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ABSTRACT
Breast cancer is highly heterogeneous and is classified into four subtypes 

characterized by specific biological traits, treatment responses, and clinical prognoses. 
We performed a systemic analysis of 698 breast cancer patient samples from The 
Cancer Genome Atlas project database. We identified 136 breast cancer genes 
differentially expressed among the four subtypes. Based on unsupervised clustering 
analysis, these 136 core genes efficiently categorized breast cancer patients into the 
appropriate subtypes. Functional enrichment based on Kyoto Encyclopedia of Genes 
and Genomes analysis identified six functional pathways regulated by these genes: 
JAK-STAT signaling, basal cell carcinoma, inflammatory mediator regulation of TRP 
channels, non-small cell lung cancer, glutamatergic synapse, and amyotrophic lateral 
sclerosis. Three support vector machine (SVM) classification models based on the 
identified pathways effectively classified different breast cancer subtypes, suggesting 
that breast cancer subtype-specific risk assessment based on disease pathways could 
be a potentially valuable approach. Our analysis not only provides insight into breast 
cancer subtype-specific mechanisms, but also may improve the accuracy of SVM 
classification models.

INTRODUCTION

Breast cancer is one of the most common cancers 
among women, with more than 1,300,000 new cases 
diagnosed, and 450,000 deaths occurring annually 
worldwide [1]. Clinically, breast cancer is grouped into 
luminal A (LA), luminal B (LB), human epidermal growth 
factor receptor 2-positive (HER2+), and triple-negative 
(TN) subtypes according to estrogen receptor (ER), 
progesterone receptor (PR), and epidermal growth factor 
receptor ErbB2/HER2 (HER2) expression. Expression of 
these receptors is routinely used to select treatments for 
breast cancer patients and predict prognosis [2]. Breast 
cancer molecular and behavioral heterogeneity requires 
the application of different therapeutic methods for each 
subtype [1, 3, 4]. Despite recent treatment advances, this 

aggressive disease is still associated with a poor 5-year 
survival rate [3, 5].

Breast cancer comprises different tumor subtypes, 
rather than a single cancer type, as characterized by 
different sets of responsible genes and regulatory 
pathways  [6].  Identification  of  subtype-specific  genes 
is urgently needed to better understand pathological 
mechanisms, for improved patient diagnostic and 
prognostic accuracy, and for a better-refined personalized 
medicine framework [7, 8]. However, due in part to a 
lack of access to candidate patients with different tumor 
subtypes, our current understanding of subtype-specific 
disease mechanisms is incomplete. However, The Cancer 
Genome Atlas (TCGA) project provides a catalog of breast 
cancer and matched normal sample genomic sequencing 
datasets  [1],  enabling  both  identification  of  subtype-
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specific genes and corresponding functional analyses [9]. 
A recent study of breast cancer and glioblastoma 
multiforme datasets provided by TCGA identified cancer 
subtype-associated genes using microRNA (miRNA), 
transcription factor (TF), and messenger RNA (mRNA) 
expression data and network information [10]. Another 
study analyzed a highly heterogeneous group of 165 
TN breast cancers to determine the main functions of 
subtype-specific  genes  and  pathways  [11]. Yang,  et al. 
used next-generation sequencing and bioinformatics 
techniques  to perform an expression profile analysis of 
long non-coding RNAs (lncRNAs) in the HER-2-enriched 
subtype [12]. This work provided useful information for 
exploring candidate therapeutic targets and new molecular 
biomarkers for this subtype.

In this work, we performed a systemic analysis 
of  698  TCGA  breast  cancer  patients.  Large-scale  co-
expression analysis was performed for gene pairs in 
the four different subtypes, and subtype-associated co-
expression networks were generated to reflect the specific 
topological  properties. We  identified 136  breast  cancer 
genes differentially expressed among the four subtypes. 
Based on unsupervised clustering analysis, these 136 core 
genes efficiently categorized breast cancer patients into the 
appropriate subtypes. In addition, functional enrichment 
analysis identified six biological pathways associated with 
these 136 core genes. We analyzed gene co-expression 
patterns to infer associated pathways and to evaluate 
dynamic pathway alterations in the different subtypes 
based on the sliding window [13] and loess fitting [14] 
methods. Ultimately, we used the six pathways as features 
to build a support vector machine (SVM) model. Receiver 
operating characteristic (ROC) curves based on cross-
validation indicated that using the mutating pathway 
feature effectively distinguished the different subtypes. 
Overall, our analysis not only provided insight into 
breast cancer subtype-specific mechanisms, but may also 
improve the accuracy of SVM classification models. The 
subtype-specific pathways identified here likely include 
subtype-specific biomarkers and personalized drug targets 
that warrant further study.

