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ABSTRACT
Resistance to targeted therapy is an ongoing problem for the successful treatment 

of Stage IV metastatic melanoma. For many patients, the use of targeted therapies, 
such as BRAF kinase inhibitors, were initially promising yet resistance inevitably 
occurred. Even after combining BRAF kinase inhibitors with MEK pathway inhibitors to 
offset re-activation of the MAP kinase pathway, resistance is still documented. Similarly, 
outcomes with immune checkpoint inhibitors as monotherapy were optimistic for 
some patients without relapse or progression, yet the majority of patients undergoing 
monotherapy have progressive disease. Will immunotherapy and combination therapy 
trials overcome resistance in metastatic melanoma? In an effort to treat resistant 
disease, new clinical trials evaluating the combination of immunotherapy with other 
therapies, such as kinase inhibitors, adoptive cell therapy, chimeric CD40 ligand to boost 
costimulation, or a tumor-specific oncolytic virus enhancing granulocyte macrophage 
colony-stimulating factor (GM-CSF) expression, are currently underway. Updated 
studies on the mechanisms of resistance, immune escape and options to reinvigorate 
immune cells support the continued discovery of new and improved forms of therapy. 

INTRODUCTION

Despite the high cure rates associated with the early 
diagnosis and removal of melanoma, patients with Stage 
IV metastatic disease have a 5-year survival expectancy 
of approximately 18% [1–3]. Melanoma thus accounts 
for the majority of deaths related to skin cancer. Davies 
et al. reported that approximately 37–59% of melanomas 
contain a mutation in the gene that encodes BRAF [4], 
which was associated with younger age at diagnosis and 
poorer survival [5, 6]. In recent years, drugs that target 
molecularly defined vulnerabilities (such as BRAF kinase) 
in human melanoma have been clinically validated as 
effective melanoma therapies [7]. Nearly all patients, 
however, experience a relapse of the disease due to the 

emergence of acquired drug resistance [8]. Resistance to 
therapy has now become a major obstacle for successful 
melanoma treatment. Efforts to overcome drug resistance 
with combination BRAF/MEK kinase inhibitors or 
monotherapy with immune checkpoint inhibitors have, 
so far, only prolonged time to progressive disease [9–14]. 
Here, we discuss the current views on the mechanisms 
of resistance, immunotherapy to overcome T cell 
dysfunction, and options to reinvigorate T cells, such as 
adoptive cell therapy.

Resistance to targeted therapy

Drug resistance is defined by either progression of 
disease or locoregional recurrence despite treatment, and 
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further includes the appearance of new lesions [15, 16]. 
Resistance to BRAF inhibitor therapy is likely due to 
either a pre-existing intrinsic mechanism, or an acquired 
mechanism [14, 17–19], the latter being the case for 
most patients who initially respond but later progress 
[17]. Pre-existing intrinsic mechanisms of resistance 
primarily occur due to genetic alterations, mutations, 
loss of function, or overexpression of genes involved in 
either the PI3K/AKT signaling pathway or the MAPK/
ERK pathway [8, 17, 18, 20–26]. The PI3K/AKT pathway 
involves the activation of mTOR, eventually resulting in 
reduced apoptosis, promoting growth, protein synthesis, 
and proliferation [17]. The MAPK/ERK pathway involves 
a cascade of activation and phosphorylation by kinases, 
promoting the proliferation, survival, and differentiation of 
cells [17]. The most common cause of acquired resistance 
is due to the reactivation of the MAPK/ERK pathway  
[8, 14, 17, 27–29], followed by the upregulation of the 
PI3K/AKT pathway [14]. Another potential mechanism 
of kinase inhibitor therapy is the activation of the 
noncanonical Hedgehog pathway observed in melanoma 
cell lines [30, 31]. The treatment of resistant cells to a 
specific Hedgehog pathway inhibitor, Gant61, observed 
in one study, restored sensitivity to the BRAF kinase 
inhibitor, vemurafenib [30]. Of note, however, tumor 
heterogeneity, i.e. the same patient tumor with more 
than one mechanism of resistance detected [14], may 
contribute to the persistence of disease progression despite 
combination kinase inhibitor therapy, and presents a new 
challenge against resistance.

