
Oncotarget59915www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/              Oncotarget, 2017, Vol. 8, (No. 35), pp: 59915-59928

The regulation of immune cells by Lactobacilli: a potential 
therapeutic target for anti-atherosclerosis therapy

Ya-Hui Ding1,2, Lin-Yan Qian1,2, Jie Pang1,2, Jing-Yang Lin1,2, Qiang Xu1,2, Li-Hong 
Wang1,2, Dong-Sheng Huang2,3 and Hai Zou1,2

1Department of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou 310014, China
2People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
3Department of Hepatobiliary Surgery, Zhejiang Provincial People’s Hospital, Hangzhou 310000, China

Correspondence to: Jing-Yang Lin, email: ljy@zjheart.com 
Qiang Xu, email: xuqiang@zjheart.com 
Li-Hong Wang, email: wanglh@zjheart.com 
Dong-Sheng Huang, email: dshuang@zju.edu.cn 
Hai Zou, email: haire1993@163.com

Keywords: atherosclerosis, Lactobacillus, lymphocyte, macrophage, dendritic cell
Received: February 17, 2017    Accepted: May 22, 2017    Published: June 02, 2017

Copyright: Ding et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 
3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT
Atherosclerosis is an inflammatory disease regulated by several immune cells 

including lymphocytes, macrophages and dendritic cells. Gut probiotic bacteria like 
Lactobacilli have been shown immunomodificatory effects in the progression of 
atherogenesis. Some Lactobacillus stains can upregulate the activity of regulatory 
T-lymphocytes, suppress T-lymphocyte helper (Th) cells Th1, Th17, alter the Th1/Th2 
ratio, influence the subsets ratio of M1/M2 macrophages, inhibit foam cell formation 
by suppressing macrophage phagocytosis of oxidized low-density lipoprotein, block 
the activation of the immune system with dendritic cells, which are expected to 
suppress the atherosclerosis-related inflammation. However, various strains can 
have various effects on inflammation. Some other Lactobacillus strains were found 
have potential pro-atherogenic effect through promote Th1 cell activity, increase pro-
inflammatory cytokines levels as well as decrease anti-inflammatory cytokines levels. 
Thus, identifying the appropriate strains is essential to the therapeutic potential of 
Lactobacilli as an anti-atherosclerotic therapy.

INTRODUCTION

Atherosclerosis (AS) is one of the most common 
chronic non-infectious diseases worldwide. AS is 
associated with several serious cerebrovascular diseases 
such as acute coronary syndrome, and stroke. AS 
was originally thought to result from accumulation of 
toxic lipids due to dysfunctional lipid metabolism. In 
recent years, however, mounting evidence suggests that 
inflammation, which involves innate and adaptive immune 
responses, may play a critical role in the development and 
progression of AS. For example, large concentrations of 
immune cells, such as macrophages, dendritic cells (DCs), 
and lymphocytes, have been identified in AS plaques. 

These cells secrete chemokines and pro-inflammatory, 
anti-inflammatory factors and adhesion factors, which 
contribute to AS pathogenesis [1]. 

This revelation suggests that anti-inflammatory 
therapeutics may inhibit or reverse the progression of 
AS. In a recent study, it was determined that treatment 
with anti-inflammatory pharmaceuticals statins reduced 
incidents of stroke in a rat model of AS [2]. Inhibitors 
of renin-angiotensin system (RAS), calcium channel 
blockers, aspirin and some other medicines also exhibited 
anti-atherogenetic effects by reducing inflammation.

A recent anti-inflammatory agent of interest is 
probiotic bacteria Lactobacilli. This probiotic is essential 
to several bodily processes including fermentation and 
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decomposition of indigestible substances, stimulation 
of cell growth, regulation of the immune system, and 
destruction of pathogenic bacteria. Several recent 
studies have revealed a potential therapeutic role for 
probiotic bacteria against AS. Recent studies found 
that some Lactobacillus strains significantly reduce the 
arteriosclerotic index [3–5]. These effects are largely 
due to the immunomodulatory functions of Lactobacilli. 
Remarkably, the difference of immune modification effects 
in various strains of Lactobacilli leads to distinguished 
features in pathogenesis of atherosclerosis. Some strains 
of Lactobacilli promote the inflammatory response of 
immune cells which may augment atherogenesis [6–9]. In 
this review, we will provide an overview of the effects 
concerning AS, especially the potential anti-atherogenetic 
effects, of Lactobacilli mediated through immune cells.

Overview of immune cells in the development 
and progression of AS

AS involves the complicated interaction between 
several immune cells and cytokines, its triggering factors 
include lipoprotein, reactive oxygen species, hypertension, 
shear force, smoking, etc. Endothelial dysfunction induces 
the initiation of atherogenesis which characterized by 
chemotaxis and adhesion of monocytes and T-lymphocytes to 
the endothelial surface via chemotactic factor like MCP-1 and 
adhesion molecules like VCAM-1. Then, various immune 
cells involve in the progression of atherogenesis (Figure 1).

