostic model of the five pathological stage hub genes (SCG3, 
SYP, CDK5R2, AP3B2, and RUNDC3A) provided a powerful classification accuracy 
between localized RC and non-localized RC. We also found increased Secretogranin III 
(SCG3) expression with higher pathological stage and poorer prognosis in the test and 
validation set. The increased Homer scaffolding protein 2 (HOMER2) expression with 
the favorable survival prediction efficiency significantly correlated with the markedly 
reduced overall survival of RC patients and the higher pathological stage during the 
test and validation set. Our findings indicate that the SCG3 and HOMER2 mRNA levels 
should be further evaluated as predictors of pathological stage and survival in patients 
with RC.

INTRODUCTION

Accurate staging of rectal cancer (RC) is essential 
for carrying out precise therapies that increase the 
survival rate of patients [1]. Previous studies have 
found no differences in specific clinicopathological risk 
factors between patients with a high or low risk of RC 
progression [2]. Recent technological breakthroughs 
in genome-wide sequencing have shed new insights 
on deregulated mRNAs that have been identified and 
characterized in the past few years [3]. Genetic biomarkers 

for RC, especially for modules having a strong correlation 
between genes with similar expression patterns, to predict 
the pathological stage and survival outcome, which could 
help to understand disease pathogenesis and provide 
personalized treatment, have been rarely reported. 
However, previous research based on examining genetic 
mutations and different expression patterns associating 
with colorectal carcinogenesis has largely ignored the 
relationship between the genes and clinical characteristics 
[4, 5]. In addition, RC progression involves several critical 
stages, although most studies have only evaluated the 
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differences between RC and adjacent normal tissue (ANT), 
regardless of the intermediate stages [6]. Therefore, there 
is an urgency to include stage and prognostic predictive 
modules to the current staging system, which could 
be achieved by combining information on the clinical 
characteristics and validated gene-specific biomarkers. 
For these reasons, we aimed to establish comprehensive 
mRNA expression patterns of the module genes and 
clinical traits, especially those relating to multi-stage 
disease progression which directly affects the prognosis 
through weighted gene co-expression network analysis 
(WGCNA) [7].

WGCNA results in the construction of free-scale 
gene co-expression networks that explore the relationships 
between the gene sets and clinical features [8]. WGCNA 
groups prerogative genes into modules based on their co-
expression similarities and analogous functions across a 
population of samples [9–11].

In the present work, we carried out the pooled 
analysis of RC mRNA raw microarrays and the network 
level analysis of The Cancer Genome Atlas (TCGA) 
rectal adenocarcinoma (READ) data to decipher the 
relationships between the module genes and clinical traits. 
To the best of our knowledge, we are the first group to use 
meta-analysis and WGCNA to identify modules displaying 
a nominal evidence association with RC clinical traits. By 
characterizing module content and topology, we identified 
clinical traits, modules, and network concepts that play 
important roles in the regulation of RC at the level of the 
differentially expressed genes (DEGs). Moreover, to define 
the prognostic value of the cancer-specific module, which 
was related to tumor progression, further analysis was 
performed to validate candidate markers by combining 
survival analysis with an independent validation cohort.

RESULTS

Identification of consensual DEGs in training 
and test sets in rectal cancer patients

The flow chart outlining the methods used in this 
study is shown in Supplementary Figure 1. In contrast to 

colon cancer, there was very limited mRNA expression 
data relating to rectal cancer. We investigated and 
manually curated four public datasets (GSE12225, 
GSE34472, GSE35982, and GSE75548) as the training 
set (Supplementary Table 1) [12–15].

The training set calculated the six quantitative 
quality control (QC) measures by standardized mean ranks 
and principal component analysis (PCA) biplots within 
MetaQC (Table 1 and Figure 1A) [16]. GSE34472 was 
detected in low quality RC samples and was omitted from 
the training set [17]. The training set finally consisted of 65 
RC samples and 42 ANTs, and it had 8153 gene symbols 
in common. A total of 6603 gene symbol sets passed the 
filtering criteria. We identified 4091 mRNAs that were 
consistently DEGs using the moderated t test, Fisher’s 
method by summarizing -log(p-value) across studies and 
running 300 permutations for the meta-analysis to infer 
the P-values (Figure 1B) [18]. As expected, hierarchical 
clustering of the three datasets using the remaining 4091 
DEGs distinguished RC from ANT samples (Figure 2A).

The raw level-3 RNAseq data from 20,501 
mRNAs in 95 RC samples and 10 ANT samples were 
downloaded from TCGA [1, 8, 10]. A total of 2177 DEGs 
were identified by linear models within the microarray 
analysis (LIMMA), among which 1092 were up-regulated 
and 1085 were down-regulated in RC versus ANT 
(Supplementary Table 2). This mRNA signature allowed 
for the separation of RC samples from ANT samples in 
the 2-way hierarchical cluster (Figure 2B) and in the PCA 
plot (Figure 2C). A total of 2118 overlapping DEGs were 
chosen by both training and test sets (Figure 2D).