Recently, we observed  that acquired multidrug 
resistance is caused by a stress response induced by 
chemotherapy such as docetaxel, the BRAF kinase 
inhibitors vemurafenib and dabrafenib, the MEK inhibitor 
trametinib, hypoxia, or low nutrient environments [32]. 
The stress response involves chromatin remodeling and 
activation of signaling cascades and is characterized 
by an increase in expression of the nerve growth factor 
receptor CD271 [32], a proposed marker of melanoma 
stem cells [33], and one that may suppress CD8+ T cell 
function [34]. The stressed state is further signified by the 
loss of melanoma differentiation markers such as Melan-A 
and tyrosinase [32]. The loss of tumor-associated target 
antigens, which are normally expressed on the surface of 
melanoma cells, may prevent recognition by melanoma-
specific cytotoxic T cells [34]. Tumor specific T cells are 
a key component of immune defense against melanoma, 
and impaired antigen recognition results in an inability of 
the immune system to control tumor growth.

Immunotherapy to overcome resistance

In an effort to address and combat resistance to 
monotherapy, current treatments for metastatic melanoma 
either combine the BRAF kinase inhibitor dabrafenib 
with the MEK inhibitor trametinib or recommend the 

monoclonal antibody, ipilimumab, against the immune 
checkpoint inhibitor cytotoxic T-lymphocyte antigen 4, 
CTLA-4, for first-line therapy [17, 35, 36]. Combined 
targeted therapy with two kinase inhibitors is indicated 
for unresectable or metastatic melanoma [17], showing 
improved overall survival in combination compared to 
the BRAF inhibitor alone [37]. However, resistance to 
combined BRAF/MEK kinase therapy is still described 
[13, 38]. Further studies and ongoing trials suggest 
that combination immunotherapy, pairing ipilimumab 
with the programmed cell death 1, PD-1, monoclonal 
antibody, nivolumab, prolongs progression-free survival 
in untreated metastatic melanoma patients compared to 
either nivolumab alone [39] or ipilimumab alone [39–41]. 
However, an increased incidence of severe drug-related 
adverse events was observed in over half of those patients 
undergoing combination therapy [39–41], including 
diarrhea, fatigue, pruritis, rash, nausea, colitis and fever. 
Many were reversible with immunosuppressants but some 
patients required additional systemic glucocorticoids, 
infliximab, or mycophenolate immunosuppressive therapy 
instead. 

CTLA-4 blockade toxicity or therapeutic response 
may be related to gut-resident bacteria, according to recent 
studies [42]. One study found that T cell responses specific 
for Bacteroides species within the gut were associated with 
anti-CTLA-4 efficacy both in mice and in patients [43]. 
This effect was eliminated in mice treated with antibiotics 
to eradicate Bacteroides from the gut and reversed when 
Bacteroides was replaced by gavage. Furthermore, the 
study found that melanoma patients treated with CTLA-
4 blockade grew gut-specific Bacteroides with antitumor 
characteristics. Another recent study evaluating the 
influence of the intestinal microbiome on immunotherapy-
related colitis found that increased Bacteroides 
representation within the gut correlated with resistance to 
anti-CTLA-4-induced colitis [44]. Together, these studies 
may indicate an adjunct to combination immunotherapy 
with promoting, establishing, or replenishing favorable gut 
microbiota to both induce anti-tumor activity and prevent 
therapy-mediated toxicity.

Furthermore, ipilimumab has shown improved 
overall survival in previously untreated or treated and 
refractory metastatic disease [35, 36]. The antibody target, 
CTLA-4 or CD152, is an immune inhibitory marker 
expressed on T cells after prolonged T cell activation and 
is constitutively expressed on memory CD4+ and CD8+ 
T cells as well as regulatory T cells [45, 46]. CTLA-4 
competes with CD28 costimulation necessary for T cell 
activation, and thus suppresses the activation and further 
proliferation of T cells, resulting in a diminished immune 
response [45–48]. A study evaluating disease progression 
after ipilimumab therapy examined differences in the 
expression of immune antigens and candidate genes 
in patient melanoma tumor samples both pre and post-
therapy [49]. The authors found that the expression 



