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ABSTRACT
Receptor tyrosine kinase AXL (RTK-AXL) is regarded as a suitable target in 

glioblastoma (GBM) therapy. Since AXL kinase inhibitors are about to get approval 
for clinical use, patients with a potential benefit from therapy targeting AXL need to 
be identified. We therefore assessed the expression pattern of Phospho-AXL (P-AXL), 
the biologically active form of AXL, in 90 patients with newly diagnosed GBM, which 
was found to be detectable in 67 patients (corresponding to 74%). We identified 
three main P-AXL expression patterns: i) exclusively in the tumor vasculature 
(13%), ii) in areas of hypercellularity (35%), or iii) both, in the tumor vasculature 
and in hypercellular areas of the tumor tissue (52%). Pattern iii) is associated with 
significant decrease in overall survival (Hazard ratio 2.349, 95% confidence interval 
1.069 to 5.162, *p=0.03). Our data suggest that P-AXL may serve as a therapeutic 
target in the majority of GBM patients.

INTRODUCTION

Malignant gliomas are the most common and most 
aggressive brain tumors due to their highly invasive growth 
pattern, proliferative capacities and heterogeneity [1, 2]. 
Prognosis remains poor despite multimodal aggressive 
therapy with chemotherapy, radiation, and surgery [3, 
4]. Further research focuses on the identification of new 
therapeutic targets [5]. As previously described, the 
receptor tyrosine kinase (RTK) AXL (AXL) displays a 
new promising target in glioma therapy [6, 7]. AXL plays 
role in tumor progression and is involved in epithelial to 
mesenchymal transition (EMT) in different cancer types 
[8-12]. It has been shown that overexpression of AXL and 
its ligand Gas6 in glioblastoma (GBM) tissue is associated 
with reduced time to progression and overall survival time 
in these patients [13]. Experimental inhibition of the AXL 
pathway with dominant negative-mutant glioma cells of 

the AXL receptor (SF126 AXL-DN) results in reduced 
glioma growth and prolonged survival in the orthotopic 
tumor model in mice [14]. Further targeted inactivation of 
AXL with a small molecule inhibitor BMS-777607 leads 
to a significant decrease of tumor cell growth in vitro and 
in vivo due to increased intratumoral apoptosis, impaired 
proliferation, invasion and neovascularization [7].

In fact, several specific AXL inhibitors have recently 
entered clinical trials in combination with selective 
tyrosine kinase inhibitors (Erlotinib: NCT02424617; 
BPI-9016M: NCT02478866) or chemotherapeutics like 
cytarabine (NCT02488408). Furthermore, a monoclonal 
antibody targeting AXL (YW327.6S2) and an AXL decoy 
receptor (GL2I.T) are in preclinical development [12, 15]. 

Since AXL kinase inhibitors are about to get 
approval in clinical phase I and II trails, patients who 
may have a benefit from anti-AXL therapy need to 
be identified. We therefore aimed to investigate the 
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expression profile and pattern of the biologically active 
AXL receptor (P-AXL) in a representative collection of 
patients with newly diagnosed GBM.

RESULTS

Expression pattern of P-AXL

To further extend previous studies, which focused 
on the expression pattern of AXL in cancer and especially 
in glioma tissue [13], we studied the expression pattern of 
the biologically active AXL receptor (P-AXL) in GBM 
tissue in order to identify subgroups of patients suitable 
for future anti-AXL therapy. 

