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ABSTRACT
In this work high throughput technology and computational analysis 

were used to study two stage IV lung adenocarcinoma patients treated with 
standard chemotherapy with markedly different survival (128 months vs 6 
months, respectively) and whose tumor samples exhibit a dissimilar protein 
activation pattern of the signal transduction. Tumor samples of the two 
patients were subjected to Reverse Phase Protein Microarray (RPPA) analysis 
to explore the expression/activation levels of 51 signaling proteins. We 
selected the most divergent proteins based on the ratio of their RPPA values 
in the two patients with short (s-OS) and long (l-OS) overall survival (OS) 
and tested them against a EGFR-IGF1R mathematical model. The model with 
RPPA data showed that the activation levels of 19 proteins were different in 
the two patients. The four proteins that most distinguished the two patients 
were BADS155/136 and c-KITY703/719 having a higher activation level in 
the patient with short survival and p70S6S371/T389 and b-RAFS445 that 
had a lower activation level in the s-OS patient. The final model describes 
the interactions between the MAPK and PI3K-mTOR pathways, including 
21 nodes. According to our model mTOR and ERK activation levels were 
predicted to be lower in the s-OS patient than the l-OS patient, while the AMPK 
activation level was higher in the s-OS patient. Moreover, KRAS activation was 
predicted to be higher in the l-OS KRAS-mutated patient. In accordance with 
their different biological properties, the Moment Independent Robustness 
Indicator in s-OS and l-OS predicted the interaction of MAPK and mTOR and 
the crosstalk AKT with p90RSK as candidates to be prognostic factors and 
drug targets.

                                                                           Case Report
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INTRODUCTION

The identification of druggable driver mutations and 
rearrangements (e.g., EGFR mutations, ALK, ROS1 and 
RET-fusions) routinely detected in approximately 15% 
of NSCLCs has dramatically changed the therapeutic 
approach for lung adenocarcinoma in the last ten years. 
However, most lung adenocarcinomas are still treated 
with standard chemotherapy often showing an opposite 
behavior in terms of treatment efficacy and survival. 
Therefore, a better understanding of the multiple defects 
in signaling pathways, that are dysregulated in these non-
oncogene addicted NSCLC and play a critical role in 
their neoplastic phenotype, has the potential to improve 
outcomes. An important goal of the reverse phase protein 
array (RPPA), a high throughput proteomic technique, 
is to provide a map of the signaling pathways involved 
in cancer survival and progression that are dysregulated 
in tumor cells. These aberrations could identify novel 
predictors of response or identify novel targets for 
therapy [1, 2].Since protein profiling can quantify post-
translational modifications (e.g., such as the receptor 
tyrosine kinases phosphorylation status) that are intimately 
linked with activation of signaling proteins, signaling 
network analyses are an important addition to other 
molecular profiling techniques such as gene expression 
analysis. The RPPA has been successfully used in NSCLC 
as well as in other cancers to identify signaling pathway 
abnormalities, pharmacodynamic markers and proteins 
associated with therapeutic resistance [3-6]. Cancer 
systems biology studies complex interaction networks to 
identify biomarkers of response and to understand drug 
resistance along with the effect of combination therapies. 
It integrates patient or laboratory-based -omics data into 
robust predictive models [7]. The data obtained with high 
throughput platforms can be used to create bioinformatics 
models that can then be used to analyze biological data 
of a different nature [8]. In this study, we combined 
RPPA and computational analysis of the EGFR-IGF1R 
pathways to study two stage-IV lung adenocarcinoma 
patients treated with standard chemotherapy with marked 
differences in survival (128 months vs 6 months from 
diagnosis) and whose tumor samples exhibit a distinctive 
signal transduction pattern. We integrated RPPA data with 
a mathematical model previously generated to describe 
key signaling pathways in NSCLC using robustness 
analysis as a quantitative measurement indicating the 
cell ability to maintain its functions against internal and 
external perturbations. Here we present results that might 
be of great value though they are derived from the analysis 
of two cases with divergent behavior.