Oncotarget75677www.impactjournals.com/oncotarget

of a tyrosine kinase cell cycle regulator, TTK, and the 
expression of a gene encoding the antiapoptotic protein 
survivin, BIRC5, both increased in tumors that progressed 
despite therapy. However, the expression of immune 
antigens, e.g. CD3, CD4, CD8, and CTLA-4, remained 
unchanged a year after ipilimumab therapy. While 
promising, the study was limited by a sample size of four 
patients. As part of the selection criteria to help elucidate 
mechanisms of ipilimumab resistance, the patient pool was 
narrowed down to those who developed some form of an 
autoimmune reaction to the therapy [49]. 

More recently, in an effort to increase the efficacy 
of ipilimumab monotherapy, a clinical trial combining the 
CTLA-4 inhibitor with an oncolytic virus derived from 
herpes simplex virus 1 (HSV-1) was developed, revealing a 
tolerable safety profile and greater efficacy in combination 
than with either alone [50]. An ongoing Phase III trial is 
currently evaluating the combination of pembrolizumab, 
the PD-1 inhibitor, with or without the same oncolytic 
HSV (NCT02263508). An oncolytic virus is one that 
selectively infects, replicates within, and kills tumor cells, 
allowing further dissemination of the virus throughout the 
tumor tissue [51]. Talimogene laherparepvec or T-VEC, the 
oncolytic HSV, recently underwent optimistic safety and 
efficacy trials in single-arm and comparable interventional 
studies of T-VEC monotherapy  [52]. The oncolytic 
virus was modified by the deletion of two specific herpes 
simplex 1 viral genes, the neurovirulence factor ICP34.5 
and the ICP47 gene, to evade the host’s anti-viral response 
thus allowing the virus to replicate within tumor cells, 
and to subsequently lyse them  [51, 53–57]. The deletion 
of the ICP47 gene in particular is thought to induce a 
systemic tumor-specific immunity by deleting an inhibitor 
of antigen presentation, therefore rendering the tumor cells 
vulnerable to an immune response [58–61]. The virus was 
further modified by the insertion of a gene encoding the 
expression of human granulocyte macrophage colony-
stimulating factor, GM-CSF, to promote anti-tumor 
immune responses by recruiting and activating antigen-
presenting cells, APCs [62]. 

Phase I and II T-VEC trials revealed replication 
of the oncolytic virus within tumor cells, the expression 
of GM-CSF, and an overall response rate of 26% in the 
intralesional T-VEC group compared to 6% in the group 
given subcutaneous GM-CSF [63–65]. The Phase III trial 
revealed a higher durable response rate and longer overall 
survival in Stage IIIB, IIIC, or IV patients [52], likely 
due to the systemic tumor-specific immunity induced by 
the virus [58, 66]. Furthermore, T-VEC was determined 
to be safe and well tolerated with only minor viral 
prodromal adverse effects – fever, chills, myalgias, and 
mild skin site reactions [52, 63, 64]. While promising as 
monotherapy, the view that combination therapy to target 
different mechanisms of action – immune checkpoint 
inhibitors with oncolytic viruses enhancing the expression 
of pro-immune factors like GM-CSF as well as inducing 

systemic anti-tumor immunity–may provide more durable 
and efficacious response rates long term, as current trials 
suggest.