Co-expression network construction and module 
preservation analysis

We included 2118 DEGs from 70 RC patients with 
complete clinical traits and prognostic information of the 
TCGA-READ test set to construct co-expression networks 
via WGCNA. After four outlier samples were discarded, 
the connections between the genes in the gene network 
were in line with a scale-free network distribution when 
the soft threshold power β was set at 3 (Supplementary 

Table 1: Quality control results of RC in the different datasets

No. Study IQC EQC CQCg CQCp AQCg AQCp Rank

1 GSE75548 3.92 2 1.8* 2.23 1.9* 1.13* 1.83

2 GSE12225 4.74 2 0.68* 1.66* 1.08* 2.38 2.00

3 GSE35982 5.62 2 0.02* 10.03 0* 0.07* 2.67

4 GSE34472 1.3* 0.4* 0.24* 0.36* 0.56* 0.11* 3.50

RC, rectal cancer; GSE, GEO dataset; IQC, internal quality control indexes; EQC, external quality control indexes; CQCg 
and CQCp, consistency of differential expression quality control indexes for genes and pathways; AQCg and AQCp, 
accuracy quality control indexes for genes and pathways.
* P-value not significant after Bonferroni correction.
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Figure 2A-2D). The dynamic tree cut method identified 
modules with similar expression profiles (Figure 3A, 
3B). After highly similar modules were merged (Figure 
3B), a total of 16 co-expressed modules were identified, 
ranging in size from 11 to 623 genes, whereas the “grey” 
module was reserved for genes that were not co-expressed 
(Figure 3C).

After comparing the TCGA-READ test set with the 
validation set (GSE29621) [19], the summary preservation 
statistics used in determining whether a reference network 
is found in another test network were visualized [20]. The 
green-yellow and salmon modules were well preserved, 
with low median Rank statistics and Z-summary statistics 
larger than 10 (Supplementary Figure 3) [7, 21].

Identification of clinicopathological modules

It is important to identify modules that have the 
most significant associations with clinical features. We 
sought to explore whether any of the groups of genes 
from each of the identified modules were correlated 
with the clinical variables of RC. The list of genes in 
each module is presented in Supplementary Table 3. The 
magenta (94 genes) module yielded significant Pearson’s 
correlation coefficient (PCC) with the pathological 
stage (R = 0.32, P = 0.003) and the pathology N stage 
(R = 0.32, P = 0.008). The salmon (41 genes) module 

yielded significant PCC with the pathological stage (R 
= 0.25, P = 0.04) and pathology T stage (R = 0.33, P = 
0.007). The red (126 genes) module yielded significant 
PCC with the pathological stage (R = 0.37, P = 0.002), 
the pathology T stage (R = 0.29, P = 0.02) and pathology 
N stage (R = 0.31, P = 0.01). The tan (44 genes) module 
yielded significant PCC with the pathological stage (R = 
0.31, P = 0.01), the pathology T stage (R = 0.26, P = 0.03), 
pathology N stage (R = 0.38, P = 0.002), pathology M 
stage (R = 0.32, P = 0.009) and lymphatic invasion (R 
= 0.27, P = 0.03). The green-yellow (54 genes) module 
yielded significant PCC with the pathological stage (R 
= 0.38, P = 0.002), the pathology T stage (R = 0.34, P 
= 0.006), pathology N stage (R = 0.36, P = 0.006) and 
lymphatic invasion (R = 0.26, P = 0.04) (Figure 3C), 
which was used as the pathological stage module in 
subsequent analyses. These results suggested that the 
highly co-expressed genes in the same module have 
potential biological significance [6]. Each module might 
represent specific clinical features of RC patients [3, 22].

Identification of overall survival modules

We also explored the significant associations of 
these modules to overall survival given their biological 
importance. We applied the Cox regression model in 66 
RC patients with complete survival data to calculate the 

Figure 1: Meta-analysis of differentially expressed genes involved in rectal cancer by combining P-values. (A) Principal 
component analysis (PCA) biplot of quality control measures in four RC studies. (B) The number of differentially expressed genes plotted 
as a function of false discovery rate (FDR) in the analysis of four different datasets and four different meta-analysis algorithms (maxP, 
Fisher roP and adaptively weighted statistic).
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HRs and corresponding P-values for each dichotomized 
module (Table 2). The salmon module, which was defined 
as the overall survival module within the sixteen merged 
modules, was shown to have significant associations with 
the prognosis of RC patients. The upregulated expression 
of the genes within the salmon module indicated poor 

outcomes of overall survival (HR = 13.534, P = 0.014). 
From the Kaplan-Meier curves, we also found that the 
decreased expression of genes within the salmon module 
indicated better outcomes of RC patients in the salmon 
module (P = 0.019) (Figure 4A).