To confirm the specificity of AXL and P-AXL 
staining in human formalin-fixed, paraffin-embedded 
(FFPE) tissue sections (Supplement Figure 1), we used 
normal brain tissue, known to express very low levels of 
AXL [16] as negative control (Supplement Figure 1B). 
Urinary bladder and kidney tissue with known AXL (data 
not shown) and P-AXL expression served as positive 
control (Supplement Figure 1A). On serial histological 
sections, we were able to show that both intracellular AXL 
phospho-sites pTyr691 and pTyr779 were phosphorylated 
in GBM tissue (Figures 1A-1D). The expression pattern 
of P-AXL phosphor-sites pTyr691 and pTyr779 did not 

significantly differ qualitatively and quantitatively within 
the tumor tissue (n = 10, Figures 1A-1D; inserts). Next, 
we tested the specificity of the antibody directed against 
P-AXL via the co-staining of AXL and P-AXL (phosphor-
sites pTyr691 and pTyr779) using immunofluorescence 
(Figures 1E-1L). The overall detection rate of P-AXL 
in GBM tissue was 74% (67 out of 90 patients) in our 
collective. We identified different P-AXL expression 
patterns: i) P-AXL expression exclusively in the tumor 
vasculature (13%, vessel type, Figures 2B, 2D, 2F), ii) 
P-AXL expression in hypercellular areas of the tumor 
tissue (35%, tissue type, Figures 2A, 2C, 2E) - here, tumor 
vessels were immunonegative for P-AXL (Figures 2A, 
2C, 2E; arrows) - and iii) P-AXL expression in the tumor 
vasculature and in hypercellular areas of the tumor tissue 
(52%, Figures 2G, 2H). Previously, we demonstrated an 
antiangiogenic effect of AXL inhibition in vitro and in vivo 
[7]. There, we showed that P-AXL expression is associated 
with the characteristic microvascular proliferation in 
GBMs. In fact, we now can show that P-AXL expression 
occurs either in glomeruloid tufts (Figure 2F; arrowheads) 
or in tubular vessels (Figures 2B, 2D; arrowheads) in 65% 
of patients. 

Prominent microvascular proliferation, cellular 
atypia, necrosis, brisk mitotic activity and highly cellular 
areas (pseudopalisades) are characteristic histopathological 
features of GBM [17]. In fact, 87% of our cases showed 
P-AXL expression in the hypercellular areas. More 

Figure 1: Immunohistochemical evaluation of serial sections of GBM tissue samples revealed the expression of both 
intracellular AXL phospho-sites - pTyr691 (A., C.) and pTyr779 (B., D.) - which were phosphorylated and expressed similarly in the 
tumor tissue. Immunofluorescent labeling of AXL (F., J.) and AXL phospho-site pTyr779 (G., K.) demonstrated colocalization (H., L.) 
of both antigens. Counterstaining was performed with 4’, 6-diamidino-2-phenylindoleI (DAPI; E., I.). (Scale bar: 100 μm A.-D., 20 μm 
A.-D.; inserts), 50 μm E.-L.)
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specifically, focal P-AXL expression was detected in 
66% of the cases (Figures 3A, 3C), while broad P-AXL 
expression was found in 21% of tumor samples (Figures 
3B, 3D). Indeed, P-AXL was frequently expressed in 
tumor cells located in the perivascular zone as well in 
the pseudopalisades (Figures 3A; dashed line), which 
represent highly migratory tumor cells adjacent to hypoxic 
areas [18]. Apart from that, P-AXL was also strongly 
expressed in GBM tissue with a herringbone-like pattern 
(Figure 3D; arrowheads), which was characterized by the 
presence of elongated tumor cells arranged in fascicles 
[10]. The herringbone-like phenotype was observed in 
26 out of 68 GBM samples, which was accompanied 
with strong P-AXL expression in 20 (78%) out of 26 
samples in these areas (detailed information on the P-AXL 
expression pattern is provided in Table 1. Gliosarcomas 
were excluded according to established histologic and 
immunohistological criteria (GFAP, vimentin and reticulin 
staining).

23 out of 90 patients (26%) did not show any 
P-AXL expression in the tumor parenchyma or tumor 
vasculature, while we only identified few patients with 
P-AXL expression exclusively in tubular vessels and 
glomeruloid tufts, but not in the parenchyma (n = 9; 13%).