Immune exhaustion and dysfunction in the 
tumor microenvironment

Clinically, compared to ipilimumab, patients treated 
with monoclonal antibodies directed against PD-1,  
such as nivolumab and pembrolizumab, appear to have 
higher response rates, sustained tumor regression, and 
may be better tolerated [17, 67, 68]. Despite differences 
in clinical outcomes, both PD-1 and CTLA-4 are 
inhibitory markers expressed in T cell exhaustion–a 
dysfunctional state in response to persistent antigen 
stimulation and inflammation–along with other markers 
such as lymphocyte-activation gene 3 (Lag-3), and T cell 
immunoglobulin domain and mucin domain 3 (Tim-3)  
[69–71]. Both Lag-3 and Tim-3 are expressed on T cells, 
regulatory T cells, B cells, dendritic cells, NK cells, 
and NKT cells [72]. However, Lag-3 acts as a CD4 
homolog by binding MHC class II [72–74], while Tim-3 
is involved in T cell tolerance  [72, 75]. Although much 
of the research on T cell exhaustion was done studying 
chronic viral infection, recent studies suggest that the 
tumor microenvironment in metastatic melanoma involves 
infiltrating lymphocytes (TILs) expressing characteristics 
of exhaustion – namely, PD-1 expression on T cells 
[69, 76, 77]. In examining the effector function of these 
PD-1+ TILs, Fourcade et al. showed that T cell function 
is impaired in those infiltrating CD8+ T cells or cytotoxic 
T lymphocytes (CTLs) that express PD-1 and more so 
in PD-1+ TIM-3+ infiltrating CTLs than single positive 
cells [78]. TILs that co-express many immune inhibitory 
markers are thus more dysfunctional [72, 79, 80]. This 
study, however, assessed CTL function by IFNγ, TNFα, or 
IL-2 cytokine release, but failed to show direct cytotoxic 
activity via tumor cell lysis. 

Interestingly, in the exhausted state, CTLs may 
exhibit residual IFNγ production, albeit at low levels, 
but may express high levels of granzyme B with some 
residual cytotoxic capacity, although these studies were 
conducted by examining chronic viral infection, not 
the tumor microenvironment [69, 81, 82]. Spranger 
et al. showed that the PD-1 ligand, PD-L1, is expressed 
on melanoma cells with TILs, and indicates that IFNγ 
may increase PD-L1 expression; however, this study 
was performed in mice [83, 84]. These findings were 
validated in humans, where both melanoma tumor cells 
and infiltrating monocytes were shown to express PD-
L1 in association with TILs in PD-L1+ melanomas 
[85]. This study also revealed the association of PD-L1 
expression and TILs with IFNγ expression, which a prior 
human tumor cell line study revealed as an inducer of 
PD-L1 expression [86]. In a mouse model of tamoxifen-
inducible liver cancer, tumor-specific CD8+ T cells, or TST 
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cells, were determined to be dysfunctional early during 
tumorigenesis, suggesting that T cell dysfunction in later 
stages of cancer may be established during the initial 
tumor formation [87]. Furthermore, the study suggested 
that TST cell dysfunction was initially reversible but 
became fixed later on, was likely induced by persistent 
antigen exposure, and appears distinct although similar 
to exhausted T cells from chronic viral infection [87]. 
In another recent study evaluating the metabolic effects 
of T cell exhaustion in virus-infected mice, increased 
PD-1 signaling was associated with impaired glucose 
uptake and metabolism that occurred early during CD8+ 
T cell exhaustion [88]. This metabolic dysfunction was 
suggested to have been partially inhibited by PD-1 
signaling [88]. While the mechanism of exhausted TILs 
within the tumor microenvironment appears to be variable 
and unclear, likely the functional impairment of exhausted 
TILs is reversible but requires further study [69]. 

Reinvigorate T cell function – adoptive T cell 
therapy

In addition to assessing the mechanism of exhausted 
or dysfunctional TILs, determining ways in which to reverse 
and reinvigorate the activity of TILs specific to the tumor, 
without promoting autoimmunity is necessary, especially if 
prognostic indicators for robust immunotherapy or targeted 
kinase therapy response cannot be clearly elucidated. 
The most recent trial involving adoptive cell therapy 
(ACT) revealed no benefit with the addition of total body 
irradiation given to those following the lymphodepleting 
chemotherapy regimen in preparation for ACT [89]. 
These ACT studies have been chronicled to summarily 
include lymphodepleting chemotherapy, administering  
ex vivo activated and expanded TILs, and high dose IL-2, 
resulting in a complete response rate of 24% in metastatic 
melanoma patients and an overall 3-year survival rate of 
51% [90–99]. Interestingly, a pilot trial evaluating the co-
administration of vemurafenib with ACT in metastatic 
melanoma patients revealed a relatively similar safety 
profile as either treatment alone, and favorable clinical 
responses [100]. Although the trial involved a small cohort 
of eleven patients, all of whom received both vemurafenib 
and ACT, the majority of the patients achieved a partial 
response, yet only two patients had complete regression. 
Further studies are needed to evaluate combination therapy 
involving different mechanisms of action, which may prove 
to be more synergistic than either alone. 

