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ABSTRACT
This paper outlines a treatment protocol to run alongside of standard current 

treatment of glioblastoma- resection, temozolomide and radiation. The epithelial 
to mesenchymal transition (EMT) inhibiting sextet, EIS Regimen, uses the ancillary 
attributes of six older medicines to impede EMT during glioblastoma. EMT is an actively 
motile, therapy-resisting, low proliferation, transient state that is an integral feature 
of cancers’ lethality generally and of glioblastoma specifically. It is believed to be 
during the EMT state that glioblastoma’s centrifugal migration occurs. EMT is also 
a feature of untreated glioblastoma but is enhanced by chemotherapy, by radiation 
and by surgical trauma. EIS Regimen uses the antifungal drug itraconazole to block 
Hedgehog signaling, the antidiabetes drug metformin to block AMP kinase (AMPK), 
the analgesic drug naproxen to block Rac1, the anti-fibrosis drug pirfenidone to block 
transforming growth factor-beta (TGF-beta), the psychiatric drug quetiapine to block 
receptor activator NFkB ligand (RANKL) and the antibiotic rifampin to block Wnt- 
all by their previously established ancillary attributes. All these systems have been 
identified as triggers of EMT and worthy targets to inhibit. The EIS Regimen drugs 
have a good safety profile when used individually. They are not expected to have any 
new side effects when combined. Further studies of the EIS Regimen are needed.

INTRODUCTION

Epithelial to mesenchymal transition (EMT) refers 
to a transient process where flat, sessile, mutually adherent 
epithelioid cells take on a rounded, non-adherent, motile 
mesenchymal shape and behavior [1-4]. EMT is engaged 
by normal cells during wound healing and is identified 
in cancer generally. The reverse, less transient state and 
process, mesenchymal to epithelial transition (MET), also 
occurs. Both processes are features of robust or aggressive 
cancer growth [5]. Cells post-EMT tend to be invasive 
but proliferation-restricted. Cells post MET tend to be 

proliferative but have limited invasiveness [1-4]. Table 1 
lists some of the surface markers and cell characteristics 
commonly used to define, and are associated with, the two 
phenotypic states. EMT has been demonstrated in and is 
central to glioblastoma (GB) pathology [6]. In a landmark 
immunohistochemical study looking at paired primary 
and recurrent GB, Kubelt et al showed high expression 
of vimentin, TGF-beta, beta-catenin and fibronectin- all 
EMT markers- in both primary tumor and in recurrence 
tissues [6].

In this paper we propose a combination of 6 
repurposed, already-marketed drugs in order to inhibit 
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EMT during primary treatment of GB. As we will show, 
this EMT inhibiting sextet, the EIS Regimen, is predicted 
to be safe and carry low risk of side effects. The EIS 
Regimen uses ancillary attributes of older, already-
marketed drugs to block individual elements of EMT 
triggered by our current standard treatment of GB. EIS 
uses the antifungal drug itraconazole to block Hedgehog 
signaling (Hh), the antidiabetes drug metformin to block 
AMP kinase (AMPK), the analgesic drug naproxen 
to block Rac1, the anti-fibrosis drug pirfenidone to 
block transforming growth factor-beta (TGF-beta), the 
psychiatric drug quetiapine to block receptor activator 
NFkB ligand, (RANKL) and the antibiotic rifampin (also 
called rifampicin) to block beta-catenin nuclear functions- 
all by their previously established ancillary attributes. Hh, 
AMPK, Rac1, TGF-beta, RANKL, and beta-catenin have 
all been identified as triggers to EMT. There doesn’t seem 
to be a single path to EMT development. The multiple 
triggers initiating EMT that are discussed in this paper 
might have a common denominator but such hasn’t been 
recognized yet and may not exist. 

Glioma initiating cells (GIC, also called glioma 
stem cells) is an evolving concept that refers to minor 
subpopulations within a tumor that i] are relatively 
quiescent, ii] are relatively resistant to cytotoxic chemo- 
and radiotherapies compared to the bulk population, 
iii] are the residual post-treatment populations from 
which recurrent tumor regrows, iv] that need fewer 
cells to establish xenograft growth compared to the bulk 
population, and v] display in some cases ability to undergo 
asymmetric cell division where one daughter cell retains 
stem cell characteristics, the other daughter cell has 
characteristics of the non-stem majority population. 