Cellular distribution pattern of P-AXL

Double immunohistochemical and 
immunofluorescent staining were employed to further 
elucidate the cellular distribution pattern of P-AXL in 
GBM tissue (Figure 4). P-AXL was strongly expressed 
in CD31 positive endothelial cells lining the vascular 
lumens of microvascular proliferation (Figures 4A, 4B, 
4D; arrowheads), in glomeruloid tufts (Figures 4C, 4E; 
dashed line), and partly also in platelet-derived growth 

factor receptor beta (PDGFR-ß) positive pericytes (Figure 
4E; arrowheads). In line with published data, PDGFR-ß 
staining also highlighted glioma cells [19, 20] (Figure 4E; 
arrows) adjacent to glomeruloid tufts (Figure 4E; dashed 
line). In contrast, we detected no clear colocalization of 
P-AXL and α-smooth muscle actin (aSMA), which was 
identified primarily in abluminal cells of microvascular 
proliferation (Figures 4B, 4C, 4D). Whether these aSMA 
positive cells represent a specialized subgroup of pericytes 
or cells with smooth-muscle-cell characteristics remains 
subject of current research and scientific discussion [21, 
22]. Next, we found characteristic, cytoplasmic and 
membrane-accentuated P-AXL staining of glioma cells. 
In fact, P-AXL was strongly expressed by different cell 
subpopulation in GBM as indicated by costaining of 
glial fibrillary acidic protein (GFAP; Figures 4F-4H), 
microtubule-associated protein 2 (MAP2; Figures 4I-4K), 
Nestin (Figures 4L-4N), and Zinc finger E-box-binding 
homeobox 1 (ZEB1, Figures 4O-4Q). 

Outcome

We aimed to investigate whether the different 
tumor expression patterns of P-AXL correlated with the 
patients’ outcome. We did not find statistical significant 
differences in progression-free survival (PFS) and overall 
survival (OS) in the context of global vs. focal P-AXL 
expression (OS: Log rank test, Chi Square, p = 0.21; PFS: 
Log rank test, Chi Square, p = 0.12). To further evaluate a 
correlation of P-AXL staining intensity with the patients’ 
outcome, we graded all immunopositive P-AXL cases 
semiquantitatively as follows: 1+ (weak), 2+ (moderate), 
and 3+ (strong) (Supplement Figures 1G-1I). 32% showed 
weak (1+), 25% showed moderate (2+), and 43% showed 
high P-AXL expression (3+). We observed no statistical 

Table 1: Expression of P-AXL in GBM tissue
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Figure 2: Immunohistochemical double-staining of GBM tissue samples with antibodies against P-AXL (brown) 
and fibronectin (green) revealed three main P-AXL expression patterns. In samples classified as “tissue type”, P-AXL 
expression was mainly seen in areas of hypercellularity (A., C., E.). Tumor vessels which were highlighted by fibronectin staining were 
negative for P-AXL (arrows). Samples classified as “vessel type” showed exclusive P-AXL staining within the tumor vasculature (B., 
D., F.; arrowheads). The third pattern was characterized by P-AXL expression in both, the tumor tissue and vasculature (G., H.). P-AXL 
expression was detected in tubular (B., D., G.; arrowheads) and glomeruloid (F., H.; arrowheads) vascular proliferation. (Scale bar: 50 μm 
A.-D., F.-H.; 20 μm E.).
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significant correlation of staining intensity and survival 
(survival curve comparison of 1+ vs. 2+: p = 0.3038, CI 
0.4874 to 1.090, HR 1.911; survival curve comparison 
of 1+ vs. 3+: p = 0.5389, CI 0.5163 to 3.542, HR 1.352; 
survival curve comparison of 2+ vs. 3+: p = 0.8279, 
CI 0.2800 to 2.077, HR 0.8807). P-AXL expression 
in pseudopalisades or herringbone-like areas was also 
not associated with tumor progression or survival. 
Interestingly, our results demonstrated that simultaneous 
P-AXL expression in the tumor tissue and vessels was 
associated with significant reduced OS, irrespective of 
the staining intensity (Log-rank (Mantel-Cox) Test *p = 
0.0335, HR 2.349, 95% CI 1.069 to 5.162.). The median 
survival was 755 days in those GBM patients exhibiting 
P-AXL expression in hypercellular tumor areas (pattern 
ii) versus 485 days in those with P-AXL expression in 