To support the synergistic effect of combining ACT 
with other treatment modalities, in particular BRAF or 
MEK kinase inhibitors, prior studies have revealed that 
BRAF kinase inhibition may enhance T cell recognition 
by increasing expression of melanocyte differentiation 
antigens without impairing lymphocyte viability or 
function [101, 102]. Similarly, MEK inhibition has been 
shown to increase tumor antigen expression, but may 

impair lymphocyte proliferation and function without 
affecting viability [103]. While ACT remains a promising 
and evolving therapy that is personalized and patient-
specific, predictive markers or factors that may predispose 
patient tumor cells to acquire resistance to the current 
therapy – BRAF and MEK kinase inhibitors–continues to 
demand investigation. Likely mechanisms to be explored 
include increased CD271 and PD-L1 expression in 
response to aberrant IFNγ release, thereby downregulating 
differentiation markers and impairing CTL activity, or 
alternatively, kinase signaling pathway reactivation–either 
through MAPK or PI3K pathways. 

Potential biomarkers of resistance

Markers predictive of resistance, recurrence, 
and prevention of resistance would effectively redirect 
treatment towards combination therapy as first-line, 
ideally for patients in previously untreated but invasive 
disease, and not limited to those with advanced or 
unresectable melanoma. New biomarkers may even be 
used as new targets for combination therapy. A recent 
study evaluating potential biomarkers for response to 
treatment was conducted in metastatic melanoma patients 
treated with anti-CTLA-4 followed by anti-PD-1 therapy, 
using tumor biopsies at specific time points before and 
during treatment [104]. Response to therapy was defined 
as either with no radiographic evidence, stable disease, or 
decreased tumor volume, using the Response Evaluation 
Criteria in Solid Tumors (RECIST) criteria [16, 104]. 
The study demonstrated a higher density of CD8+ T 
cells present early during treatment in those tumors that 
responded to anti-CTLA-4, despite the lack of biomarkers 
clearly identified prior to treatment [104], although a prior 
study has shown a higher number of PD-1 and PD-L1 
expressing cells too [105]. In those that responded to anti-
PD-1 therapy, they found an increased expression of CD8, 
CD4, CD3, PD-1, PD-L1, and Lag3 early during treatment 
[104]. While it has been previously published that anti-
CTLA-4 or PD-1 monotherapy induces infiltration by 
TILs [105–108], this study suggests that CD8+ T cells 
infiltrating the tumor before therapy are particularly 
correlated with tumor response during therapy. In 
conjunction with a prior study evaluating response to anti-
PD-1 therapy [105], CD8+ T cell density may be useful in 
predicting response to either anti-PD-1 [104, 105, 108] or 
CTLA-4 therapy [107], and reduced expression of CD8, 
PD-1, and PD-L1 despite therapy may correlate with 
disease progression [105]. 

Ideally, a panel of biomarkers to indicate T cell 
dysfunction within the tumor microenvironment, or 
markers on melanoma cells specific to therapy resistance 
would be best for analyzing these states while accounting 
for variations in any one marker alone. These may include 
markers examining the T cell exhaustive state on TILs, 
such as CTLA-4, PD-1, TIM-3, and LAG-3. Markers on 
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melanoma cells include PD-L1 and CD271 (Figure 1). 
The limitations to using a panel of biomarkers include 
the method by which to determine the expression of these 
markers efficiently. These markers are not ubiquitously 
expressed in tumor tissue or TILs, and may require 
larger samples to identify isolated areas of expression. 
Furthermore, while a panel of markers may be able to 
expand the number of possible markers expressed in 
a given area of tumor tissue, CD8+ T cells are likely to 
be in close proximity to the PD-1+ and corresponding 
PD-L1+ expressing cells in both the tumor and invasive 
margin [105]. This may likely extend to other proposed 

biomarkers involved in immune inhibition, exhaustion, or 
dysfunction as well.