Monocytes and macrophages

Macrophages are important immune cells in both 
innate and adaptive immune responses. They are also an 
important source of inflammatory factors. Macrophages 
play a critical role in the development of AS. During AS 
progression, the macrophages aggregate to form “foam 
cells” which increase the rupture risk of AS plaques [10, 11].

The monocytes migrate into the arterial intima and, 
in response to chemokines and related receptors, convert 
into macrophages driven by cytokines like macrophage 
colony-stimulating factor (M-CSF), and express Toll-
like receptor (TLR), pattern recognize receptor (PRR) 
and scavenger receptor [12, 13]. Macrophages take up 
low-density lipoprotein (ox-LDL) through scavenger 
receptor B, and in response release pro-inflammatory 
cytokines which promotes a focal arterial endothelial 
immune response and accelerates the formation and 
development of AS [14]. Myeloid monocytes differentiate 
into pro-inflammatory (M1) and anti-inflammatory 
(M2) macrophages after migrating into tissues. M1 
macrophages kill microbes and produce pro-inflammatory 
cytokines, such as tumor necrosis factor α (TNF-α), 
interleukin 6 (IL-6), IL-12 and MCP-1, as well as secrete 
extracellular matrix proteins, MMP-2 and MMP-9, all 
of which exacerbate AS. M2 macrophages produce anti-

inflammatory cytokines, such as IL-10, TGF-β, IL-1Ra  
and AMAC-1 (CCL-18) while also removing cell 
fragments, promoting angiogenesis and improving tissue 
remodeling and repair [15]. Differentiated M1 and M2 
macrophages can be converted to one another [16]. M2 
macrophages convert to M1 macrophages during plaque 
progression while M1 macrophages convert to M2 
macrophages during plaque regression [17]. Thus, the 
polarization of macrophages may serve as biomarkers of 
the pathologic progression of AS in principle.

T-lymphocytes

T-lymphocytes play a key role in the development 
and progression of AS. Following the formation of AS 
plaques, T-lymphocytes cluster along the periphery, 
fibrous cap and in the center of the plaques. As the disease 
progresses, the number of bordering T-lymphocytes 
gradually increases. The T-lymphocytes are activated 
by various endogenous and exogenous stimulators, such 
as ox-LDL. The activated T-lymphocytes then secrete 
cytokines like granulocyte-macrophage colony stimulating 
factor (GM-CSF), interferon γ (IFN-γ), TNF-β, IL-2, IL-4 
and IL-6, which promote the development of AS [1]. 
T-lymphocytes can be classified into subsets according to 
their immunophenotype. These subsets include helper T 
(Th) cells and regulatory T (Treg) cells. Th1 cells promote 
inflammatory responses by secreting pro-inflammatory 
cytokines, like IFN-γ, TNF-α and TNF-β [18]. In AS 
plaques Th1 cells produce IFN-γ and activate macrophages 
[19]. Th2 cells can inhibit macrophages phagocytize ox-
LDL mediated by scavenger receptor. Deletion of IL-5 and 
IL-13, two Th2 cytokines, accelerates AS [20, 21], while 
deficiency of IL-4, another Th2 cytokines may attenuate 
the development of AS [22]. So the anti-atherogenetic 
effects of Th2 cells are still unclear and controversial [23]. 
Th17 cells mainly secrete inflammatory cytokine like IL-17  
and IL-2. A proatherogenic role of IL-17 is found in 
some studies, but the results are controversial [24]. IL-17  
blockade led to reduce AS in Apoe−/− mice in some 
studies [25, 26], while in other study, IL-17 did not affect 
plaque burden even it contributes to vascular and systemic 
inflammation [27]. Furthermore, the increased number 
of Th17 cells or Th17/Treg ratio were found in some 
clinical research [28, 29]. It suggests that Th17 cells have 
a detrimental impact on atherosclerotic plaque stability. 
Treg cells inhibit the immune response of DC, Th1, Th2 
and Th17, and increase the expression of TGF-β, IL-10, 
and IL-5, which may inhibit the proliferation of bystander 
T cells in an IL-10-dependent fashion [30, 31]. 

Nature killer cells

Nature killer (NK) cells, innate lymphocytes capable 
of lysing target cells, have an immunoregulatory effects 
in the pathogensis and development of AS. MCP-1 
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Figure 1: The role of immune cells in the progression of atherogenesis. DC: dendritic cell; IL: interleukin; TNF: tumor necrosis 
factor; IFN: interferon; TGF: transforming growth factor; Treg: regulatory T; Th: T-lymphocyte helper; pDC: plasmacytoid DC; cDC: 
classic DC; MCP: monocyte chemotactic protein; AMAC: alternative macrophage activation-associated CC chemokine; TIMP: tissue 
inhibitor of metalloproteinase; NK: nature killer; MMP: metal matrix proteinase.
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recruits NK cells in the AS lesions, and CX3CL1 induce 
NK cell migration and activation which cause increased 
cytotoxicity and pro-atherogenic cytokine IFN-γ [32, 33]. 
Increased circulating NK cell levels were found in some 
studies [34, 35], however, reduced NK cell levels were 
observed in other studies [36–38]. A study in LDLR−/− 
beige mice suggested that atheroprotective effect of NK 
cells was independent of its cytotoxicity but cytokine 
production might be the major factor [39]. Therefore, it 
is still unclear whether NK cells are pro-atherogenesis or 
anti-atherogenesis, related to their cytolytic activity or 
cytokine secretion.