Concepts and definitions of EMT, as for concepts 
of GIC, are both in evolution and defined in general 
outline only [7-11]. Intermediate and mixed forms are 
recognized but without assuming strictly dichotomous 
categories, the GIC subpopulation tends to reside in cells 
with more mesenchymal post-EMT attributes [7, 12, 
13]. Some evidences also show that GIC present high 
expression of EMT markers involved in migration and 
invasion, such as the matrix metalloproteinases (MMP), 
particularly MMP-2 and MMP-9 [14, 15]. This enrichment 
in proinvasive/migratory genes confers GIC stronger 
invasive and infiltrative capacities. Both EMT and GIC 
may be reversible processes. Mesenchymal transformed 
cells revert to an epithelial form and marker status, 
(undergo MET) whilst non-GIC cells can assume cancer 
initiating properties and gain relevant markers. (Note that 
abbreviation MET also can refer to the unrelated cMET, 
the cell surface receptor for hepatic growth factor). 
These different GIC coexist within the same tumor and 
can switch from one invasive state (mesenchymal) to a 
proliferative one (epithelial) to allow tumor expansion and 
growth [16]. 

The growth enhancing role of EMT in GB has 
been thoroughly reviewed in 2016 by Iser et al [17]. The 
development of detyrosinated alpha-tubulin microtentacles 
occurring during EMT facilitates tumor cell insinuation 
between endothelial cells, starting tumor cell journey to 
distant metastasis sites [18] or in the case of GB, migratory 
spreading within the brain [19]. Through a variety of 
mechanisms, among which reduced proliferation may play 
a major role, EMT makes cancer cells more resistant to our 
traditional, currently available, cytotoxic chemotherapy 
[20]. Entering EMT is a major resistance mechanism for 

Table 1: Some of the biochemical marker and phenotypic changes characteristic of and concomitant to 
transformation of a cancer cell from epithelial to a mesenchymal phenotype. 

marker / mediator epithelial state mesenchymal state
E-cadherin increased decreased
N-cadherin decreased increased
ZO-1 increased decreased
occludin increased decreased
vimentin decreased increased
fibronectin decreased increased
MMP-2 decreased increased
MMP-9 decreased increased
phenotype epithelial state mesenchymal state
motility sessile motile
shape elongated rounded
adherence adherent to neighbors non-adherent to neighbors
invasion non-invasive invasive
proliferation high low
microtentacles absent present *
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GB resistance to erlotinib [21] for example. Importantly, 
circulating tumor cells from which metastases are derived, 
are mostly cells that have undergone EMT [22-24]. 

Table 1. lists the protein expressions and behavioral 
attributes associated with the epithelial or mesenchymal 
state. Although the Table lists attributes of the polar states, 
presence of intermediate states is the rule.

E-cadherin is a multifunctional, highly 
phosphorylated outer cell membrane protein active in 
securing epithelial-to-epithelial cell adherence. E-cadherin 
undergoes a shift in molecular weight going from 125 
to 115 kDa during iron overload, reversing back to 125 
kDa after Fe++ chelation [25]. The intracellular domain 
of E-cadherin binds beta-catenin. Thus, less surface 
E-cadherin, often mirrored by increase of N-cadherin 
[26, 27], results in less adherence to neighbor cells 
facilitating tumor cell spreading. It is also coupled to 
loss of intracellular beta-catenin sequestration, making 
increased beta-catenin available for transport into nucleus 
where it is a malignancy-associated transcription factor. 
An interesting question is whether E-cadherin changes 
reflect or contribute to mediating (or both) EMT [28]. 
Vimentin is one of several markers in tissues undergoing 
EMT, as listed in Table 1. Immunohistochemical and 
mRNA study of GB biopsy tissues showed that high 
vimentin expression was associated with significantly 
shorter survival compared with GB with lower vimentin 
expression [29]. 