RESULTS

Case presentation

Case 1. A 67-year-old never smoker woman 
with a KRAS-mutated (Gln61His), EGFR wild-type 
(WT), PI3KCA WT stage IV [T3N2M1a TNM v.7.0] 
lung adenocarcinoma, diagnosed in March 2006 and 
an OS of 128 months (long survival: l-OS) on standard 
chemotherapy treatment. Her clinical course is described 
in Figure 1A. 

Case 2. A never smoker 72-year-old woman 
diagnosed in June 2012 with stage IV [cT3N2M1a 
TNM v.7.0] lung adenocarcinoma (video-thoracoscopic 
biopsies) with the molecular phenotype being EGFR 
WT, KRAS WT, BRAF MUT (V600E), ALK negative, 
ROS1 negative, RET negative. Her OS was 6 months 
from diagnosis (short survival; s-OS) with massive 
systemic disease progression after 3 cycles of first-line 
chemotherapy with cisplatin plus pemetrexed, sudden 
worsening of ECOG Performance Status (PS) and death 
due to disease progression in November 2012 (Figure 1B).

RPPA and computational analysis

RPPA result analysis showed that 20 endpoints 
(active sites and/or total proteins) were differently 
activated in the two patients. Among these, BAD 
S155/136 and c-KIT Y703/719 proteins had higher 
activation levels in the s-OS patient while p70S6 S371/
T389 and b-RAF S445 proteins had lower activation levels 
in the s-OS patient (Table 1 and Figure 2A heat map). The 
computational model included 21 relevant proteins (Figure 
2B). Thirteen proteins were in our previous mathematical 
model [9] and 8 proteins were added in the pathways 
using both literature information and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) Pathway Database 
(Table 2 and Section 1 in Supplementary Material) [10]. 
Following the flow diagram in Figure 3A, calibration 
algorithm, we used BAD, c-KIT, p70S6 and b-RAF to 
personalize the general model of the patient with s-OS 
and l-OS, respectively. The calibration procedure based 
on the Conditional Robustness Algorithm (CRA) [11] 
and Moment Independent Robustness Indicator (MIRI) 
(Figure 3B) produced 10 parameters that had MIRI index 
higher than the cut-off threshold (Box plot in Figure 4, 
green threshold). In the validation process (Figure 3A), 
we fixed the 10 parameters to fit the RPPA data using 
their specific induced probability density function (pdf) 
tails for s-OS and l-OS patients, respectively (Figure 
5 and Table S7 in Supplementary Material). The s-OS 
patient and the l-OS patient personalized models were 
simulated in silico and MIRIs for all 19 nodes versus all 
non-fixed parameters were generated. The heat map in 
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Table 1: Antibodies measured in the two cases. 
Catalog Number Antibody Company Dilution l-OS (a.u.) s-OS (a.u.) s-OS/l-OS