the tumor vasculature and hypercellular tumor areas 
(pattern iii, Figure 5). Univariate Cox regression analysis 
for outcome relevant parameters such as age, extent of 
surgery, molecular profile (MGMT and IDH1 (R132) 
status) and adjuvant therapy, did not show significant 
differences between the groups (Table 2). Exclusive 
vascular expression (pattern i) or complete absence of 
P-AXL did not have an impact on PFS and OS (data not 
shown).

DISCUSSION

Our study demonstrates for the first time that the 
biologically active form of AXL (P-AXL) can be found 
in 74% of GBM cases, localized either in tumor vessels 
or in hypercellular tumor areas. Furthermore, we are 

Figure 3: The expression pattern of P-AXL in hypercellular areas was further classified as focal (10-50%; A., C.) or diffuse 
(≥ 50%; B., D.). Focal expression was seen e.g. in pseudopalisades (A.; dashed line) or scattered clusters of tumor cells (C.; arrows). 
Other GBM samples demonstrated broad/global P-AXL expression (B., D.) which was pronounced in areas which often showed a typical 
herringbone-like pattern (D.; arrowheads). (Scale bar: 50 μm). 

Table 2: Univariate Cox regression analysis (fisher exact test) of P-AXL protein expression in GBM vessels.
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Figure 4: Immunohistochemical and immunofluorescent double-staining of GBM tissue samples revealed strong P-AXL 
expression in CD31 positive endothelial cells (A., B., D.; arrowheads), no colocalization with aSMA (B., C., D.), and partial 
colabeling with PDGFR-ß positive pericytes (E.; arrowheads) in microvascular proliferation. Glioma cells adjacent to microvascular 
proliferation (dashed lines) showed strong immunopositivity for PDGFR-ß (E.; arrows). P-AXL was further expressed by neoplastic 
glioma cells as noted by colabeling with GFAP (F.-H.; arrowheads), MAP2 (I.-K.; arrowheads), Nestin (L.-N.; arrowheads), and ZEB1 
O.-Q.; arrowheads). (Scale bar: 20 μm A., 50 μm B.-Q.).
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the first to show that P-AXL is strongly expressed in 
pseudopalisades, herringbone-like regions and the tumor 
vasculature of GBM. Also, corresponding expression of 
P-AXL in hypercellular areas and in the tumor vasculature 
was shown to be correlated with significant reduced OS. 
Based on the fact that the majority of GBM cases exhibits 
a broad expression of P-AXL, our data suggests that 
P-AXL may represent a suitable target in the treatment 
of GBM. Our results are also in line with previously 
published data describing high levels of AXL mRNA 
(61%) and AXL protein (55%) in GBM patients [13]. The 
activation of the AXL receptor is known to depend on 
the binding of its ligand Gas6 to the extracellular domain 
of the receptor. Gas6 binding leads to dimerization and 
autophosphorylation of intracellular phosphor-sites of 
the tyrosine kinase receptor AXL [23]. So far, detailed 
information providing evidence which phosphor-sites are 
phosphorylated ligand-dependent or ligand-independent 
are missing [24, 25]. Here, we demonstrate that apart 
from the phosphor-site pTyr779, pTyr691 of AXL is 
also phosphorylated in GBM tissue. The mechanism 
of action is not known yet, but it can be assumed that 
ligand-independent activation may also be involved in 
this process. Gas6 independent activation mechanisms 
such as hemophilic binding of an extracellular domain of 
AXL or dimerization and autophosphorylation of AXL 
or crossphosphorylation of AXL by other receptors like 
EGFR are equally conceivable [26]. Therefore, it may well 
be that exclusive inhibition of the AXL/Gas6 axis, as it has 

been discussed for gliomas and other cancer types [27], 
might not suffice to prevent AXL activation in GBMs. 