Future immunotherapy combinations

To add to the current and ongoing research into 
potential biomarkers to predict responsiveness to therapy 
and mechanisms of response to therapy, mechanisms 
and predictors of resistance must also be considered. 
Treatment approaches that target different aspects 
of the “cancer-immunity cycle” [109] which may be 
dysfunctional are promising. These targets include 

Figure 1: Targeted and immunotherapy against immune inhibitory receptors and resistance mechanisms. Immune 
inhibitory receptors and their ligands are paired as shown. Neurotrophins and nerve growth factors (NGF) bind to CD271 (p75NTR), whose 
expression can be induced under conditions of stress, resulting in downstream signaling pathways promoting survival, dedifferentiation, 
tumorigenesis, plasticity, metastasis, and the suppression of T cell activation. Transforming growth factor-α (TGFα), epidermal growth 
factor (EGF), and KIT ligand (stem cell factor or STEEL) can bind to a receptor tyrosine kinase (RTK), such as the EGF receptor (EGFR) 
or KIT receptor (c-KIT receptor or CD117). This promotes the activation of either the MAPK pathway or PI3K/AKT pathway. Kinase 
inhibitors can induce mutations in components of either pathway, as shown by green arrows. These induced mutations then promote the 
activation of downstream signaling, bypassing the targeted inhibition and resulting in the phosphorylation of microphthalmia-associated 
transcription factor (MITF). Expression of MITF leads to differentiation and pigmentation (via tyrosinase activity) as well as the proliferation 
and survival of melanocytes (through the upregulation of Bcl2). Activation of these pathways also promotes invasion and metastasis in 
melanoma tumor cells. Tim3 (HAVCR2) forms a heterodimer with CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule) 
inducing T cell inhibition, and also binds its ligand, Galectin 9 to then suppress T helper cell type 1 (Th1) function and induce cell death.
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factors within the tumor microenvironment that may 
modulate the T cell immune response against the tumor, 
or immune checkpoint inhibitors expressed on either T 
cells or tumor cells that may contribute to both resistance 
and T cell dysfunction in combination [110, 111]. New 

and effective therapy combinations are likely to be 
elucidated in the many ongoing clinical trials (Table 1). 
These studies either preemptively prevent resistance 
by combining a kinase inhibitor with immune inhibitor 
therapy or treat refractory patients with therapy tailored to 

Table 1: Completed and active clinical trials for combination therapy in metastatic melanoma*
Regimen Phase Status Sponsor NCT identifier

Ipilimumab and Dabrafenib +/− 
Trametinib I Completed GSK NCT01767454

Durvalumab (anti-PD-L1) and 
Trametinib +/− Dabrafenib I Active, not 

recruiting Med Immune NCT02027961

Pembrolizumab + Dabrafenib + 
Trametinib vs Pembrolizumab + 
Dabrafenib or Trametinib

I/II Recruiting Merck NCT02130466

Nivolumab + Trametinib +/− 
Dabrafenib II Recruiting MD Anderson NCT02910700

Atezolizumab (anti-PD-L1) and 
Vemurafenib +/− Cobimetinib 
(MEK inhibitor)

I Active, not 
recruiting Genentech NCT01656642

Atezolizumab (anti-PD-L1) +/− 
Vemurafenib and Cobimetinib 
(MEK inhibitor)

III Recruiting Hoffmann-La 
Roche NCT02908672

Encorafenib (RAF inhibitor) and 
Binimetinib (MEK inhibitor) until 
progression then + Ribociclib 
(CDK4/6 inhibitor) or FGFR 
inhibitor or PI3K inhibitor or 
Capmatinib (c-MET inhibitor)

II Active, not 
recruiting Array BioPharma NCT02159066

Ipilimumab +/− Nivolumab after 
progression or relapse post-anti-
PD-1

II Recruiting Memorial Sloan 
Kettering NCT02731729

Vemurafenib + ACT I Terminated NCI NCT01585415
ACT +/− Pembrolizumab II Recruiting NCI NCT02621021
ACT using autologous T cells with 
retrovirally transduced TCR I Recruiting Loyola University NCT02870244