9297 BAD (S155)* Cell 
Signaling 1:100 0.00 15994.50 8.55**

3073 c-Kit (Y703)* Cell 
Signaling 1:50 9339.43 33189.87 3.55

4181 AMPKBbeta1 (S108)* Cell 
Signaling 1:50 7072.72 20090.45 2.84

3391 cKit (Y719)* Cell 
Signaling 1:100 13042.91 26635.48 2.04

4795 ErbB4/HER4 (111B2)* Cell 
Signaling 1:50 18196.78 34200.64 1.88

9501 Caspase-9 cleaved (D330)* Cell 
Signaling 1:50 16848.22 30031.45 1.78

9661 Caspase-3. cleaved (D175)* Cell 
Signaling 1:50 8769.20 15599.59 1.78

3051 LKB1 (S428) * Cell 
Signaling 1:100 22925.38 40538.19 1.77

44-792 EGFR (Y1148)* Invitrogen 1:100 15214.44 25848.29 1.70

9121 MEK1/2 (S217/221)* Cell 
Signaling 1:500 43914.49 67507.90 1.54

9295 BAD (S136)* Cell 
Signaling 1:50 17890.05 24343.02 1.36

2101 Src family (Y416) Cell 
Signaling 1:200 31571.17 42192.58 1.34

9427 c-Raf (S338)* Cell 
Signaling 1:200 28001.12 36680.49 1.31

44-1100 PRAS40 (T246) BioSource 1:1000 45706.67 59874.14 1.31

9455 4E-BP1 (T70) Cell 
Signaling 1:200 58104.61 70262.95 1.21

3024 IGF-1 Rec (Y1135/36)/Insulin Rec 
(Y1150/51)*

Cell 
Signaling 1:500 20702.29 23860.98 1.15

9181 Elk-1(S383) Cell 
Signaling 1:100 20743.74 23388.52 1.13

2235 EGFR (Y992)* Cell 
Signaling 1:50 38177.45 41772.79 1.09

9491 Caspase-7. cleaved (D198)* Cell 
Signaling 1:50 32532.68 33860.36 1.04

34-8800 c-Kit (CD117)* Zymed 1:500 31888.47 30333.25 0.95

2808 Survivin (71G4) Cell 
Signaling 1:100 21720.25 20373.70 0.94

07-018 p70S6 Kinase (T412)* Upstate 1:500 12848.73 11684.29 0.91

3597 eIF2alpha (S51) Cell 
Signaling 1:500 4514.28 3873.83 0.86

2926 Cyclin D1 (G124-326) Cell 
Signaling 1:100 18958.36 15677.78 0.83

2386 IRS-1 (S612) Cell 
Signaling 1:200 25591.09 21036.21 0.82

2827 Bcl-2 (S70) Cell 
Signaling 1:50 38948.66 30638.11 0.79

9211 p38 MAP kinase (T180/Y182)* Cell 
Signaling 1:100 35954.15 28001.12 0.78

44-794 EGFR (Y1173)* Invitrogen 1:100 18901.57 14472.42 0.77

2632 Histone Deacetylase 3 (HDAC3) Cell 
Signaling 1:1000 8358.21 6173.37 0.74

9251 SAPK/JNK (T183/Y185) Cell 
Signaling 1:100 66171.19 47098.68 0.71

4431 a-Raf (S299)* Cell 
Signaling 1:100 23623.56 16613.99 0.70
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2971 mTOR (S2448)* Cell 
Signaling 1:100 25336.48 17729.76 0.70

9331 GSK-3alpha/beta (S21/9) Cell 
Signaling 1:1000 56954.03 39735.50 0.70

3736 TNF-R1 (C25C1) Cell 
Signaling 1:50 9246.50 5302.85 0.57

9451 4E-BP1 (S65) Cell 
Signaling 1:50 27173.57 14559.52 0.54

9205 p70S6 Kinase (T389)* Cell 
Signaling 1:100 42192.58 20952.22 0.50

4656 Cyclin A (BF683) Cell 
Signaling 1:50 33189.87 16171.41 0.49

9761 Caspase-6 cleaved (D162) Cell 
Signaling 1:50 23155.79 10938.02 0.47

2772 Bax Cell 
Signaling 1:200 14016.64 6130.30 0.44

9134 Stat3 (S727) Cell 
Signaling 1:100 64215.49 25591.09 0.40

2232 EGFR* Cell 
Signaling 1:100 60475.90 23155.79 0.38

9101 ERK 1/2 (T202/Y204)* Cell 
Signaling 1:1000 35242.23 13160.82 0.37

9208 p70S6 Kinase (S371) * Cell 
Signaling 1:50 8324.85 2855.49 0.34

sc-23950 Tubulin. alpha acetylated (6-11B-1) SantaCruz 1:200 32208.97 9595.02 0.30