B-lymphocyte

B-lymphocytes, derived from bone marrow, 
are vital to adaptive immunity in that they by produce 
immunoglobulin that participate in humoral immunity. 
According to recent studies, the immune-protective effect 
of B-lymphocytes may also contribute to AS development 
[40, 41]. However, the lack of B-lymphocytes promotes 
the formation and development of coronary atherosclerosis 
heart diseases in human [42]. Further research revealed the 
different anti-atherogenetic effects of various B-lymphocytes 
subsets. B1 cells prevent lesion formation, whereas B2 cells 
promote it [43]. B1 cells secrete poorly specific nature IgM 
antibodies and attenuate atherosclerotic burden, which may 
link with preventing oxLDL internalization by macrophages 
and apoptotic cell accumulation by enhanced efferocytosis 
[43, 44]. B2 cells secrete all human immunoglobulin classes, 
namely IgM, IgG, IgE and IgA, and appear to augment 
atherogenesis through antibody dependent or independent 
mechanisms [45, 46].

Dendritic cells

Dendritic cells (DCs) are the most powerful 
professional antigen-presenting cells (APC). DCs are 
subdivided into plasmacytoid DCs (pDCs) and classic 
DCs (cDCs) depending on their phenotype and functions. 
DCs take in and process antigens effectively, then present 
antigens to memory T-lymphocytes to activate an immune 
response. DCs can secrete several cytokines, mainly IL-12,  
IL-10, IL-23, IL-6, IL-1β, TNF-α, TGF-β, as well as 
express various maturation markers, such as CD40, 
CD54, CD80, CD83, CD86 and MHC complex [47, 48]. 
Activated DCs in the vascular endothelium highly 
expressed adhesion markers like ICAM-1, and VCAM-1  
which activate T-lymphocytes [2]. Lord et al. found 
that DC-mediated immune responses were found to be 
involved in the early stage of atherogenesis, evidenced 
by the fact that DCs increased significantly in the athero-
prone areas of normal arterial wall [49–52].Moreover, 
high expression of DC’s costimulate molecule CD86 is 
associated with stable coronary artery disease as well 
as acute coronary syndrome [53]. Some DC subsets, 

such as Intestinal CD103+ DCs, are also the key for 
tolerogenic immune responses, they can promote the 
differentiation of Treg cells [54, 55]. Manikandan et al. 
found that MyD88 signaling in CD11C+ DCs play a key 
role during the T-lymphocytes activation in atherogenesis 
because it promote the development of atheroprotective 
Treg cells [56]. Furthermore, Isabelle et al. found that 
pDCs demonstrated a protective role in AS [57]. It may 
be caused by inhibiting T cell proliferation and activity in 
peripheral lymphoid tissue. Thus suppressing DC maturity 
and antigen-present function is regarded as one of the anti-
atherogenetic mechanisms of statins [2]. 

Inflammatory response of Lactobacilli in 
lymphocytes

T-lymphocyte

Several studies now show that Lactobacilli reduces 
inflammatory response via T-lymphocytes. Particularly, 
Treg cells play a vital role in the inhibitory effect 
of Lactobacilli on inflammation. There are positive 
correlations between the number of Treg cells and 
Lactobacilli [30, 58–62]. Treg cells increase IL-10 level 
and inhibit the proliferation of bystander T cells in an IL-
10-dependent fashion [30]. Lactobacilli are also effective 
in inducing CD4+CD25+Foxp3+ Treg cell mediated 
tolerance [63].

In Kim et al. study, treatment with Lactobacillus 
rhamnosus Lcr35 was found to increase the number 
of CD4+CD25+Foxp3+ Treg cells in the spleens and 
mesenteric lymph nodes of mice [59, 60, 64]. Lcr35 also 
suppressed Th1 (IFN-γ), Th2 (IL-4, IL-5, and IL-13) and 
Th17 (IL-17) cell cytokines in the serum, and thymic 
stromal lymphopoietin (TSLP) responses. The protective 
effects of Lcr35 was blocked by anti-CD25 mouse 
antibody, which indicated that CD4+CD25+Foxp3+ Treg 
cells are indispensable in mediating the activity of Lcr35. 
Similar effects, (ie upregulation of  CD4+CD25+Foxp3+ 
Treg cells) was observed with other Lactobacillus strains, 
such as Lactobacillus rhamnosus GG [65], Lactobacillus 
casei ATCC 334 [66], Lactobacillus reuteri ATCC 23272 
[58], and Lactobacillus paracasei L9 [63]. Furthermore, 
Reynolds et al. found that Lactobacillus taiwanesis 
elevated Treg cells in the gut-associated lymphoid tissue 
without raising Th17 cell responsiveness [62]. 