RESULTS

Identification of subtype-specific genes

Analysis  of  variance  (ANOVA) was first  used  to 
identify differentially expressed genes among the four 
subtypes. Specific genes  for  each  subtype were  further 
screened using Student’s t test. Overall, 1853, 885, 734, 
and 2707 genes were found for the LA, LB, HER2+, and 
TN subtypes. Although overlap existed, 729, 14, 319, and 
2170 subtype-specific genes were identified for the LA, 
LB, HER2+, and TN subtypes, respectively (Figure 1). 
Compared with other subtypes, the LA and TN subtypes 
included more unique genes, suggesting that these 

genes only exhibited differential expression in these two 
subtypes. LA and TN represent two extremes among the 
four breast cancer subtypes, with the former having the 
lowest degree of malignancy and the latter the highest, 
which may explain this result.

We also observed differential expression in 136 
genes among the four subtypes, indicating that dynamic 
changes occurred in these genes with increasing 
malignancy. These genes exhibited a consistent gradient 
in expression variability, associated with degree of tumor 
malignancy. Co-expression correlations among these 136 
core genes might represent important markers for the 
different subtypes.

Correlation analysis

The  Pearson  correlation  coefficient  was  used  to 
evaluate correlations among core genes in each of the four 
subtypes. A correlation coefficient of R > 0.5 indicated 
a  positive  correlation,  whereas  R  <  −0.5  indicated  a 
negative correlation. Figure 2 shows matrices for the 
136 overlapping genes from all four subtypes depicted 
as heat maps. Correlations among these 136 genes in 
each subtype were not identical, indicating that gene 
expression varied between subtypes, and that gene 
correlations also changed accordingly. These dynamic 
changes made it possible to distinguish different subtypes 
at the molecular level.

We also investigated variation in the number 
of correlated gene pairs in the four subtypes by 
increasing the threshold value of R (Table 1). A 
logarithmic conversion was then performed for the 
number of correlated gene pairs in the four subtypes 
with an increasing threshold value of R. Overall, 
the number of gene pairs gradually decreased with 
an increasing R value (Figure 3). For each of the 
correlation coefficients, the number of correlated gene 
pairs tended to be lower in TN, suggesting that the 
original correlated gene pairs changed with regard to 
expression and function. This resulted in the loss of 
genetic correlation in TN patients.

Probability density distributions and relationships 
between overlapping and unique gene pairs were 
analyzed at R ≥ 0.5 for the correlated gene pairs of the 
four subtypes. All relevant genes for the LA subtype were 
positively correlated, and had the highest correlation 
among the four subtypes (Figure 4). The density began to 
shift negatively starting with the LB and HER2+subtypes, 
and negatively correlated gene pairs were found. 
Compared with the other three subtypes, the number of 
correlated TN gene pairs was reduced and convergent 
toward R = 0.5. This suggests that in the transition from 
LA to TN, correlations may be unstable or lost between 
gene pairs due to expression variations. Thus, co-
expression among genes is an important marker for the 
different breast cancer subtypes.
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Figure 1: Venn diagram showing overlapping and unique subtype-specific genes. Green: LA breast cancer subtype; blue: 
LB; orange: HER2+; red: TN. 136 genes overlapped between the four specific gene sets. LA, luminal A; LB, luminal B; HER2+, human 
epidermal growth factor receptor 2 positive; TN, triple negative.