Pembrolizumab +/− T-VEC III Recruiting Amgen NCT02263508
IDO inhibitor and Ipilimumab or 
Pembrolizumab or Nivolumab I/II Recruiting NewLink Genetics NCT02073123

Pembrolizumab +/− Epacadostat 
(IDO inhibitor) III Recruiting Incyte NCT02752074

CD40 agonist with Pembrolizumab I/II
Recruiting 
begins May 
2017

MD Anderson NCT02706353

Pembrolizumab + Intratumoral 
adenovirus encoding chimeric 
CD40L

I/II Not yet 
recruiting MD Anderson NCT02719015

Autologous T cells expressing 
c-MET chimeric antigen receptors I Recruiting University of 

Pennsylvania NCT03060356

*NCT = ClinicalTrials.gov number; Refs = references associated with study; GSK = GlaxoSmithKline; ACT = adoptive  
cell therapy; NCI = National Cancer Institute; TCR = T cell receptor; T-VEC = Talimogene laherparepvec; 
IDO = indoleamine 2,3-dioxygenase; CDK4/6 = cyclin-dependent kinases 4 and 6; FGFR = fibroblast growth factor receptor;  
PI3K = phosphatidyl-inositol-3 kinase; c-MET = tyrosine protein kinase Met or hepatocyte growth factor receptor encoded 
by MET gene [119].
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the tumor’s resistance mechanism. A few trials evaluating 
combination immunotherapy and targeted kinase therapy 
include treating with ipilimumab, pembrolizumab, or 
an anti-PD-L1 antibody with BRAF and MEK kinase 
inhibitors. The BRAF kinase inhibitor vemurafenib is also 
being evaluated with adoptive cell therapy in one trial, 
while another is pairing vemurafenib with an anti-PD-L1 
antibody. Two studies are currently recruiting those who 
relapse or progress. One study is examining progression 
after BRAF kinase therapy then specifically tailoring 
subsequent therapy to the tumor’s resistance mechanism, 
either with a cyclin dependent kinase inhibitor, fibroblast 
growth factor receptor (FGFR) inhibitor, PI3K inhibitor, 
or c-MET inhibitor (NCT02159066). The other study 
is comparing ipilimumab with or without nivolumab in 
those who relapsed after anti-PD-1 therapy. Another 
two studies are soon to begin recruiting patients to boost 
the costimulatory interaction between CD40 on APCs 
and CD40 ligand (CD40L) on activated T cells. One 
study will evaluate the effect of a CD40 agonist with 
pembrolizumab. The other study will use an adenovirus 
encoding a chimeric CD40L that is injected into the 
tumor directly. Interestingly, a Phase I trial is currently 
recruiting metastatic melanoma patients for treatment 
with patient T cells electroporated with RNA to express 
c-Met specific chimeric antigen receptors. More ongoing 
trials  include pembrolizumab with or without T-VEC, 
ACT with or without pembrolizumab, indoximod (the 
indoleamine 2,3-dioxygenase inhibitor with a role in 
controlling inflammation and T cell tolerance [112]) with 
either pembrolizumab, ipilimumab, or nivolumab, and 
many others [17]. 

Concluding remarks

The treatment of patients with metastatic melanoma 
has thus experienced huge progress with the use of 
molecular targeted inhibitors and immunotherapy. 
Recently published results of the Sunbelt Melanoma 
Trial revealed no survival benefit for adjuvant high dose 
interferon in those with a single positive sentinel lymph 
node (Stage III), whether they underwent complete lymph 
node dissection alone or with interferon therapy [113]. 
Despite the mixed and controversial results of studies 
evaluating the efficacy of high dose interferon therapy 
as a method to induce an effective immune response 
[114–118], the current trend towards combination 
immunotherapy appears much more promising. While 
targeted inhibitors can be effective initially, many patients 
relapse within one year. Immunotherapy, in the form of 
antibodies against specific tumor antigens to promote 
immune recognition and response, shows sustained 
progression-free survival and even complete recovery in 
many patients. Mechanisms of resistance in those patients 
who do not respond to drug therapy, or who respond but 
later progress, are largely unknown but are of utmost 

importance to reveal in order to define better treatment 
strategies for optimal patient-specific precision medicine. 
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