2696 b-Raf (S445)* Cell 
Signaling 1:50 25336.48 6075.38 0.24

2772 Bak Cell 
Signaling 1:200 4289.82 850.65 0.20

sc-32793 NQO1 SantaCruz 1:200 12456.53 2109.06 0.17
610203 Cox-2 BD 1:200 41357.13 6136.44 0.15
SPA-894 Heme Oxygenase 1 Stressgen 1:500 45399.93 5084.75 0.11

3104 Smad2 (S245/250/255) Cell 
Signaling 1:100 33523.44 3203.50 0.10

2105 Src (Y527) Cell 
Signaling 1:200 36680.49 0.00 0.00

Table 2: List of the proteins from model [9], from KEGG and protein excluded from the model.
Proteins from model [9] Proteins from KEGG Proteins excluded from the model

EGFR ERBB4 SMAD2
IGF1R cKIT COX2
SOS CASP NQO1
p90RSk BAD BAK
RAS LKB1 Tubulin-alpha-acetylated
RAF AMPK STAT3
MEK p70S6k Heme-Oxygenase1
ERK
RasGAP
RafPP
PP2A
PIK3
Akt

The records with * are the antibodies used in the model that are related to the EGFR-IGF1R model [9] according to KEGG 
Pathway Database.
* are the antibodies included in the mathematical model 
** ratio is in log10 scale
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Figure 1: Clinical course, systemic and loco-regional treatment of two cases. A. Case 1 with stage at diagnosis of lung 
adenocarcinoma IV [T3N2M1a TNM ver 7.0],KRAS-mutated (Q61H). From April to August 2006: six courses of cisplatin plus gemcitabine 
obtaining partial remission (PR). From January 2007 to September 2009: second line chemotherapy with carboplatin plus pemetrexed for 12 
cycles followed by pemetrexed maintenance for 9 cycles obtaining PR after 3 courses followed by radiological stability (SD). In April 2008: 
stereotactic radiosurgery at primary lesion (left lower lobe: 39 Gy total dose). In January 2009: palliative radiotherapy at D3 (30 Gy total 
dose). From December 2011 to April 2014: third line chemotherapy with pemetrexed for 46 cycles. From May 2014 to July 2014: 3 courses 
of carboplatin plus gemcitabine with progression disease (PD). In February 2015: PD with multiple lung, liver and bone lesions but very 
good performance status (PS). Re-biopsy of the right lower lobe lesion confirming KRAS-mutated (Q61H) adenocarcinoma. From March to 
June 2015: 4 courses of docetaxel plus gemcitabine obtaining a PR. From July to September 2015: 5 doses of nivolumab. From September 
to November 2016 (date of death): worsening of PS, received best supportive care only. B. Clinical course and systemic treatment of case 
2: stage at diagnosis of lung adenocarcinoma IV [cT3N2M1a TNM ver 7.0] (video-thorascopic biopsie) with the molecular phenotype 
being EGFR WT, KRAS WT, BRAF MUT (V600E), ALK negative, ROS1 negative, RET negative. From June to August 2012: 3 cycles of 
first line chemotherapy with cisplatin plus pemetrexed with massive systemic disease progression, sudden worsening PS and death for PD 
in November 2012.