Figure 2: Heat map matrices showing co-expression correlations between 136 overlapping genes for samples of all four 
subtypes. Red: positive correlation; blue: negative correlation. Results indicated that correlations among these 136 genes in each subtype 
were not identical. HER2+, human epidermal growth factor receptor 2 positive; TN, triple negative.
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Construction of the co-expression network 

The co-expression network was constructed 
using genes associated with the four subtypes. Four 
topological characteristics (degree distribution, average 
shortest path length, closeness centrality, and topological 
coefficient)  were  compared  in  the  co-expression 
networks. Compared with the other subtypes, the TN 
subtype peak (red, Figure 5A) shifted to a lower degree 
of distribution, suggesting that edge deletion occurred 
in the system network and that the original co-expressed 
genes gradually lost co-expression during transition 
to the TN subtype. In the LA to TN subtype transition, 
average shortest path length peak values gradually shifted 
to the right, suggesting that the average shortest path 
gradually increased in the networks from LA to TN and 
that the network signal transmission efficiency decreased 
(Figure 5B). The closeness centrality tended to be 
smaller and more convergent from the LA to TN subtype. 
Moreover, a small set of genes with large closeness 
centrality was observed for TN and LB, which suggests an 

interaction transformation among the genes (Figure 5C). 
From  LA  to  TN  subtypes,  the  topological  coefficient 
gradually decreased, and the distribution of peak values 
was  lower, suggesting  that  the system network efficacy 
decreased over this transition (Figure 5D).

To evaluate the network centrality of the 136 core 
genes in the four subtype-specific networks, we compared 
the mean degree of the 136 core genes with all the genes 
in the four networks (Table 2). Base 10 logarithmic 
conversion was performed for all nodes. All 136 core 
genes in the four networks showed a higher distribution 
than average, suggesting network centrality for these 
genes in all subtypes and indicating that these genes are 
important hub nodes.

Unsupervised hierarchical clustering

Figure 6 shows the results of unsupervised 
clustering using intersection (136) and set (3837) genes 
for samples of all four subtypes. Comparison of the two 
clustering results showed that the intersection genes 

Table 1: Correlation of gene pairs
Group |R| ≥ 0.5 |R| ≥ 0.6 |R| ≥ 0.7 |R| ≥ 0.8 |R| ≥ 0.9

Luminal A 296 181 73 19 0
Luminal B 398 168 65 10 1
HER2+ 562 257 82 14 1
TN 204 47 5 1 0

LA, luminal A; LB, luminal B; HER2+, human epidermal growth factor receptor 2 positive; TN, triple negative.

Figure 3: Correlation pairs according to the correlation coefficient. Horizontal  axis  represents  the  correlation  coefficient; 
vertical axis represents the number of correlated gene pairs after logarithmic conversion. Blue: LA breast cancer subtype; red: LB; green: 
HER2+; purple: TN. Overall, the number of gene pairs gradually decreased with an increasing R value.LA, luminal A; LB, luminal B; 
HER2+, human epidermal growth factor receptor 2 positive; TN, triple negative.
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Figure 5: Topological characteristics in the four subtype co-expression networks. Degree distribution (A), average shortest 
path length (B), closeness centrality (C), and topological coefficient (D) of the four subtypes. Green: LA breast cancer subtype; blue: LB; 
orange: HER2+; red: TN. LA, luminal A; LB, luminal B; HER2+, human epidermal growth factor receptor 2 positive; TN, triple negative.

Figure 4: Comparison between subtypes when R ≥ 0.5. Green: LA breast cancer subtype; blue: LB; orange: HER2+; red: TN. 
Horizontal axis represents the correlation coefficient; vertical axis represents the density distribution. Differences were observed between 
the density distributions of the correlation coefficients for the four subtypes. LA, luminal A; LB, luminal B; HER2+, human epidermal 
growth factor receptor 2 positive; TN, triple negative.
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clustered better than the set genes. All of the TN cases 
were concentrated in the same cluster, and most of the LA 
cases were in another cluster (Figure 6A). TN cases are 
also separated from the other subtypes when more genes 
were used (Figure 6B). This confirmed that the 136 core 
overlapping genes could replace the set genes with similar 
classification efficiency.

Functional pathway analysis

Functional enrichment based on Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis 
was performed for the core genes using Fisher’s exact 
test [15]. Six functional pathways regulated by core 
genes were identified at a threshold of P < 0.05 (Table 3). 
The JAK/STAT pathway, a functional pathway involved 
in cell cycle and apoptosis regulation, was identified in 
the enrichment analysis, and JAK/STAT-mediated PI3K-
Akt signaling has been correlated with drug resistance 
in  breast  cancer  [16].  Detection  of  the  inflammatory 
mediator regulation pathway suggests that oxidative stress 
and immune response are both important, although their 
functional levels may differ in distinct subtypes. Multiple 
studies have associated glutamic acid with breast cancer 

prognosis [17]. One disease pathway, amyotrophic lateral 
sclerosis (ALS), was also enriched. Although there is 
insufficient  evidence  to  show  a  relationship  between 
ALS and breast cancer, glutamic acid accumulation 
in nerve cells is one of the main pathogenic factors for 
ALS [18]. Two canonical cancer-related pathways, basal 
cell carcinoma and non-small cell lung cancer, were also 
enriched. In addition to the functional enrichment of core 
genes, we also performed a functional analysis of the 
genes specific for each subtype (Supplementary Material).