Figure 2: Identification of consensus DEGs in the training and test sets of rectal cancer patients. (A) Heat map and two-
way hierarchical clustering based on 4091 DEGs that were differentially expressed between RC and ANT samples of the training set. ANT 
(green label) and RC (red label) samples fell into separate clusters. (B) The 2177 DEGs RC (red label) vs. ANT (green label) of the TCGA-
READ test set. Each column represents a sample, whereas each row represents the mRNA expression level. The color scale represents the 
raw Z-score ranging from blue (low expression) to red (high expression). Dendrograms beside each heat map correspond to the hierarchical 
clustering of the 2177 DEGs by the expression level. (C) PCA plot showing complete, unsupervised separation of the 105 array samples 
into 95 RC (red) and 10 ANT (green) samples. (D) A Venn diagram showing the overlap of DEGs detected by the training and test sets.
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Figure 3: Network construction of the weighted co-expressed genes and their associations with clinical traits. (A) 
Hierarchical clustering tree of the TCGA-READ samples based on the DEGs. Dendrogram tips are labeled with the TCGA-READ unique 
name and experiment identifier. In the hierarchical dendrogram, lower branches correspond to higher co-expression (height = Euclidean 
distance). Identical colors in the eight bands below the dendrogram depict the TCGA-READ clinical traits. (B) Heat map view of topological 
overlap of co-expressed genes in different modules. The heat map was generated from the topological overlap values between genes. The 
genes were grouped into modules labelled by a color code, which are given under the gene dendrogram on both sides. The topological 
overlap was high among genes of same module. (C) Module-trait relationships for age at diagnosis, gender, histological type, lymphatic 
invasion and pathologic stage. Numbers shown represent Pearson correlations between the modules and traits. P-values are in parentheses. 
Numbers on the color bar refer to the strength of the correlation in the table (red = 1, green = -1). (T: extent of the tumor; N: extent of spread 
to the lymph nodes; M: presence of metastasi).
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The results of the survival analysis of the salmon 
module were consistent with their biological significance 
found by PCC. The salmon module was previously shown 
to correlate with the pathological stage (PCC = 0.25, 
P = 0.04) and the pathological T stage (PCC = 0.33, 
P = 0.007). Thus, the high expression of genes within 
the salmon module might represent a higher pathological 
stage and the T stage of RC with poor prognosis.

Enrichment analysis and sub-network genes of 
green-yellow and salmon modules

We focused on the green-yellow module and carried 
out enrichment analysis because this module correlated 
strongly with the clinical features of RC patients, 
especially with the pathological stage. However, other 
modules showed weaker correlations with the phenotypic 
characteristics of RC. Interestingly, the green-yellow 
module was significantly enriched for cell adhesion 
for Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (Figure 4B). We used the 
molecular complex detection (MCODE) algorithm (http://
apps.cytoscape.org/apps/mcode) to analyze a subset of the 
co-expression network (threshold = 0.4). When the node 
density cut-off was set at 2, the node score cut-off at 0.2, 
the k-core at 2, and the maximum depth at 100, the rank 1 
cluster was identified. We found that there were 15 stage 
sub-network genes in this cluster (CHGB, SCG3, SYP, 

SNAP25, SCN3B, C19orf30, LRRC55, FMO2, CDK5R2, 
AP3B2, FAM123C, CTXN2, RUNDC3A, IL1F5, and 
MATN3) (Figure 4C).

The GO and KEGG pathway enrichment analysis of 
the genes within the salmon module showed that cancer 
(P = 0.046) and calcium-mediated signaling (P = 0.039) 
pathways were significantly affected when the condition 
of P < 0.05 was applied (Figure 4D). We utilized the 
MCODE algorithm to obtain seven sub-network genes 
which were defined as overall survival hub genes in the 
rank 1 cluster (GLT25D2, LRRTM1, ARMC4, CSMD3, 
SUSD4, HOMER2, and PTPRZ1) (Figure 4E).

Further screening and identification of 
pathological stage candidate biomarkers by 
ANOVA, survival and ROC curve analysis

ANOVA was carried out to determine the 15 
pathological stage sub-network genes that were expressed 
separately and differentially. Meanwhile, the difference 
between localized RC (pathological stages I and II) and 
non-localized RC (pathological stages III and IV) by an 
independent t test for each of the 15 sub-network hub 
genes was determined. As a result, seven pathological 
stage hub genes (SCG3, SYP, SNAP25, CDK5R2, AP3B2, 
FAM123C, and RUNDC3A) that had a P-value less 
than 0.05 were designated to be significantly expressed 
(Supplementary Figure 4).