Figure 2: RPPA data and model pathways. A. RPPA data proteins ratio of s-OS patient vs l-OS patient. B. Protein pathways used in 
the computational analysis: violet nodes are new nodes added to the previous model [9] using RPPA data.
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Figure 4 shows the difference between the MIRI of the 
s-OS patient and l-OS patient. The higher MIRI indicates 
higher robustness of the network proteins. The overall 
robustness of the s-OS patient was also higher than the 
l-OS patient. The dendrogram in Figure 4 clustered the 
proteins that mainly contribute to the higher robustness 
of the s-OS patient. These proteins were represented with 
two main interactions between proteins included in the 
mTOR and MAPK cascades, namely AKT and p90RSK 
pathways (Figure 5). We used the endpoints ERK, 
AMPK and mTOR, having higher closeness centrality 
(CC) and eccentricity (E) in the pathway to validate the 
personalized models (Green nodes in Figure 5 and Section 
3 in Supplementary Material). We generated in silico 
measures of the proteins BAD, c-KIT, p70S6 and b-RAF 
and of the proteins ERK, AMPK and mTOR used for the 
calibration and validation, respectively. Figures 6 and 7 
show the conditional pdfs for the in silico measures of 
the evaluation functions that are the area under the curve 
of the chosen proteins. These evaluation functions are a 
computational index of the protein activation levels. The 
model generated the expected distributions for the proteins 
BAD, c-KIT, p70S6 and b-RAF (Figure 6). Furthermore, 
the model predicted their behavior according to RPPA 
data: mTOR and ERK protein levels were lower in the 
s-OS than in the l-OS patient, while AMPK protein level 
was higher in the s-OS than in the l-OS patient as seen in 
the original data (Figure 7 green boxes). Moreover, the 
model predicted higher expression levels of KRAS in 
the l-OS patient who was found to have a KRAS somatic 
mutation in her tumor sample (Figure 7 red box).

DISCUSSION

This work combined high throughput proteomic 
analysis, namely RPPA, and computational analysis to 
study the complex signaling network of two stage IV 
(cT3N2M1a) lung adenocarcinoma patients treated with 
standard chemotherapy with an opposite clinical behavior 
in term of OS. The molecular profiling of their tumors 
showed that the l-OS patient was KRAS-mutated (Q61H) 
and the s-OS patient was BRAF-mutated (V600E), but 
neither of them had access to targeted therapy. The RPPA 
was used to calibrate the model in both patients and to 
validate predictions of the model. The main predicted 
information was the higher overall robustness for the s-OS 
patient in all the proteins included in the model. This could 
explain the shorter survival of the s-OS patient whose 
tumor was more aggressive and the signaling network 
had a structurally higher probability to maintain the 
neoplastic phenotype and overcome the effects of standard 
chemotherapy. 

The MIRI applied to each protein in the calibrated 
models were a measure of robustness of the model. The 
proteins in the pathway with higher MIRI were the ones 
that contributed to the overall robustness of the tumor. 
The s-OS had higher MIRIs than l-OS and this can be 
associated with a more adaptable resistance of the cancer 
cells to the therapeutic treatment. Ideally, in the s-OS 
patient only a multi-target treatment could have helped to 
obtain a better response. The higher robustness was within 
two main interactions: the MAPK cascade including 
KRAS, b-RAF, MEK, ERK and LKB1 that interacts 
with mTOR and AKT, BAD and Caspase proteins that 

Figure 3: Validation and calibration flow diagram based on MIRI. A. Flow diagram of calibration and validation algorithm. B. 
An example of the relationship between evaluation function and the Moment Independent Robustness Indicator (MIRI).
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crosstalk with p90RSK [12-14]. While the mTOR and 
MAPK cascade interactions are known to play a relevant 
role in lung cancer cell signal transductions [15], to our 
knowledge the interaction between p90RSK and BAD 
in the anti-apoptotic process has never been described 
and might represent a potential prognostic factor in lung 
cancer. 

The computational model helps to interpret RPPA 
data even when single events are measured. 

In the validation process, the s-OS and l-OS pdf 
of the active proteins were used. The relative values of 
RPPA data in s-OS and l-OS were comparable with the 
relative pdf of s-OS and l-OS generated in silico. If the 
RPPA value of a protein was lower in the s-OS rather than 

Figure 4: Calibration results. Heat map of the difference of s-OS MIRI and l-OS MIRI for all the proteins and parameters after 
calibration. The box plot shows the selected parameters in the calibration procedure according to their MIRI index obtained using the RAF 
c-KIT, p70 and Bad RPPA data.