Pathway alteration scores

Corresponding gene expression values were used 
to calculate alteration scores for the six pathways to 
determine the distributions of their variations in the 
different breast cancer subtypes (Figure 7). LA subtype 
cases fluctuated near zero and were close to the normal 
state, whereas the other subtypes showed deviations. 
Notably, the directions of variation in the same pathways 
were not consistent between different subtypes.

Changes in each pathway among the four subtypes 
tended to be continuous and linear (Figure 8). The 
functional level in the transition from LA to TN was 

Table 2: Mean and standard deviation of node degree of 136 core genes and all the genes in four 
subtype-specific networks
Group Luminal A Luminal B HER2+ TN
Average of 136 core genes 1.455246 1.329812 1.278754 1.240074
Mean degree 1.0603975 0.9911572 1.0298602 0.8021931
Standard deviation 0.5863981 0.5515769 0.3697134 0.4997064

HER2+, human epidermal growth factor receptor 2 positive; TN, triple negative.

Figure 6: Unsupervised clustering analysis using overlapping and unifying genes. The results of unsupervised clustering for 
samples of all four subtypes using 136 overlapping genes (A) and unifying genes (B) Red: high expression genes; blue: low expression.
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either continuously increasing or continuously declining, 
which suggested that a dynamic linear change occurred 
at the functional levels of these pathways according 
to increasing degree of breast cancer malignancy. In 
contrast, pathway variations in the TN subtype were 
the most obvious; although glutamatergic synapse 
showed negative variations, all other pathways exhibited 
positive variations, suggesting that functional levels 
were enhanced with increased breast cancer malignancy. 
The increasing levels of these pathways suggest a shift 

toward increased malignancy and/or inflammation in the 
cancer cells. 

Sliding window and LOESS fitting

To analyze dynamic changes in functional levels 
with increasing degrees of malignancy in the four 
subtypes, we applied the sliding window approach [13] to 
integrate pathway scores for the four subtypes (Figure 9). 
The LOESS fitting algorithm [14] was used to smooth the 

Table 3: Functional pathway enrichment analysis of 136 core genes
Pathway Count P-value
JAK-STAT signaling pathway 12 1.65E-04
Basal cell carcinoma 18 2.94E-04
Inflammatory mediator regulation of TRP channels 22 0.009909
Non-small cell lung cancer 14 0.020347
Glutamatergic synapse 10 0.040388
Amyotrophic lateral sclerosis (ALS) 6 0.049967

Figure 7: Alteration score distributions for six functional pathways in the four breast cancer subtypes. Diffused points 
show the distribution of alteration scores of the functional pathways. The six functional pathways included glutamatergic synapse, basal cell 
carcinoma, non-small cell lung cancer, JAK-STAT signaling pathway, inflammatory mediator regulation of TRP channels, and amyotrophic 
lateral sclerosis. Red: LA breast cancer subtype; green: LB; blue: HER2+; purple: TN. LA, luminal A; LB, luminal B; HER2+, human 
epidermal growth factor receptor 2 positive; TN, triple negative.
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data. The pathway functional levels were typically smooth 
in LA, but either increased or decreased in LB. In TN and 
HER2+, the pathway functional levels showed continuous 
change. This phenomenon again confirmed that  the LA 
functional level was most similar to the normal state and 
that the degree of functional variation was most obvious 
in TN. Functional variation began to change starting from 
LB, and the HER2+ functional level was between that of 
LB and TN. The TN subtype is associated with the poorest 
prognoses.

Establishment of the SVM model

Despite the small sample size for the HER2+ 
subtype, differences in functional level from the luminal 
and TN subtypes were observed. Therefore, we attempted 
to establish an SVM model under an imbalanced training 
set.  Although  LA  and  LB  are  difficult  to  distinguish, 
more than 90% of luminal-type cases could be correctly 
distinguished from the other two subtypes (Figure 10). 
Many HER2+  (45.9%)  cases were  correctly  predicted, 
but prediction failure was observed for the other 54.1%. 