However, it is important to note that different 
strains may have different immunomodulatory effects 
on Th1 and Th2 cells. A study in healthy wild-type male 
BALB/c mice showed that, in the small intestinal lamina 
propria, Lactobacillus plantarum WCFS1 significantly 
decreased the Th1/Th2 cell ratio. However, Lactobacillus 
salivarius UCC118 and Lactobacillus lactis MG1363 
had no effect [67]. Lactobacillus rhamnosus LA68, on 
the other hand, activated the Th1 immune response in 
healthy C57BL/6 mice [6]. Studies on hypersensitive 
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ovalbumin (OVA)-sensitized mice/rats revealed that 
Lactobacillus strains induced Th1 cytokines and inhibit 
Th2 cell cytokines, which improved immune balance and 
relieved the hypersensitivity [7–9]. Similar changes to the 
Th1/Th2 cell ratio were observed in influenza A/NWS/33 
(H1N1) virus (IFV) infected BALB/c mice that were 
administrated by Lactobacillus fermentum CJL-112 [68]. 
Moreover, in the same mouse model, Lactobacillus casei 
Shirota attenuated the Th2 cell phenotype. In contrast, 
Lactobacillus plantarum WCFS1 augmented the Th2 cell 
phenotype [69]. Taken together, these studies demonstrate 
that the variant between Lactobacillus strains plays a 
critical role in immune response variation (Table 1).

Generally, Lactobacilli can be roughly classified as 
pro-inflammatory strains and anti-inflammatory strains 
according to their influence on T-lymphocyte subsets. 
But the effects of some T-lymphocyte subsets like Th2 
and Th17 are still controversial as well as the complex 
interaction between T-lymphocyte subsets, it is difficult to 
explicate the anti-atherogenetic effects of Lactobacilli via 
T-lymphocytes path exactly. Nevertheless, current research 
revealed that Treg cells are a key component in inhibiting 
AS-related inflammation. Certainly, the exact roles of 
T-lymphocytes in the formation and development of AS 
are still need to be elucidated.

B-lymphocyte

The Lee et al. study showed Lactobacillus plantarum 
could stimulate murine splenocyte proliferation, and this 
effect in dead nano-sized Lactobacillus plantarum was 
more apparent than in pure live bacteria [7]. Lactobacillus 
helveticus SBT2171 was found to inhibit the proliferation 
of T-lymphocytes and B-lymphocytes in LPS-stimulated 
mice [70]. While, Lactobacillus plantarum CJNR26 and 
Lactobacillus gasseri CJMF3 increased the B-lymphocyte 
population in the spleen of mice [71]. A dose-response, 
double-blind, placebo-controlled, randomized pilot 
trial showed that low dose Lactobacillus plantarum 
CECT 7315 and CECT 7316 increased activated 
B-lymphocytes (CD19+) as well as T-helper lymphocytes 
(CD4+CD25+) [72]. But unfortunately, until recently, 
there was no direct evidence demonstrating the anti-
atherogenetic effect of Lactobacilli via B-lymphocytes. 
Therefore, it is unclear what role Lactobacilli are 
playing in the atherogenesis and development of AS via 
B-lymphocyte pathway. 

Nature killer cells

Some studies showed that Lactobacilli can 
augment NK cell activity, like Lactobacillus plantarum 
06CC2 [73], Lactobacillus delbrueckii OLL1073R-1 
[74], Lactobacillus casei Shirota [75], Lactobacillus 
casei HY7213 [76]. Lee et al. found that Lactobacillus 
plantarum HY7712 protected against the impairment 

of NK cell activity caused by γ-irradiation or aging 
through activating the TLR2/NF-κB signaling pathway 
(24105270). In fact, Lactobacilli can activate NK cells as 
well as induce augmentation of immune responses of Th1 
cells, cytotoxic T cells, macrophages [73, 76], increase 
the production of IFN-γ, IL-12 [74, 77, 78] at the same 
time. However, Dong et al. found Lactobacillus casei 
Shirota improved NK cell activity as well as increase IL-
10/IL-12 ratio in older population [79]. Another study 
involved six probiotic strains (Lactobacillus casei Shirota, 
Lactobacillus rhamnosus GG, Lactobacillus plantarum 
NCIMB 8826 and Lactobacillus reuteri NCIMB 11951, 
Bifidobacterium longum SP 07/3 and B. bifidum MF 20/5) 
showed increasing NK cell activity, but some cytokines 
levels, like IL-10, IFN-γ, IL-12p70, IL-6 and MCP-1, 
were strain-specific [80].