Previously, we showed that AXL inhibition by 
a small molecule inhibitor is leading to a significant 
decrease of tumor vessel density and tumor vessel size 
in vitro and in vivo resulting in decreased tumor volume. 
The strong and widespread expression of P-AXL in 
glomeruloid tufts and tubular blood vessels may speak 
in favor that AXL acts as a driver of tumor angiogenesis. 
So far, antiangiogenic approaches in glioma therapy did 
not fulfill expectations [28]. The underlying causes for 
the development of resistance towards antiangiogenic 
therapies are not yet fully understood [29]. Interestingly, 
it has been shown that the activation of the Gas6/
AXL pathway promotes both intrinsic and acquired 
chemotherapeutic resistance [12], including resistance 
to anti-VEGF therapy [30]. Therefore, a combination of 
bevacizumab, a monoclonal antibody that specifically 
recognizes and binds to VEGF, and AXL inhibitors are 
likely to be a tantalizing anti-GBM approach [27, 30-33]. 
Moreover, the anti-invasive effect of anti-AXL treatment 
shown in an orthotopic brain slice invasion assay might 
provide another argument to combine anti-AXL and anti-
VEGF therapy, since invasive growth pattern is another 
known resistance mechanism in antiangiogenic treatment 
failure [30].

Recently it has been shown that AXL is a key 
regulator of the mesenchymal differentiation of GBM 
stem like cells [34]. The role of AXL in epithelial-to-

Figure 5: Kaplan Meier curve showing overall survival in days in GBM patients with P-AXL expression i) exclusively 
in the tumor vasculature, ii) in the hypercelluar tumor tissue, or both iii) in tumor vasculature and hypercellular 
tumor tissue. The overall survival of patients with P-AXL expression in vital tumor tissue and tumor vessels (iii) was significantly 
reduced compared to patients with P-AXL expression in tumor tissue without vascular expression (ii). Log-rank (Mantel-Cox) Test *p = 
0.0335, HR 2.349, 95% CI1.069 to 5.162.
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mesenchymal transition (EMT) has been shown in breast 
cancer, squamous neck cancer and others malignancies 
[11, 12, 35, 36]. The predominant expression of P-AXL in 
herringbone-like areas and pseudopalisades representing 
highly invasive and migratory tumor cells supports the 
idea that AXL might also play a role in EMT in GBM 
[6, 37]. It will thus be of key interest to further evaluate 
the interplay of EMT mediators, e.g. transcription factors 
Twist and Snail with AXL expression [12, 34, 38-40].

In conclusion, we herein show that the majority 
of GBM patients exhibits expression of the biologically 
active form of the tyrosine receptor AXL in distinct parts 
of the tumor, indicating that GBMs might be susceptible 
for anti-AXL therapy. Patients with co-expression of 
P-AXL in hypercellular areas and in tumor vasculature 
may benefit the most from such therapy. Combining AXL 
and VEGF inhibitors might represent a novel approach to 
circumvent therapy resistance. In fact, since there is good 
evidence of concomitant activation of multiple RTKs in 
GBM [41] one can anticipate, that it will be necessary to 
tailor more “personalized” combinations therapies in order 
to overcome therapeutic resistance in GBM.