Figure 5: Robustness features. Blue nodes in the pathways are the proteins used in the calibration procedure to obtain the s-OS patient 
and l-OS patient models. Green nodes are selected to validate the model prediction compared with RPPA data. Red node is the KRAS 
protein not available as RPPA measure but sequenced in both patients. The red circles and the dashed lines in the pathways denote the 
nodes that influence the higher global robustness in the s-OS patient vs the l-OS patient. The fixed parameters in s-OS and l-OS calibrated 
models are related to the signal pathways.
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in the l-OS, we expected the pdf-mean value of the s-OS 
evaluation function to be lower compared to that of l-OS. 

The calibrated models for s-OS and l-OS had 10 
parameters fixed in opposite conditions of the induced 
tails distributions to fit the 4 divergent measured proteins. 
The other 76 parameters were free to move in the 

validation process using 10000 samples for each of 100 
realizations. Fifteen percent of the active proteins in the 
pathway influenced the tumor growth of the two patients 
in opposite ways. The simulations of the calibrated models 
were stable as can inferred from the small variations of the 
distributions among the 100 realizations. Our calibration 

Figure 7: Model predictions. Predicted probability densities for ERK, AMPK, mTOR and KRAS proteins in s-OS and l-OS patients, 
generated fixing 10 parameters and sampling 76 parameters with hypercube of 10000 samples and repeated for 100 different realizations. 
Green and red boxes are related to Figure 5 and are the proteins selected to validate and produce prediction of the models, respectively.

Figure 6: Model calibrated. Calibrated probability densities for Bad, c-KIT, p70 and RAF proteins in s-OS and l-OS patients, generated 
fixing 10 parameters and sampling 76 parameters with hypercube of 10000 samples and repeated for 100 different realizations. Blue boxes 
are related to Figure 5 and are the proteins used to calibrate the two models.
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and validation algorithms were based on only two patient’s 
RPPA data and this could be a critical point of the study. 
It could be solved by collecting data of similar patients 
and performing a statistical analysis to select the most 
divergent proteins. 

The model prediction of KRAS level being higher 
in the l-OS patient, together with the somatic mutation and 
with high ERK activation, could lead to the activation of 
the senescence program of the cancer cells as has been 
validated in human colon adenocarcinoma cancer models 
[16]. The mTOR and ERK protein expression that in RPPA 
data were lower in the s-OS patient than in the l-OS one 
was confirmed with simulations of the calibrated models. 

The nonlinear interactions in the signaling network 
produced complex behaviors and the computational 
approach is crucial to discovering this complexity and 
transferring results to clinical application. The proposed 
method could be used to stratify patients with similar 
clinical pathological tumor classification according to 
the active protein profiles at diagnosis. Using the most 
divergent protein expression among the clusters obtained 
from RPPA data, we can calibrate the network and study 
the pathways associated with the clusters. The use of the 
CRA algorithm in the calibrated networks will predict the 
proteins playing the main roles in cancer robustness and 
these predictions could be used to increase patient survival 
with personalized drug treatments. Our approach could 
be applied to tumors that are genetically similar but have 
different protein profiles. This could be done by using 
RPPA technology that is a high sensitivity system and also 
by using the computational method that has an internal 
control of the distribution stability among independent 
realizations generated in silico. However, when the 
protein expressions of the samples are very similar, our 
methodology is not applicable.

In conclusion, coherently with their different 
biological properties, the Moment Independent 
Robustness Indicator in s-OS vs l-OS patients confirmed 
the MAPK cascade interaction with mTOR and predicted 
new crosstalk of AKT, BAD and Caspase proteins with 
p90RSK that could be a candidate for prognostic factors 
or drug targets.