The truth is, there are still much controversy to the 
effects of NK cells in atherogenesis, so it is still unknown 
about NK cell activation by Lactobacilli for atherogenesis 
and development of AS unless there is some direct 
evidence.

Inflammatory response of Lactobacilli in 
macrophage

A study found administration of Lactobacillus 
gasseri SBT2055 decreased the number of macrophages 
and the M1/M2 ratio in mice [81]. The similar effects could 
be observed in Lactobacillus paracasei [82], Lactobacillus 
plantarum CLP-0611 [83], and Lactobacillus brevis 
G-101 [84]. Furthermore, some Lactobacillus strains, such 
as Lactobacillus plantarum OLL2712 [85], Lactobacillus 
rhamnosus ATCC 7469 [86], Lactobacillus rhamnosus GG 
MTCC 1408 [87] and Lactobacillus helveticus NS8 [88] 
were revealed to increase the production level of IL-10  
which is regarded as an important anti-inflammatory 
cytokine that inhibits atherogenesis.

On the other hand, some Lactobacillus strains 
were found to increase the pro-inflammatory production 
levels of macrophages, like TNF-α and IL-6 [86, 89, 90]. 
However, decreased TNF-α and IL-6 production levels 
of macrophages were observed after treatment with 
other Lactobacillus strains [81, 87, 91]. Taken together, 
these results indicate that the pro-inflammatory and 
anti-inflammatory effects of Lactobacilli have notable 
differences in various strains and experimental models.

In fact, Lactobacilli have influenced cholesterol 
metabolism in macrophages. Lactobacillus paracasei 
regulate alveolar macrophages cholesterol metabolism 
and the response to LPS in Ossabaw pigs. It decreased 
the concentrations of cholesteryl-esters and suppressed 
expression of pro-inflammatory mediators in alveolar 
macrophages [92]. In some clinical trials, such effects 
are also found, but the results are somewhat ambiguous. 
A controlled, randomized, double-blind trial discovered 
administration of Lactobacillus plantarum mixture of 
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three strains (CECT 7527, CECT 7528 and CECT 7529) 
reduced the plasma cholesterol levels with ox-LDL 
in hypercholesterolaemic patients [93]. Lactobacillus 
delbrueckii bulgaricus 2038 was also found to reduce 
LDL oxidation in F344 rats [94]. But another randomized, 
double-blind intervention in marathon runners revealed 
that Lactobacillus rhamnosus GG had no effect on 
regulation of ox-LDL, s-TRAP or serum antioxidants 
levels during the study [95]. However, a clinical trial in 
patients over 65 years old found that the ox-LDL level 
is inversely proportional to the number of Lactobacilli 
[96]. In addition, Yoon et al. found that Lactobacillus 
rhamnosus BFE5264 and Lactobacillus plantarum NR74 
may block foam cell formation by cholesterol efflux and 
immune modulation in THP-1 macrophage cells [97].

Therefore, like the lymphocytes, inflammatory 
response of macrophages is different in various 
Lactobacillus strains, and it is vital that the appropriate 
strains are used to study anti-atherogenetic effects (Table 2).

Inflammatory response of Lactobacilli in 
dendritic cells

Lactobacilli has a significant influence on DC-
related inflammation that are strain dependent (Table 3). 
For instance, some strains, such as Lactobacillus casei, 
Lactobacillus acidophilus NCFM, Lactobacillus murinus, 
and Lactobacillus salivarius promote expression of 
inflammatory cytokines and co-stimulatory molecules 
more significantly than others, such as Lactobacillus 
helveticus LH-2, and Lactobacillus acidophilus La-115 

[98, 99]. However, Lactobacillus plantarum OLL2712, 
Lactobacillus rhamnosus OLL2838, Lactobacillus 
reuteri 5289, Lactobacillus paracasei CBA L74, and 
Lactobacillus paracasei L9 induced anti-inflammatory 
cytokines in DCs, like IL-10, to exhibit anti-inflammatory 
effects [63, 85, 100–102]. Furthermore, Zagato et al. found 
that the suppressive effects of Lactobacillus paracasei 
CBA L74 on inflammation are independent of inactivated 
bacteria, but respond to metabolic products released 
during the fermentation process [102].

In fact, the influence of inflammatory regulation 
on DCs by Lactobacilli is complicated due to the fact 
that a single strain can induce pro-inflammatory and 
anti-inflammatory cytokines simultaneously [103, 
104]. Moreover, the immune-modulating properties 
may rely on the host’s genetic background [104]. 
A study in vitro showed that different strains and 
concentrations of Lactobacilli influence factors of 
DC-related inflammation [105]. After treating DCs 
with one of three concentrations of Lactobacilli 
(1, 10, and 100 μg/ml), Christensen et al. found 
that the levels of pro-inflammatory factors, such 
as IL-12, IL-6 and TNF-α, was highest in ~10 μg/
ml while IL-10 was highest in the high bacteria 
concentration. The study also found that Lactobacillus 
reuteri inhibited Lactobacillus casei-induced IL-12,  
IL-6 and TNF-α production in a dose-dependent 
manner [105]. Lactobacillus reuteri also inhibited the 
upregulation of CD86 (a co-stimulatory factor that 
induces T-lymphocyte proliferation and IL-2 production) 
induced by Lactobacillus casei. 

