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Latest progress in tyrosine kinase inhibitors
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ABSTRACT:
Here we discuss the latest progress in development of some kinase inhibitors such 

as inhibitors of c-MET, LIM and Bcr-Abl kinases. Importantly, many oncogenic kinases 
signal via the mTOR pathway, suggesting a common target for drug combinations. 

Met tyrosine kinase receptor signaling is activated 
by its ligand, hepatocyte growth factor/scatter factor 
(HGF/SF) [1, 2]. MET signaling in turn increases 
glycolysis, oxidative phosporylation, and tumor blood 
volume  [3]. It was shown that HGF/SF-activated Met 
increased Ras activity, Erk phosphorylation and cell 
motility [3]. Tang et al. compared the demographic 
and clinical characteristics of ovarian cancer patients 
with MET altered patients and their response to c-Met 
inhibitors [4]. MET nonsynonomous nucleotide variations 
and amplification occurred in 7.4% and 3.5% of patients, 
respectively. MET variations were observed only in 
white women with high-grade ovarian tumors, whereas 
amplifications were detected in both black and white 
women with high-grade serous ovarian primary tumors. 
MET alterations have been associated with resistance to 
therapy [5]. Thus, patients exhibiting a MET alteration 
did not achieve an objective response by a c-Met inhibitor 
therapy [4]. Preclinical experiments have shown that the 
simultaneous use of two inhibitors anti-Met and anti-
EGFR significantly enhance the effectiveness of tumor 
growth inhibition [6]. C-MET amplified subpopulation of 
cells existed prior to anti-EGFR treatment supporting idea 
co-treatment of patients with Met and EGFR therapies [7]. 
MET amplification in colorectal carcinomas associated 
with resistance to cetuximab and panitumumab [8]. Taken 
together these results provide a strong rationale for the use 
of Met inhibitors to overcome drug-resistance to EGFR 
therapies.

Importantly, activators of c-MET are secreted 
by adipose-derived mesenchymal stem cells, which 
exacerbate oncogenic behaviour of c-Met-expressing 
breast cancer cells, creating an inflammatory 
microenvironment, thus increasing tumor growth and 
angiogenesis. c-Met expression is a predictive factor of 

cancer recurrence after autologous fat graft in post-surgery 
breast cancer patients [9].

Recently nuclear factor κ-B kinase (IKK) was 
identified a novel signaling mechanism for the regulation 
of mTORC2. A new inhibitor of IKK Bay 11-7082 interacts 
with Rictor and regulates the activity complex mTORC2. 
Rictor phosphorylation at T1135 was also inhibited 
by the IKK inhibitor Bay 11-7082 [10]. IKK regulates 
mTORC2 activity including phosphorylating AKT at 
the serine 473 and actin cytoskeleton reorganization, 
which is controlled by LIM kinases. The LIM kinases are 
promising oncotarget in several types of cancer [11-13]. 
The main substrate of LIM kinase is cofilin, an actin-
depolymerizing factor. LIMK1, a modulator of actin 
and microtubule dynamics, is involved in the mitotic 
process through inactivating phosphorylation of cofilin 
[14]. LIMK2 increases resistance to chemotherapeutic 
agents in neuroblastoma cells by regulating drug-induced 
cell cycle arrest [15]. A LIMK inhibitor, T56-LIMKi, 
inhibits LIMK2 with high specificity, while not inhibiting 
LIMK1 [13]. T56-LIMKi decreases phosphorylated 
cofilin (p-cofilin) levels and inhibits growth of glioma, 
schwannoma and pancreatic cancer. T56-LIMKi reduced 
tumor size and p-cofilin levels in the pancreatic tumors 
[13]. Also, thioredoxin inhibition is emerging as attractive 
strategy [16-18] especially employing already existing 
drugs such as Disulfiram for novel use [16, 19, 20].

Although tyrosine kinase inhibitors have changed 
therapy of chronic myeloid leukemia (CML), acquired 
resistance to imatinib, dasatinib or nilotinib, due to 
BCR-ABL1 kinase mutations, limits the therapy. Also, 
hematopoietic niche could protect leukemic cells from 
therapy [21]. Aggoune et al demonstrated that T315I 
mutants need either compound mutations such as E255K/
T315I or a stromal niche to escape from the toxicity of 
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ponatinib [21]. Thus the hematopoietic niche plays a 
crucial role in conferring resistance to ponatinib, by 
increasing cell survival and genetic instability [21].  This 
is especially striking given that chronic myelogenous cells 
that are resistant to all kinase inhibitors are still highly 
sensitive to ponatinib [22, 23].

Inhibitors of the mTOR pathway sensitize chronic 
myeloid leukemia stem cells to nilotinib and restore the 
response of progenitors to nilotinib in the presence of stem 
cell factor [24-26]. Inhibitors of mTOR also sensitized 
tumor cells to other kinase inhibitors [27]. Noteworthy, 
the mTOR inhibitor rapamycin (sirolimus) also prevents 
cancer in animal models [28-36]. Rapamycin slows 
down organism aging  [37-58], by preventing cellular 
geroconversion to senescence [59-70]. And everything that 
slows down aging in turn prevents cancer because cancer 
is an age-related disease [71, 72].
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