Table 2: Correlation between gene co-expression modules and overall survival

Overall survival

HR CI (95% Cl) P-value

ME black 0.258 0.054-1.220 0.087

ME blue 2.075 0.596-7.224 0.252

ME brown 0.448 0.115-1.747 0.248

ME cyan 1.245 0.375-4.146 0.721

ME green 0.736 0.206-2.628 0.637

ME green-yellow 2.307 0.605-8.791 0.221

ME grey 1.232 0.376-4.041 0.731

ME magenta 1.080 0.324-3.600 0.900

ME midnight-blue 1.868 0.545-6.396 0.320

ME pink 0.913 0.274-3.046 0.883

ME purple 0.234 0.049-1.106 0.067

ME red 2.802 0.742-10.579 0.129

ME salmon 13.534 1.712-106.958 0.014

ME tan 4.242 0.912-19.725 0.065

ME turquoise 2.487 0.658-9.400 0.180

ME yellow 1.440 0.433-4.790 0.552
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To further investigate whether the seven 
pathological stage hub genes correlated with the survival 
of RC patients, Kaplan-Meier analysis revealed that 
the five pathological stage hub genes (SCG3, SYP, 
CDK5R2, AP3B2, and RUNDC3A) with the highest 
levels significantly correlated with the markedly reduced 
overall survival of RC patients (Figure 5A), suggesting 
the important roles of five pathological stage hub genes in 

progress and prognosis of RC patients. Five pathological 
stage hub genes provided a high classification accuracy 
between localized RC and non-localized RC, which was 
estimated using receiver operating characteristic (ROC) 
curve analysis. AUC values for five pathological stage 
hub genes were greater than 0.64 in the TCGA-READ test 
set (Figure 5B). We could attain a best performance on 
accuracy by a univariate linear regression model built on 

Figure 4: Enrichment analysis and sub-network genes of the green-yellow and salmon modules. (A) Survival analysis 
based on the gene expression pattern in the salmon module. Impact of the expressed genes in the salmon module on the overall survival. 
(B) GO enrichment and KEGG analysis for the 54 module genes included in the green-yellow module. The original significance was 
transformed to “ – log10(P)” to plot the curve. (C) Visualization of the network connections among the most connected genes in the green-
yellow module. Lines connecting two genes represent an association between the genes, and the color of the connecting line represents the 
weighted value of the two genes in the network. The colors of the nodes corresponded to the weighted value of the modular assignments. 
Elliptic and sexangular nodes indicate upregulated or downregulated sub-network genes in the modules. The nodes with a bold circle 
represent network hub genes identified by further analysis. (D) GO enrichment and KEGG analysis for the 41 module genes included in the 
salmon module. (E) Visualization of the network connections among the most connected genes in the salmon module.
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a panel of the combined 5 pathological stage hub genes 
(AUC = 0.744): risk score = 0.369 × SCG3 + 0.296 × 
SYP + 0.128 × RUNDC3A -0.073 × CDK5R2 + 0.115 × 
AP3B2 -3.55 (Figure 5B).

Thus, five pathological stage hub genes were 
selected as the candidate genes for further validation. 
ANOVA, survival and ROC curve analysis were 

conducted to validate the five pathological stage hub 
genes in the validation set (GSE29621). Only SCG3 with 
a P-value less than 0.05 were declared to be significantly 
expressed in four pathological stages of RC (ANOVA 
test, P = 0.043) (Figure 5C). In addition, we carried out 
a single-gene survival analysis in order to reveal which 
genes were most significantly associated with overall 

Figure 5: Further screening and validation of pathologic stage candidate biomarkers by survival and ROC curve 
analyses. (A) Survival analysis of the five hub genes in the TCGA-READ test set. For the survival curves of the patients in different 
groups, solid red lines represent the high expression of hub genes and solid black lines represent the low expression of hub genes. (B) ROC 
analysis of the five hub genes in the TCGA- READ test set. Receiver operating characteristic (ROC) curve and area under the curve (AUC) 
statistics to evaluate the diagnostic efficiency of the hub genes in the TCGA-READ test set, which distinguished between localized and 
non-localized RC patients. (C) Boxplots of SCG3 mRNA expression across different pathologic stages in the validation set. (D) Survival 
analysis of SCG3 mRNA expression in the validation set. (E) ROC analysis of SCG3 mRNA expression in the independent validation set.
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survival. Unfortunately, we only found an increased 
expression of the SCG3 (HR 2.381 [95 % CI 1.01 – 5.88], 
P = 0.043) with poor prognosis (Figure 5D). SCG3, which 
was chosen as the pathological stage candidate biomarker, 
provided a high classification accuracy between localized 
RC and non-localized RC, which was estimated using 
ROC curve analysis (Figure 5E).