MATERIALS AND METHODS

Tumor and data collection

Two patients followed at the Medical Oncology 
Department of the S. Maria della Misericordia Hospital 
with a diagnosis of stage IV lung adenocarcinoma having 
a short (s-OS: 6 months) and long (l-OS: 128 months) 
overall survival, respectively, were identified from the 
institutional database. Pathologic data, tumor genotype, 
treatment type, and radiological parameters were 

gathered from retrospective chart extraction. The pilot 
study was approved by the local Ethics Committee and 
was conducted in accordance with ethical principles of 
the latest version of the Declaration of Helsinki. Written 
informed consent for RPPA analysis was obtained from 
the two patients included in the pilot study.

Reverse phase protein microarray

Formalin-fixed, paraffin-embedded (FFPE) tumor 
samples were subjected to Laser Capture Microdissection 
and RPPA analysis to explore the expression/activation 
levels of 51 signaling proteins using a previously 
described protocol [17]. Proteins and phosphoproteins 
were selected based on their involvement in key signaling 
pathways or cellular functions, including the: (1) PI3K/
AKT/mTOR pathway, (2) MAPK pathway, (3) EGFR 
pathway, (4) LKB1 pathway, (5) RAF pathway.

Computational analysis based on RPPA data

Mathematical model

We developed an ordinary differential equations 
(ODEs) model starting from the most relevant proteins 
involved in the signaling pathways studied. Michaelis-
Menten kinetics, mass action law and conservation law 
were combined to write the equations (see Section 1 in 
Supplementary Material). We selected the most divergent 
proteins based on the ratio of RPPA values in the two 
patients (s-OS vs l-OS) and used them to build the ODEs 
model (Table 1, Figure 2A). We included the proteins 
inserted in our pre-existing EGFR-IGF1R mathematical 
model [9] and the pathways were extended using KEGG 
PATHWAY Database combined with a literature revision 
in lung cancer pathways (Figure 2B). The isolated 
proteins were excluded because they did not contribute 
to the model dynamics (Table 2 and Section 1 and 2 in 
Supplementary Material) [10]. 
Model calibration based on conditional robustness

The CRA proposed in [11] was an iterative 
procedure to study the dynamical model robustness 
perturbing the model parameters. CRA is based on the 
probability distribution of the evaluation function and 
MIRI that measures the dissimilarity of pdf tails. The 
evaluation function tails induce for each parameter of the 
model the pdf tails and their dissimilarity is measured 
through the MIRI. As an example, Figure 3B shows the 
induced pdf tails and their MIRI for a node N (proteins) 
that interact with 3 other nodes through the 3 edges 
described in the ODEs with 4 parameters: p1, p2, p3 and 
p4.

The calibration and validation processes are 
presented in the flow chart in Figure 3B. We selected the 
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4 most divergent proteins of s-OS and l-OS RPPA data 
as evaluation functions (Figure 2A) and we performed in 
silico simulations from the hypercube of parameters space 
generating the pdf of the selected proteins. We evaluated 
the MIRI for all parameters using the intersection of the 
evaluation function tails. The calibration process was 
repeated for 10 realizations using 100000 samples for each 
of them (Box plot Figure 4). 

After calibration, we fixed 10 parameters with 
opposite conditions for s-OS and l-OS simulations 
having higher MIRI (Green line in the box plot Figure 
4). We performed a CRA algorithm using as evaluation 
functions all the proteins in the model and we clustered 
the difference of s-OS and l-OS MIRIs to explore the most 
relevant proteins in network robustness (heat map with 
row dendrograms in Figure 4 and Figure 5). We selected 
the network proteins with higher closeness centrality (CC) 
and eccentricity (E) to compare the simulations with RPPA 
data (Green nodes in Figure 5). We checked the calibration 
results comparing the conditional distributions in s-OS and 
l-OS (Figure 6) and we validated the model predictions 
comparing the simulation results and RPPA data (Figure 7 
and Section 3 in Supplementary Material).

The mathematical model and the computational 
analysis were performed using Python programming 
language (Supplementary Data). 
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