MATERIALS AND METHODS

Immunohistochemical and immunofluorescence 
procedures

Immunofluorescence and immunohistochemical 
stainings were performed on formalin-fixed, paraffin-
embedded (FFPE) tissue sections according to standard 
procedures. The following primary and secondary 
antibodies were used: polyclonal rabbit anti-GFAP 
(1:2000, Dako), monoclonal mouse anti-CD31 (1:100, 
clone JC70A, Dako), monoclonal mouse anti-MAP2 
(1:10000, clone HM-2, Sigma Aldrich), monoclonal 
mouse anti-α-smooth-muscle actin (aSMA, 1:200, clone 
1A4, Dako), monoclonal mouse anti-Nestin (1:200, 
clone 10C2, Millipore), polyclonal rabbit anti-PDGFR-ß 
(1:10, Santa Cruz), polyclonal rabbit anti-ZEB1 (1:300, 
Sigma Aldrich), polyclonal anti-Fibronectin (1:1000, 
Sigma Aldrich), monoclonal mouse anti-phospho-
AXL (pTyr779) (1:50, clone 713610, R&D Systems), 

Table 3: Patient characteristics
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polyclonal rabbit anti-phospho-AXL (pTyr691) (1:50, 
Sigma Aldrich), monoclonal rabbit anti-AXL C89E7 
(1:100, Cell Signaling), FITC-conjugated donkey anti-
rabbit IgG (1:1000, Dianova, 711-095-152), Alexa 
Fluor® 488-conjugated goat anti-rabbit IgG (1:1000, 
Dianova, 111-545-003), Alexa Fluor® 488-conjugated 
goat anti-mouse IgG (1:1000, Dianova, 115-545-003), 
Cy3-conjugated goat anti-mouse IgG (1:1000, Dianova, 
115-165-003), Cy3-conjugated goat anti-rabbit IgG 
(1:1000, Dianova, 111-165-003), and Cy3-conjugated 
donkey anti-mouse IgG (1:1000, Dianova, 115-165-
146). The immunofluorescence counterstaining was 
performed with VECTASHIELD® Mounting Medium 
containing 4’,6-diamidino-2-phenylindole (DAPI) (Vector 
Laboratories, Burlingame, CA). Immunohistochemical 
staining of FFPE tissue sections (4 μm-thick) was 
performed on a VENTANA Benchmark XT automated 
staining instrument according to the manufacturer’s 
instructions. Slides were de-paraffinized using EZ prep 
solution (Ventana Medical Systems, Tucson, AZ) for 30 
minutes at 75 °C. Antigen retrieval was accomplished 
on the automated stainer using CC1 solution (Ventana 
Medical Systems, Tucson, AZ) for 60 minutes at 95 °C. 
Briefly, primary antibodies were applied and developed 
using the iVIEW DAB Detection Kit (Ventana Medical 
Systems), the Permanent HRP Green Kit (Zytomed 
Systems), and the ultraView Universal Alkaline 
Phosphatase Red Detection Kit (Ventana Medical 
Systems). All slides were counterstained with hematoxylin 
for 4 minutes. Immunohistochemical results of P-AXL 
staining intensity were evaluated semiquantitatively 
by two independent, blinded experts based on the 
predominant staining intensity (H-score) [42], which was 
graded as 0 (negative; Supplement Figures 1C, 1D), 1+ 
(weak; Supplement Figure 1G), 2+ (moderate; Supplement 
Figure 1H), and 3+ (strong; Supplement Figure 1I). 
Omission of primary antibodies as control for nonspecific 
binding of the secondary antibody resulted in absence of 
any labeling. To validate our immunohistochemical and 
immunofluorescence stainings we used different positive 
control tissues fixed and processed in similar manner to 
the test sections and known to contain the target molecule, 
e.g. urinary bladder or kidney. 

Microscopy

Images were recorded by using a fluorescent 
microscope (Zeiss, Obeserver Z1). Following objectives 
were used: 5x EC PlnN, 5x/0.16 DIC0 (resolution: 2.0 
µm), 10x Pln Apo, 10x/0.45 DIC II (resolution: 0.74 µm), 
20x Pln Apo, 20x/0.8 DIC II (resolution: 0.42 µm). We 
use a HAL 100 and detectors for DAPI, GFP and DSRed. 
Pictures were processed and recorded with Image software 
Axio Vision Rel. 4.8. 