Further screen and validation of novel overall 
survival candidate biomarkers

To further narrow the overall survival candidate 
biomarkers that harbor great significance among the 
declared seven overall survival hub genes, we chose to 
use the survival and ROC curve analysis to summarize the 
expression patterns of the hub genes.

Survival analysis was performed for each overall 
survival hub gene. The patients were dichotomized into 
two equal groups by the expression level of the overall 
survival hub genes. Survival analysis for the seven overall 

survival hub genes in the salmon module was conducted 
for 93 RC patients, and we found that only HOMER2 
significantly associated with patient overall survival 
in the TCGA-READ set (Supplementary Figure 5). 
Kaplan-Meier analysis revealed that the high HOMER2 
level significantly correlated with the markedly reduced 
overall survival of RC patients (HR 7 [95% CI 1.03 − 
52.82], P = 0.028) (Figure 6A), suggesting the important 
roles of HOMER2 in the prognosis of RC patients. The 
sensitivity and specificity of the HOMER2 expression 
level on the survival outcome was assessed by ROC curve 
analysis, and the area under the ROC curve was used 
to evaluate survival prediction efficiency of HOMER2. 
The AUC value of HOMER2 was 0.673, which was 
close to 0.7 (Figure 6B). Thus, HOMER2 was chosen 
as the overall survival candidate biomarker for further 
validation to determine whether there was a significant 
correlation between HOMER2 and the prognosis of RC 
patients. ANOVA, survival and ROC curve analysis 
were carried out to confirm HOMER2 in the validation 

Figure 6: Further screening and validation of novel overall survival candidate biomarkers by survival and ROC 
curve analyses. (A) Survival analysis of HOMER2 mRNA expression in the TCGA-READ test set. For survival curves of patients in 
different groups, solid red lines represent high expression and solid black lines represent low expression. (B) ROC analysis of HOMER2 
mRNA expression in the TCGA-READ test set. Receiver operating characteristic (ROC) curve and area under the curve (AUC) statistics 
to evaluate the diagnostic efficiency of HOMER2 mRNA expression in the TCGA-READ test set, which distinguished between high risk 
and low risk RC patients. (C) Boxplots of HOMER2 mRNA expression across different pathologic stages in the validation set. (D) Survival 
analysis of HOMER2 mRNA expression in the validation set. (E) ROC analysis of HOMER2 mRNA expression in the independent 
validation set to distinguish between high risk and low risk RC patients.
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set (GSE29621). Only HOMER2 had a P-value less than 
0.05 and was determined to be significantly differentially 
expressed in the four pathological stages of RC (ANOVA 
test, P = 0.008) (Figure 6C). In addition, we carried out 
a single-gene survival analysis to reveal which genes 
were most significantly associated with overall survival. 
Unfortunately, we only found the increased expression of 
HOMER2 (HR 2.632 [95 % CI 1.163 – 6.840], P = 0.015) 
to associate with poor prognosis (Figure 6D).

The sensitivity and specificity of the expression 
level of HOMER2 on the survival outcome were assessed 
by ROC curve analysis, and AUC was used to evaluate 
survival prediction efficiency of HOMER2. The AUC 
value of HOMER2 was 0.685 (Figure 6E).

DISCUSSION

Gene signatures identified from genome-based 
assays are known to contribute to RC stratification [23]. 
Numerous studies have defined in part the gene signatures 
predicting the survival outcome or recurrence of RC 
[24–34]. In this study, six mRNA datasets were subjected 
to meta-analysis and WGCNA to identify hub genes 
associating with clinical characteristics as well as RC 
progression and prognosis [4, 5, 35].

We identified sixteen distinct modules from 2118 
consensus genes that passed the meta-analysis filtering 
criteria and TCGA-READ validation for WGCNA [36]. 
Among the identified modules, the magenta, red, tan, and 
green-yellow modules associated with the pathological 
stage, especially the green-yellow module which had the 
strongest correlation with the pathological stage [12, 37, 
38]. In addition, the brown module correlated with the 
age of diagnosis. Correlations were also found between 

the red, tan, and green-yellow modules and pathological 
stages T and N, suggesting that the highly co-expressed 
genes within the same module were of similar biological 
significance.

Given that the biological significance of these 
modules might be related to the potential clinical 
manifestations, we performed Cox regression analysis for 
each module to determine their survival outcomes [1, 11, 
39, 40]. Poor outcomes were found for the high expression 
group of the salmon module, which was consistent with 
previous results indicating that the high expression of 
the salmon module might represent a higher pathological 
stage and the T stage [2].