This low precision was attributed to the small HER2+ 
patient sample size. 90.4% of TN patients were correctly 
classified. In addition, three individual models were built 
for pairwise comparison after excluding the HER2+ 
patients. 

A ROC curve analysis was used to assess the 
performance of the prediction model for the TN and 
luminal A/B subtypes (Figure 11). The average area 
under the curve (AUC) of the luminal A and luminal B 
was 0.78, whereas the classification efficiencies for TN 
and  luminal  A/B  were  >  91%,  indicating  no  obvious 
functional difference between the different luminal 
subtypes. However, the TN functional level was altered 
compared with luminal subtype. These results confirmed 
that such variable pathways can be used to effectively 
predict luminal and TN subtypes in breast cancer patients.

The  validity  of  each  model  was  verified  by  the 
ROC curves. To comprehensively evaluate  the efficacy 
of the model, the precision, recall, and f1 scores were 
analyzed. Average precision and recall values for the TN 
subtype were higher than those for the luminal subtype, 
but  the prediction efficacy of TN alone was  inferior  to 

Figure 8: Boxplots showing alteration score distributions for the six functional pathways in the four breast cancer 
subtypes. Horizontal axis represents the subtype samples; vertical axis represents the alteration score; black horizontal line represents the 
median. Red: LA breast cancer subtype; green: LB; blue: HER2+; purple: TN.LA, luminal A; LB, luminal B; HER2+, human epidermal 
growth factor receptor 2 positive; TN, triple negative.
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Figure 9: Functional variation trends in the six pathways are shown, using the sliding window approach and LOESS 
fitting algorithm. Red: LA breast  cancer  subtype; green: LB; blue: HER2+; purple: TN; dark blue: fitting  line.LA,  luminal A; LB, 
luminal B; HER2+, human epidermal growth factor receptor 2 positive; TN, triple negative.

Figure 10: Confusion matrix for the four subtypes. Horizontal axis represents the predicted result; vertical axis represents the 
actual result. Darker color: higher precision; lighter color: lower precision.HER2+, human epidermal growth factor receptor 2 positive; 
TN, triple negative.
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that of the luminal subtype (Table 4).This may have been 
due to the imbalanced sample sizes of the two groups. 
Without weighting to adjust for sample size, the average 
classification efficacy of the model was still > 94%, which 
again indicated that the six identified variable pathways 
reflected  different  functional  levels  in  the  different 
subtypes.

DISCUSSION

Breast cancer is a highly heterogeneous disease with 
varying biological features and clinical characteristics 
[19, 20]. Identifying the cancer subtype is important for 
development of a personalized medicine framework, as 
correctly classifying tumors increases the likelihood of 
choosing the most effective patient treatment strategies 
and appropriately evaluating prognoses [1, 3, 4]. 
Furthermore, because different subtypes respond to 
specific  treatment  modalities,  subtype-specific  genes 
involved in the biological processes that confer disease 
risk must be identified to better classify patients [21, 22].

Information from biological networks, such as 
co-expression networks, is regularly used with existing 
computational methods to investigate cancer development 
and subtype-specific regulatory mechanisms [23]. In the 
present study, we performed a large-scale co-expression 
analysis  involving  698  TCGA  breast  cancer  patients 
and  built  four  co-expression  networks.  We  identified 
breast cancer subtype-specific genes and found 136 core 
genes that were differentially expressed among the four 

subtypes. These 136 core genes effectively categorized 
breast cancer patients into the different subtypes based on 
unsupervised clustering analysis.

Six biological pathways were identified as associated 
with these 136 core genes. Notably, our analysis identified 
the JAK/STAT signaling pathway, which participates in 
regulating the cell cycle and apoptosis. Some studies have 
correlated JAK/STAT-mediated PI3K-Akt signaling with 
drug resistance in different breast cancer subtypes [24]. 
Inflammatory mediator regulation suggests differences in 
immunity levels between the breast cancer subtypes, and 
the proinflammatory response following chemotherapy is 
often associated with differing chemosensitivity [25]. The 
involvement of glutamatergic synapse and ALS pathways 
suggests that glutamate may be a subtype-specific marker. 
Indeed, glutamatergic signaling inhibition suppresses 
breast cancer growth, especially in the TN subtype [26]. 
The other two pathways identified were canonical cancer-
related pathways: basal cell carcinoma and non-small cell 
lung cancer. Lung metastasis is often observed in breast 
cancer patients, as is bone and liver metastasis, and studies 
have shown that patients with different subtypes have 
varying risks of lung metastasis [27, 28].