Histopathological grouping and analysis

GBM tissue sections were analyzed according to 
their P-AXL expression profile. Analysis was focused 
on the expression of P-AXL in the histopathological 
key features of GBM such as microvascular hyperplasia 
characterized by glomeruloid tufts and tubular vessels 
and hypercellular regions including pseudopalisades and 
herringbone-like areas [18]. Hypercellular regions were 
defined as clusters of highly malignant GFAP-positive 
tumor cells mostly crowded along the edges of necrotic 
zones and characterized by prominent eosinophilic 
cytoplasm, marked nuclear atypia and elevated mitotic 
activity [43].

The following P-AXL expression patterns were 
detected: i) P-AXL expression exclusively in the tumor 
vasculature, ii) P-AXL expression in hypercellular areas 
of the tumor tissue, and iii) P-AXL expression in the 
tumor vasculature and in hypercellular areas of the tumor 
tissue. In pattern i) P-AXL expression was observed in 
vascular proliferates like glomeruloid tufts and tubular 
vessels. Within the GFAP-positive, hypercellular regions, 
the presence of P-AXL in herringbone-like areas or 
pseudopalisades was documented. The expression pattern 
of P-AXL within hypercellular regions was further 
classified as focal (10-50%) or diffuse (≥50%) and was 
independently assessed by two different, blinded experts. 

Patient data

Clinical data were evaluated under an institutional 
review board-approved protocol and de-identified for 
patient confidentiality. We included 90 patients, who have 
been treated in our institution in the year 2012-2016. GBM 
diagnosis was confirmed by at least two neuropathologists. 
Age, tumor localization, Karnofsky performance status 
(KPS), O(6)-methylguanine-DNA methyltransferase 
(MGMT) status, isocitrate dehydrogenase 1 (IDH1 
(R132)) mutation, extend of resection, adjuvant therapy 
(irradiation dosage and type/duration of chemotherapy 
treatment) and outcome data were recorded. Outcome 
measures were assessed with progression free survival 
(PFS) and overall survival (OS) in month according to 
RANO criteria [44]. Prognostic relevant factors like 
age, MGMT status, IDH status und extend of resection 
were taken into account for survival analysis. The 
extend of tumor resection was determined by measuring 
the contrast-enhancing residual tumor volume in mm3 
on T1 subtraction MRI imaging using iPlan Net 3.0.0, 
BrainLAB AG, Feldkirchen, Germany. The extend of 
resection was defined as gross total resection (GTR) with 
residual tumor volume less than 1 cm3 according to Sanai 
et al. [45], partial resection (PR) with more than 1 cm3 
residual tumor volume or biopsy in cases of stereotactic or 
open tumor biopsy. IDH1 (R132) mutation was assessed 
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with immunohistochemistry (IHC). MGMT promoter 
methylation status was assessed based on previously 
published methods with methylation-specific polymerase 
chain reaction (MSP) and pyrosequencing (PSQ) [46]. 
Patient characteristics are displayed in Table 3. 

Statistical analysis

Statistical analysis was performed using GraphPad 
Prism 5.0c, GraphPad Software Inc, La Jolla, USA. For 
statistical test we used Student´s T-Test and one-way 
ANOVA combined with Bonferroni´s multiple comparison 
test. Survival end points matched to date of death or 
follow-up end points. Patients who were alive at the follow 
up date were censored for survival analyses. Kaplan-Meier 
curves were plotted to estimate PFS and OS as a function 
of P-AXL expression. Univariate Cox regression analysis 
was used to determine whether prognostic factors like 
age, extent of surgery, adjuvant therapy, and MGMT or 
IDH1 (R132) status were differentially distributed in the 
compared groups. Group differences were assessed with 
log rank test for trend (Chi-square). Significance level was 
set at p < 0.05.
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