Table 1: Inflammatory response of Lactobacilli in T-lymphocytes
Strains Th1 Th2 Th17 Treg Inflammatory cytokines Reference

Lactobacillus rhamnosus Lcr35 ↓ ↓ ↓ ↑ IL-4↓, IL-17↓, IFN-γ↓, IL-5↓, IL-13↓ Jang et al. [59, 60, 64]

Lactobacillus rhamnosus GG ↑ IL-10↑, IL-6↓ Khailova [65]

Lactobacillus casei ATCC 334 ↑ IL-10↑ Tiittanen [66]

Lactobacillus reuteri ATCC 23272 ↑ IL-10↑, MCP-1/CCL2↓, TNF↓, IL-5↓ Karimi [58]

Lactobacillus paracasei L9 ↑ IL-10↑, TGF-β↑, IFN-γ↑, IL-4↓ Yang [63]

Lactobacillus taiwanesis ↑ Reynolds [62]

Lactobacillus plantarum WCFS1 ↓ ↑ IL-4↑ Meijerink et al. [67, 69]

Lactobacillus salivarius UCC118 ↑ Smelt [67]

Lactobacillus rhamnosus LA68 ↑ IFN-γ↑, IL-10↓ Dimitrijevic [6]

Lactobacillus plantarum CJLP133 ↑ IL-10↑, IL-12↑, IFN-γ↑, IL-4↓ Won [8]

Lactobacillus brevis HY7401 ↑ IFN-γ↑, IL-12↑, IL-4↑, IL-5↑, IL-6↓, 
IL-10↓ Lee [7]

Lactobacillus rhamnosus GG ATCC 53103 & Bifidobacterium 
longum BB536 ↑ IFN-γ↓, IL-4↓, IL-10↓ Huang [9]

Lactobacillus fermentum CJL-112 ↑ ↓ IFN-γ↑, IL-2↑, IL-4↓, IL-5↓, IL-10↓ Yeo [68]

Lactobacillus salivarius HMI001 & Lactobacillus casei Shirota ↓ IL-4↓, IL-5↓ Meijerink [69]

Lactobacillus plantarum nF1 ↑ ↓ ↑ TNF-α↑, IL-12 p70↑, IL-4↓, IL-5↓, 
IL-6↑, IL-17A↑ Lee [89]

Lactobacillus rhamnosus MTCC 5897 ↑ ↓ IL-4↓, IFN-γ↑ Saliganti [106]

Lactobacillus plantarum K8 ↑ IL-12↑, IFN-γ↑, IL-4↓ Kim [107]

MCP: monocyte chemotactic protein; IL: interleukin; G-CSF: granulocyte-colony stimulating factor; TNF: tumor necrosis factor; IFN: interferon; TGF: transforming growth 
factor; CCL: C-C chemokine ligand.
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CONCLUSION

Immune cells play a key role in the progression 
of atherogenesis, which are involved in T-lymphocytes, 

B-lymphocytes, NK cells, DCs, monocytes/macrophages. 
Lactobacilli are proven regulators of the immune system. 
Considering the key role of inflammation in atherogenesis 
and the anti-atherogenetic effect of Lactobacilli, 

Table 2: Inflammatory response of Lactobacilli in macrophages
Strains Macrophage 

number
M1/M2 

ratio Cholesterol Inflammatory cytokines or biochemical 
markers Reference

Lactobacillus gasseri SBT2055 ↓ ↓ CCL2↓, CCR2↓, LEP↓ Ukibe [81]

Lactobacillus paracasei LPC4 ↓ ↓ TLR-4↓, NOX-4↓, TNF-α↓, MCP-1↓, IL-4↓,, 
PPAR-γ↓, PPAR-δ↓, Sohn [82]

Lactobacillus plantarum CLP-0611 ↓ IL-1β↓, IL-6↓, NF-κB↓, AP1↓, IL-10↑, CD206↑ Jang [83]
Lactobacillus brevis G-101 ↓ IL-10↑, IL-1β↓, IL-6↓, TNF-α↓, NF-κB↓ Jang [84]

Lactobacillus plantarum OLL2712 IL-10↑, IL-6↓, TNF-α↓, MCP-1↓ Toshimitsu [85]
Lactobacillus rhamnosus ATCC 7469 TNF-α↑, IL-6↑, IL-10↑, IL-12↓ Jorjao [86]

Lactobacillus rhamnosus GG MTCC 1408 IL-10↑, TNF-α↓ Divyashri [87]
Lactobacillus helveticus NS8 IL-10↑ Rong [88]
Lactobacillus plantarum nF1 TNF-α↑, IL-12 p70↑, IL-6↑, IL-17↑, IL-4↓ Lee [89]