We evaluated dynamic pathway alterations among 
the different subtypes using the sliding window [13] 
and LOESS fitting [14] methods. The classic functional 
and  disease  pathways  identified  in  this  study  showed 
functional level differences among the four subtypes, 
exhibiting primarily linear changes correlated with degree 
of malignancy. Traditional methods of risk assessment 

Figure 11: ROC curve showing the performance of the luminal A/B and TN subtype prediction models. Horizontal axis 
represents the ROC curve specificity; vertical axis represents the sensitivity. The average area under the curve (AUC) of the LA and LB 
was 0.78, but the classification efficiencies for TN and luminal A/B were higher than 91%. Red: AUC for LA and LB; blue: AUC for LA 
and TN; green: AUC for LB and TN. LA, luminal A; LB, luminal B; TN, triple negative.
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use a variety of breast cancer-related genes, although 
systematic risk assessment for certain subtypes has been 
unavailable to date. The pathways we identified exhibited 
differences among the different subtypes, suggesting that 
breast cancer subtype-specific risk assessment based on 
disease pathways could be a potentially valuable approach. 
Finally, the breast cancer subtype-associated pathways 
used as features to build the SVM model effectively 
classified luminal and TN subtypes with high accuracy.

In conclusion, our study provides a comprehensive 
analysis of breast cancer subtype genes across 698 TCGA 
samples. In addition to individual genes, disease pathways 
may constitute a valuable subtype-specific breast cancer 
risk assessment tool. Altered pathways were used as 
new features to classify different subtypes with high 
accuracy. Additionally, because these functional pathways 
exhibited differences between subtypes, they may include 
specific therapeutic targets, and warrant further analysis. 
Although our study sample size was somewhat limited and 
prediction was only performed for the luminal A/B and 
TN subtypes, our approach may provide new directions 
for improving breast cancer patient personalized therapies. 
Our method can be used to accelerate the discovery of 
molecular biomarkers and, potentially, to more completely 
characterize the molecular architectures of breast cancer 
subtypes.

MATERIALS AND METHODS

Data acquisition

We used the TCGAbiolinks R package (2.3.16) to 
acquire breast cancer RNAseq expression data from the 
TCGA database, including 1212 samples and 20,532 
corresponding genes [29]. Based on ER, PR, and HER2 
expression, breast cancer cases were classified into one of 
four clinical subtypes: LA subtype (ER+, PR+, HER2−), 
HER2+ subtype (ER−, PR−, HER2+), TN subtype (ER−, 
PR−, HER2−), and LB subtype (ER+, PR−, HER2-| ER+, 
HER2+). Cases with incomplete ER, PR, and HER2 data 
were excluded. A total of 698 cases were categorized into 
subtypes as follows: 363 LA, 184 LB, 37 HER2+, and 114 
TN. Expression data were normalized using the z-score 
[30–33] for three reasons. First, we tended to adjust all 
genes to the normal distribution (mean = 0, sd = 1), which 
makes them comparable before subsequent differential 
analysis. Second, some conserved genes showed very 
small  fluctuations.  Although  these  conserved  genes 

are important disease-related genes, they can be easily 
omitted because of the slight expression change (sd < 1) 
due to evolutionary conservation. The z-score is a suitable 
method for identifying these genes because the signals 
would be enhanced if biased from the reference, and this 
method has been widely used in non-invasive prenatal 
testing (NIPT). Third, the corrected gene values were 
used to calculate the alteration scores of pathways acting 
as features  in  the classification model. As all genes are 
expected to have the same weight, we adjusted them to the 
normal distribution using the z-score method.

Identification of subtype-specific genes

Gene  sets  with  specific  expression  values  were 
identified  for  each  subtype. ANOVA was performed  to 
extract differential genes for the four subtypes, with a 
significance threshold of P < 0.05. A differentiation test 
was performed for each of the resultant significant genes 
using Student’s t-test. If the P-values of gene i in subtype 
M were all < 0.01 compared with the other subtypes, this 
gene was assigned as a subtype M-specific gene.