The green-yellow and salmon modules were found 
to correlate with the pathological stage and overall 
survival, respectively. Thus, we selected the green-
yellow module for the subsequent analysis because this 
module is likely to represent tumor staging characteristics 
more accurately [41]. Cell adhesion pathways suggested 
by GO and KEGG were over-represented in the green-
yellow module. To some extent, these results also partially 
explained the increasing stages of RC patients. By 
means of one-way ANOVA and an independent sample 
t test, seven pathological stage hub genes (SCG3, SYP, 
SNAP25, CDK5R2, AP3B2, FAM123C, and RUNDC3A) 
could effectively distinguish non-localized RC from 
localized RC. Furthermore, the expression levels of five 
pathological stage hub genes (SCG3, SYP, CDK5R2, 
AP3B2, RUNDC3A) significantly associated with both the 
pathological stage and overall survival, but only SCG3 
mRNA expression was replicated in the validation set. The 
diagnosis model of the combined five pathological stage 
hub genes, which provided a high classification accuracy, 
might be good biomarkers for distinguishing between 

Figure 7: SCG3 and HOMER2 are overexpressed in rectal cancer. (A) Forest plot of SCG3 expression across all training and 
test pooled analysis datasets. (B) Forest plot of HOMER2 expression across all training and test pooled analysis datasets. The x-axis is the 
standardized mean difference between rectal cancer (RC) and adjacent normal tissue (ANT) on a log2 scale. Thus, a value of 1 signifies a 
2-fold difference in gene expression between cancer and normal.
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localized and non-localized RC (Figure 5B). SCG3, a 
member of the multifunctional granin family, played a key 
role in secretory granule biogenesis, which involves the 
cellular uptake of endogenous and exogenous toxins [42]. 
SCG3 was identified as the most sensitive and specific 
marker for circulating tumor cells in small cell lung 
cancer and was indicative of a worse survival outcome. 
As is well known, response to standard chemotherapy is 
important in determining survival. SCG3 was also evident 
in patients with poor response to standard chemotherapy 
[24]. There is potential mechanistic association between 
SCG3 expression in tumors and response to platinum-
based therapy or topoisomerase II inhibitors [24]. As RE-1 
silencing transcription factor is a transcriptional repressor 
in cancer, higher expression of SCG3 mRNA may increase 
the aggressive potential of the tumor or reduce the drug 
sensitivity of RE-1 silencing transcription factor depleted 
tumors. For the first time, we show SCG3 as a biomarker 
of RC pathological stage and prognosis.

Further analysis identified the overall survival 
candidate biomarkers from the salmon module, thus 
demonstrating the significant association with survival in 
the test and validation sets. Among the seven hub genes 
related to overall survival, increased HOMER2 expression 
associated with the increased pathological stage and poor 
survival of RC patients. Moreover, such expression may 
be useful in evaluating the survival risk because the 
AUC, which was used to evaluate the survival prediction 
efficiency of HOMER2, was 0.673 and 0.685 in the test 
and validation set, respectively. HOMER2 gene encodes 
a member of the homer family of dendritic proteins and 
regulates group 1 metabotrophic glutamate receptor 
function. HOMER2 is also a promising biomarker for 
cancer prognosis. HOMER2 is known to associate with 
overall survival and disease-free survival in early stage 
non-small cell lung cancer [43]. HOMER2 which was 
identified as a binding partner of MYO18B, interacted 
with the C-terminal region of MYO18B, a candidate tumor 
suppressor gene involved in the pathogenesis of human 
cancers including colorectal cancer [44]. Additionally, 
methylation of HOMER2 was reported to be a valuable 
biomarker which significantly discriminated CRC patients 
from controls [45].

In addition, we tentatively estimated between-
studies heterogeneity in effect sizes of twelve hub genes 
(Supplementary Figure 6), especially SCG3 and HOMER2 
(Figure 7A, 7B). Only one gene (SUSD4) had significant 
between-studies heterogeneity (I2 = 67.32%) and was 
ejected because we did not have sufficient information 
available to explore heterogeneity (Supplementary 
Table 1).

To our knowledge, this is the first study investigating 
the relationship between the co-expression network 
of clinical traits and genes in patients with RC [46]. In 
summary, we identified sixteen gene co-expression 
modules from five RC datasets using meta-analysis and 

WGCNA [47]. We associated a number of these network 
modules to RC clinicopathological variables, as well as 
to overall survival, and uncovered the gene expression 
signature associated with RC pathology stage and overall 
survival. We identified several significant pathways, as 
well as five potential pathological stage hub genes and 
seven overall survival hub genes using MCODE. Utilizing 
the TCGA-READ dataset, we constructed a diagnosis 
model of five mRNA signatures, and the validation cohort 
confirmed that the panel may be a useful biomarker for 
prognosis in RC. Of greatest interest, we found that the 
increased SCG3 and HOMER2 expression associated with 
the increased pathological stage and poor survival in the 
test and validation set among RC patients, providing two 
useful markers of RC and suggesting that it may help to 
identify those with more aggressive disease. Nevertheless, 
multicenter randomized controlled studies and in vivo 
and in vitro experiments are still required to evaluate 
the possible application of the molecular signatures for 
survival prediction and to characterize the hub genes 
functionally for the application of this approach in specific 
clinical settings.