Lactobacillus acidophilus JTB05 IFN-γ↑ Quinteiro-Filho [90]
Lactobacillus salivarius JTB07 IFN-γ↑, IL-1β↑, IL-6↑, IL-8↑, IL-12↑ Quinteiro-Filho [90]

Lactobacillus reuteri JTB07 IL-1β↑, IL-6↑, IL-8↑, IL-12↑ Quinteiro-Filho [90]

Lactobacillus rhamnosus NutRes1 IL-1β↓, IL-6↓, IL-10↓, IL-23↓, TNF-α↓, 
CXCL-8↓, HMGB1↓ Mortaz [91]

Lactobacillus paracasei cholesteryl-esters↓ IL-1β↓, IL-8↑, IL-6↑ Trasino [92]
Lactobacillus plantarum mixture (CECT 7527, 

CECT 7528 and CECT 7529) TC↓, LDL↓, ox-LDL↓ Fuentes [93][49]

Lactobacillus delbrueckii bulgaricus 2038 ox-LDL↓ Terahara [94]
Intestinal Lactobacillus sp. ox-LDL↓ Mikelsaar [96]

Lactobacillus rhamnosus BFE5264 and 
Lactobacillus plantarum NR74

cholesterol efflux↑, 
foam cells↓ IL-1β↓, TNF-α↓, LXR↑, ABCA1↑, ABCG1↑ Yoon [97]

CCL: C-C chemokine ligand; CCR: C-C chemokine receptor; LEP: leptin; TLR: Toll-like receptor; NOX: NADPH oxidase; TNF: tumor necrosis factor; MCP: monocyte 
chemotactic protein; IL: interleukin; PPAR: peroxisome proliferator activated receptor; LXR: liver X receptor; ABCA1: ATP-binding cassette transporter A1; ABCG1: ATP-binding 
cassette transporter G1; CXCL: C-X-C motif chemokine.

Table 3: Inflammatory response of Lactobacillus in dendritic cells
Strains Inflammatory cytokines or biochemical markers Reference

Lactobacillus reuteri 5289 Inhibit Lactobacillus acidophilus NCFM- induced 
IL-12p70 Amar [101]

Lactobacillus acidophilus NCFM IL-12p70↑, IL-10↑ Amar [101]
Lactobacillus murinus IL-10↑, TNF-α↑, IL-6↑, IL-12↑,G-CSF↑,MCP-1↑ Konieczna [98]

Lactobacillus plantarum OLL2712 IL-10↑ Toshimitsu [85]
Lactobacillus rhamnosus OLL2838 IL-10↑, IL-2↑, IL-12↑, TNF-α↑ Ogita [100]
Lactobacillus paracasei CBA L74 IL-10↑ Zagato [102]

Lactobacillus paracasei L9 IL-10↑, TGF-β↑, IFN-γ↑, IL-4↓ Yang [63]
Lactobacillus rhamnosus CRL1505 MHC-II↑ Chiba [103]

Lactobacillus reuteri DSM12246 IL-10↑, inhibit Lactobacillus casei CHCC3137-
induced IL-12, IL-6 and TNF-α Christensen [105]

Lactobacillus casei CHCC3137 IL-10↑, IL-12↑, IL-6↑, TNF-α↑ Christensen [105]
Lactobacillus plantarum Lb1 IL-10↑, IL-12↑, IL-6↑, TNF-α↑ Christensen [105]

Lactobacillus fermentum Lb20 IL-10↑, IL-12↑, IL-6↑, TNF-α↑ Christensen [105]
Lactobacillus plantarum 299v IL-10↑, IL-12↑, IL-6↑, TNF-α↑ Christensen [105]
Lactobacillus johnsonii La1 IL-10↑, IL-12↑, IL-6↑, TNF-α↑ Christensen [105]

Lactobacillus gasseri SBT2055 TGF-β↑, BAFF↑, IL-10↑, IL-6↑ Sakai [108]
Lactobacillus jensenii TL2937 MHC-II↑, CD80/86↑, IL-10↑ Suda [109]

Lactobacillus rhamnosus CNCM I-4036 IL-1β↑, IL-6↑, IL-8↑, IL-10↑, TNF-α↑ Bermudez-Brito [110]

MCP: monocyte chemotactic protein; IL: interleukin; G-CSF: granulocyte-colony stimulating factor; TNF: tumor necrosis 
factor; IFN: interferon; TGF: transforming growth factor; MHC: major histocompatibility complex; BAFF: B cell activation 
factor.
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immunoregulation for immune cells may be the 
mechanism by which the probiotic elicits atherogenesis-
related effects.