Correlation analysis

Genes with functional correlations often show co-
expression correlations that dynamically change with 
disease progression or subtype. To investigate dynamic 
correlation characteristics, Pearson correlation analysis 
was performed for the core genes of each subtype. Genes 
specifically  associated  with  each  subtype  and  gene 
pairs universally associated with all four subtypes were 
identified. The Pearson threshold was set at R = 0.5.

Construction of a co-expression network

Co-expression networks were constructed based 
on associated genes, with the genes associated with 
each subtype set as nodes. If  the correlation coefficient 
was > 0.5 or < −0.5, an edge between the two nodes was 
assigned. The topological properties of the network were 
analyzed using the Cytoscape software to identify the 
specific topological properties of the four subtypes.

Hierarchical clustering analysis

The correlation matrix was constructed using 
correlations between core genes, and clustering of the 

Table 4: Classification report for TN/luminal subtypes
Class Precision Recall F1-score Support
TN 0.76 0.91 0.83 57
Luminal 0.98 0.94 0.96 274
Avg/total 0.94 0.94 0.94 331

TN, triple negative.



Oncotarget58820www.impactjournals.com/oncotarget

samples and genes was achieved via unsupervised 
hierarchical clustering, thereby verifying the efficacy of 
classifying the four subtypes according to core genes. To 
demonstrate the efficacy of classifying individual patient 
samples using the core genes, we unified the four specific 
gene sets to cluster the samples of the four subtypes by 
comparison.

Functional analysis

Core gene expression differences were observed 
among the four subtypes, suggesting functional differences 
for core gene-regulated pathways between subtypes. To 
identify these differentiated functions, KEGG functional 
enrichment analysis of the core genes was conducted 
using Fisher’s exact test. In addition to core genes, 
functional analysis of the genes specific for each subtype 
was also performed. These functions would be used as 
characteristics to establish independent models and predict 
any two subtypes.

Pathway alteration scores

The functional level of pathways in each of the four 
subtypes was quantified by calculating the alteration score 
of each pathway as follows:

Equation 1: score P
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where pathway P contains N enriched genes, 
m indicates unregulated genes, and n indicates 
downregulated genes for any gene G. The LA subtype 
served as the control, and μ is the mean expression of G 
in LA. A higher score (P) indicated more obvious positive 
variation of the pathway, whereas a smaller score (P) 
indicated more obvious negative variation.

Sliding window and LOESS fitting

The alteration score of the variation pathway was 
calculated for each sample. To filter out interfering noise 
signals while observing dynamic changes in the pathway 
during transition between two subtypes, the score of 
each pathway was integrated using the sliding window 
approach [13]. From the starting end, every 20 samples 
were integrated as a window, with 10 samples overlapping 
between adjacent windows. The median value for each 
window was fitted using the LOESS fitting algorithm [14].

Establishment of the classification model

An unsupervised clustering of core genes 
distinguished patients with TN breast cancer from those 

with luminal subtypes. Functional level differences 
between  the  subtypes  were  also  verified  for  the 
pathways regulated by these genes. Therefore, using the 
functional  pathways  as  features,  cases  were  classified 
using a supervised SVM algorithm. Feature values of 
each pathway were encoded using Equation 1, and we 
ultimately obtained a matrix consisting of variation 
pathways and 698 samples. The matrix was normalized 
using the z-score method. To avoid over fitting, default 
parameters were used for SVM. Penalty parameter C of 
the error term was set to 1; kernel type to be used in the 
algorithm was set to ‘rbf’; degree of polynomial kernel 
function was set to 3; kernel coefficient gamma was set 
to 0. Four sample sets were used to train the model, and 
its classification efficacy was reflected by the confusion 
matrix. To further distinguish any two subtypes, the 
following treatments were carried out: (1) Because 
the number of HER2+ samples was small, they were 
removed, and only luminal A/B and TN were compared. 
(2) Pathways enriched in two subtype-specific genes were 
combined to construct and normalize eigenvalue matrices. 
(3) Five folds cross-validation was applied; that is, four 
folds samples were randomly selected for training, and 
the remaining one was used for the test. This process was 
repeated five times until all samples were predicted once. 
(4) Combined with the cross-validation results, a ROC 
curve was generated to assess classification performance.
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