MATERIALS AND METHODS

Data collection, preprocessing, and 
normalization

A public microarray repository was curated to search 
through PubMed, Gene Expression Omnibus (GEO) 
(accession numbers GSE75548, GSE34472, GSE35982, 
GSE12225, and GSE29621), ArrayExpress (accession 
number E-GEOD-34472), and TCGA-READ datasets up 
to September 2016. Only initial experimental studies that 
screened different mRNAs from RC and adjacent normal 
tissue samples in humans were included. After writing off 
the duplicated datasets, the combined datasets (GSE75548, 
GSE34472, GSE35982, GSE12225, and TCGA-READ) 
containing 168 RC and 60 normal rectal tissue samples 
were generated (Supplementary Table 1). The raw 
datasets were preprocessed individually using the LIMMA 
software package with log2 transformation and annotated 
by converting different probe IDs to the respective gene 
symbols. Duplicate gene expression values were averaged.

Integrated analysis of the gene expression 
datasets of the training set

To make the five microarray datasets derived from 
the five different platforms compatible for data analysis, 
we used the MetaOmics software package (http://www.
pitt.edu/~tsengweb/MetaOmicsHome.htm) to integrate 
and analyze the GEO datasets [48]. Firstly, the MetaQC 
software package, which provided a quantitative and 
objective quality control tool for determining the inclusion/
exclusion criteria for the meta-analysis, eliminated 
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the GSE34472 dataset [48, 49]. Thus, the training set 
included three GEO datasets (GSE75548, GSE35982, and 
GSE12225) after Quality Control. Secondly, to distinguish 
the DEGs between RC and ANT, the MetaDE software 
package limited the mean and standard deviation (SD) 
filter thresholds, which were set at 10% to filter minor 
changes in gene expression levels [50]. Considering the 
different stringencies of the various methods, Fisher’s 
method was favored for the meta-analysis (Figure 1B). For 
Fisher’s method, the modified t test and the permutation 
method (nPermutations = 300) were used to extrapolate 
the P-values [51]. P-values less than 0.05 were considered 
statistically significant for the DEGs. The heatmaps 
illustrating the DEG patterns were also generated [50].

Integrated-signature gene analysis of TCGA-
READ as the test set and consensus screening of 
the DEGs

To further limit analyses to genes common to all 
datasets, the results of the DEG training set were validated 
in the TCGA-READ dataset, which was considered as 
the test set. The TCGA-READ mRNA and clinical data 
(level 3) of the corresponding patients (RC and ANT) 
were downloaded from the TCGA data portal (up to 
May 20, 2016). The TCGA-READ DEGs were analyzed 
using an empirical Bayes approach within the LIMMA 
software package. The DEGs of the test set with a |log2 
fold change (FC)| ≥ 0.5 and an adjusted P-value less 
than 0.05 were selected for subsequent analysis. A total 
of 2177 gene symbols of the test set passed the filtering 
criteria. We then created an overlapping gene set by 
selecting common official gene symbols in both training 
and test sets, resulting in a total of 2118 intersecting 
genes. The consensus DEGs, which ensured that RC and 
ANT samples were well characterized, were chosen for 
WGCNA [10, 37, 52].

Preprocessing of clinical information

Clinical information obtained from the TCGA-
READ dataset (American Joint Committee on Cancer 
pathological TNM stage, gender, age at initial pathological 
diagnosis and histological type (mucinous adenocarcinoma 
or adenocarcinoma), especially vital status and time to 
last follow-up) for 70 patients was used after eliminating 
incomplete clinical traits and gene expression.