Recent studies found that immunoregulatory 
effects of Lactobacilli are strain-specific (Table 4). Some 
strains, like Lactobacillus rhamnosus Lcr35, decrease 
Th1 cell number and pro-inflammatory cytokines levels 
to inhibit the progression of atherogenesis. Other strains, 
like Lactobacillus brevis HY7401, upregulate Th1 
cells and promote the secretion of pro-inflammatory 
cytokines which may accelerate the atherogenesis. The 
upregulation of Treg cell activity is also an important 
mechanism of anti-atherogenetic effects of Lactobacilli. 
Serveal strains, such as Lactobacillus rhamnosus Lcr35, 
Lactobacillus rhamnosus GG, Lactobacillus casei ATCC 
334, Lactobacillus reuteri ATCC 23272, Lactobacillus 
paracasei L9, etc., are found to increase the Treg cell 
activity. In addition, inflammatory cytokines secreted by 
T-lymphocytes are also important part of immune response 
network. Some strains like Lactobacillus rhamnosus 
LA68 upregulate pro-inflammatory cytokines like IFN-γ 
as well as downregulate anti-inflammatory cytokines 
like IL-10. Some other strains like Lactobacillus casei 
ATCC 334 can increase anti-inflammatory cytokines 
levels. Notably, some strains like Lactobacillus plantarum 
CJLP133 increase pro-inflammatory cytokines and anti-
inflammatory cytokines at the same time. So it increase 
the difficulty to derive the effects of Lactobacilli involved 
in atherogenesis.

Macrophages can differentiate into two subsets, 
pro-inflammatory subset M1 and anti-inflammatory 
subset M2. Some Lactobacillus strains can promote M1 
differentiation or macrophage polarization to alter the M1/
M2 ratio. The influence on pro-inflammatory production 
levels of macrophages is also strain-specific. Some 
strains like Lactobacillus plantarum nF1 promote pro-
inflammatory cytokines secretion and other strains inhibit 
them. Furthermore, some strains was found to reduce ox-
LDL level in human or rats.

DCs, a powerful T-lymphocyte activating factor, 
play a critical role in atherogenesis and can cause AS-
related adverse effects. Lactobacilli were revealed to 
inhibit DC-induced inflammation and stimulate DCs to 
secrete anti-inflammatory cytokines like IL-10. Several 
studies also revealed different inflammatory responses to 
various Lactobacillus strains and experimental models, 
including pro-inflammatory effects.

Lactobacilli strains can augment NK cell activity. 
TLR2/NF-κB signaling pathway is involved in NK cell 
activity. But cytokines induced by Lactobacilli are strain-
specific. The role of Lactobacilli in the atherogenesis is 
still unclear unless there is some direct evidence.

Similarly, the effects of Lactobacilli in the 
progression of atherogenesis via B-lymphocytes are 
in dispute, not only because of strain-specific immune 
response, but also the evidence about B-lymphocyte 
polarization induced by Lactobacilli or other direct 
evidence is absent.

Taken together, immune cells are very important 
pathways in atherogenesis, while Lactobacilli play their 
immunomodulatory effects to influence the progress of 
atherogenesis. But the direct study evidence, Lactobacilli 
promoting or inhibiting atherogenesis via immune cell 
pathways, is absent. Thus future studies are needed to 
explore the roles of immune cells in the atherogenesis, 
especially anti-atherogenetic effect, by Lactobacillus 
treatment subjects which may help to identify and properly 
utilize the appropriate strains.
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Table 4: The effects of Lactobacilli in the progression of atherogenesis
Effects Strains

Anti-atherogenesis L. rhamnosus Lcr35, L. rhamnosus GG, L. casei ATCC 334, L. reuteri ATCC 23272, L. paracasei 
L9, L. taiwanesis, L. plantarum WCFS1, L. salivarius UCC118, L. gasseri SBT2055, L. paracasei 
LPC4, L. plantarum CLP-0611, L. brevis G-101, L. plantarum OLL2712, L. rhamnosus ATCC 7469, 
L. rhamnosus GG MTCC 1408, L. helveticus NS8, L. rhamnosus NutRes1, L. plantarum mixture 
(CECT 7527, CECT 7528 and CECT 7529), L. delbrueckii bulgaricus 2038, Intestinal L. sp., L. 
rhamnosus BFE5264 and L. plantarum NR74, L. rhamnosus OLL2838, L. reuteri 5289, L. paracasei 
CBA L74, L. reuteri DSM12246

Pro-atherogenesis L. rhamnosus LA68, L. plantarum CJLP133, L. brevis HY7401, L. rhamnosus GG ATCC 53103 & 
Bifidobacterium longum BB536, L. fermentum CJL-112, L. salivarius HMI001 & L. casei Shirota, 
L. plantarum nF1, L. rhamnosus MTCC 5897, L. plantarum K8, L. acidophilus JTB05, L. salivarius 
JTB07, L. reuteri JTB07, L. acidophilus NCFM, L. murinus, 

Not Sure L. paracasei, L. rhamnosus CRL1505, L. casei CHCC3137, L. plantarum Lb1, L. fermentum Lb20, 
L. plantarum 299v, L. johnsonii La1, L. jensenii TL2937, L. rhamnosus CNCM I-4036
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