Weighted gene co-expression network 
construction and module preservation analysis

The TCGA-READ dataset with intact clinical 
features and prognostic information was selected for 
constructing the scale-free gene co-expression networks 
within the WGCNA software package [8]. Firstly, the 
appropriate soft threshold power was automatically 

estimated and generated as described for the standard 
scale-free networks. In this case, the power of β, which 
was set at 3 (scale-free R2 = 0.89), was auto-selected. 
Moreover, the weighted adjacency matrix was constructed 
using the power function ADJmn = |CORmn|

β (CORmn = 
Pearson’s correlation between gene m and gene n; ADJmn 
= adjacency between gene m and gene n). β was the soft 
thresholding parameter, which was used to transform 
adjacencies and correlations into a Topological Overlap 
Matrix (TOM), and then the corresponding dissimilarity 
(1-TOM) was calculated. Finally, module identification 
was carried out with the dynamic tree cut method by 
hierarchically clustering the genes using 1-TOM as 
the distance measure with a deep split value of 2 and a 
minimum size cut-off of 30 for the resulting dendrogram. 
Highly similar modules were marked by clustering and 
merged with a height cut-off of 0.25. Module preservation 
and quality statistics were computed using the module 
Preservation function (nPermutations = 200) within the 
WGCNA software package between the TCGA-READ 
test set and the GSE29621 validation set (Supplementary 
Table 1) [20].

Identification of clinical feature modules, 
survival analysis and efficacy evaluation of 
pathological stage hub genes

Module eigengenes (MEs), which are the first 
principal components in the PCA for each gene module, 
summarized the expression patterns of all genes into 
a single characteristic expression profile within a given 
module. The dynamic decision-making tree, node splitting 
method and cluster analysis of the squared Euclidean 
distance were used to identify MEs related to these clinical 
features, especially those involved in the progression and 
prognosis of RC. Spearman’s correlation analysis was 
carried out to confirm the object module, which was the 
most relevant module between the MEs and clinical traits. 
Depending on these, the module that had the highest 
Spearman’s correlation coefficient for the pathological 
stage and MEs in the object module was defined as the 
pathological stage module. Hub genes that had been 
selected in the pathological stage module were obtained 
using the MCODE algorithm plugin within the Cytoscape 
software package (version 3.4.0) [53].

Survival analysis of individual modules and 
efficacy evaluation for survival hub genes

For the single module survival analysis, the 
TCGA-READ test data was dichotomized around the 
median expression of each gene module. The overall 
survival was used as the survival endpoint, which was 
determined via the “survival” R software package. Cox 
regression analysis was performed to evaluate the hazard 
ratio (HR). Survival curves of the significant objected 
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module, which was defined as the survival module, were 
constructed by the Kaplan-Meier method and compared 
by the log-rank test. Survival hub genes were obtained 
by MCODE. Survival curves and ROC analysis were 
designed to identify candidate markers. The results of the 
survival curves and ROC analysis were next verified on an 
independent validation set (GSE29621) using the survival 
hub genes as the candidate marker input to predict the 
classes of prognosis in RC.

Functional annotation and network visualization 
within pathological stage and survival modules

The pathological stage and survival modules were 
functionally annotated based on the analytical results of 
their gene compositions. GO functional-related to specific 
Biological Processes and KEGG pathway enrichment 
analyses were performed for the object module by using 
the Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) [54]. P-values less than 0.05 were 
used as the cut-off value. Network visualization of the 
stage and survival modules were carried out within the 
Cytoscape software package. Moreover, there were strong 
correlations between the co-expressed module genes and 
their functions, and MCODE was utilized to provide 
deeper insights for hub genes.

Statistical analysis

Significance differences between stage groups 
were determined by analysis of variance (ANOVA) 
or the Student’s t test. P-values less than 0.05 were 
considered statistically significant. The preliminary 
relationships between the hub genes of stage modules 
were demonstrated by boxplot graphs. Survival curves 
were constructed by the Kaplan-Meier method and 
compared by the log-rank test for the expression level with 
the stage and survival hub genes for calculating the overall 
survival. All Cox regression models were tested based on 
Schoenfeld residuals to evaluate the hazard ratio (HR) for 
each module. Statistical analysis was performed using 
the R software package (version 3.2.3). ROC analysis 
was used to evaluate the diagnostic value on the outcome 
for the expression level of each stage and survival hub 
genes in RC via the code of Mihaly (Supplementary File 
2) [55]. Using univariate linear logistic regression of the 
hub genes, a classification model of the combined hub 
genes was built to evaluate the discriminatory capacity of 
localized RC and non-localized RC. Finally, the results 
of the survival curves and ROC analysis were validated 
on an independent validation set (GSE29621) using the 
pathological stage and survival hub genes as candidate 
biomarker input to predict the classes of pathological stage 
as well as survival of neoplastic progression and prognosis 
in RC patients. Because of the heterogeneity of hub genes 
within and among samples and datasets, the between-study 

heterogeneity was examined by the Cochran’s Q-test and 
I2 statistic, with P values for heterogeneity by the I2 value 
> 50% indicating substantial heterogeneity [56]. We used 
300 Monte Carlo permutation tests after combining P 
values (Supplementary Figure 1) [57], and a DerSimonian 
and Laird random effects model for meta-analysis by 
combing effect size to select hub genes in RC.
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