Among the multiple regulators of, and triggers to, 
EMT in GB is also epigenetic regulation by small non-
coding RNAs or microRNAs (miRNA, a sequence of 20 
to 25 nucleotides). miRNA have already been described to 
play a major role in GB growth, proliferation, migration 
and invasion processes [30]. More recently and more 
specifically, microRNAs have also been shown to 
play various roles in GB’s EMT process generally, and 
specifically by increasing transforming growth factor-beta 
(TGF-beta) [31, 32], a fact of particular importance in our 
use of TGF-beta inhibitor pirfenidone (vide infra, Section 
3.a. on pirfenidone). 

It would be wrong to view EMT as a single core 
element of malignancy. Both EMT and MET are crucial 
attributes for vigorous malignant growth. Without either 
process cancer would be easier to cure with modern 
techniques, both processes must be addressed for effective 
treatment. EMT is crucial for release of malignant cells 
to blood or lymph, but MET is crucial for metastasis 
establishment and growth [3], corresponding to the 
oncology aphorism “go or grow”. Otherwise said, while 
EMT enhances cells leaving the primary tumor mass, MET 
is the process that enhances distant colony establishment 
and growth [3, 33]. GB patients have readily identifiable 
circulating GIC. These have markers and characteristics of 
post-EMT cells [34] indicating EMT as an active process 
in GB. Cancer cell epithelial or mesenchymal state seems 
not to be strictly binary states. Intermediate states are the 

rule rather than the exception. To summarize, EMT-MET 
phenotypic shuttling is a central and defining feature of 
GB, with GIC residing in two phenotypic gradients each of 
which culminates in one specific pole : higher proliferative 
activity with angiogenesis (epithelial state) or higher 
migratory activity with attenuated mitosis (mesenchymal 
state) [35]. 

Multiple triggers to EMT initiation are present as 
part of the natural biology of GB: hypoxia, inflammation, 
acidic milieu, epidermal growth factor (EGF) signaling 
are examples [35]. Current treatments with cytotoxic 
chemotherapy (temozolomide in the case of GB), surgical 
tissue disruption and radiation have all been recognized as 
triggers for remaining viable cells to enter EMT, details 
given in Section 2. below. 

GB heterogeneity of driver mutations [36, 37] 
extends likewise to heterogeneity of EMT drivers. In 
examining pancreatic adenocarcinoma intratumoral 
heterogeneity Dembinski and Krauss found large 
but incomplete overlap between slowly cycling cell 
subpopulation and those expressing commonly accepted 
stem cell markers (e.g. ALDH, CD44, CD133) and 
behaviors [38]. Most enlightening was their finding 
that EMT characteristics were stimulated largely by Hh 
and TGF-beta signaling, and crucially such stimulation 
and marker changes were accompanied by decreased 
epidermal growth factor receptor (EGFR) expression. 
This implies a dynamic shuttling or see-saw process where 
TGF-beta and Hh signaling increase EMT but decrease 
EGFR dependency, partially explaining erlotinib failures. 

The hypoxic microenvironmental islands 
characteristic of GB are drivers of EMT. Tumor hypoxia, 
via the Hypoxia Inducible Factors (HIF-1α and HIF-2α), 
directly or indirectly control the expression of several 
EMT transcriptional regulators such as Snail, Slug, 
Twist1 or ZEB1/2 [39]. Aberrant reduced expression of 
E-cadherin, the HIF or the EMT regulators is correlated 
with more aggressive tumors and poor prognosis [12, 
13]. Hypoxia also results in the recruitment of myeloid 
cells (e.g. macrophages and neutrophils), which can 
secrete TGF-beta, and other signaling proteins resulting in 
subsequent EMT promotion [40]. Of note, these secreted 
factors are known HIF inducers in GB [41] thus adding 
another level of complexity to EMT initiation in GB. 

Additionally, hypoxia-induced EMT particularly 
occurs in areas of CXCL12 stimulation of outer cell 
membrane CXCR4 [42] with increasing N-cadherin and 
matrix metalloproteinase-9 (MMP9) [43]. This may be 
relevant to the GB remission case reported by Rios et al 
[44]. These authors reported an unusual durable response 
in a GB patient treated with adjuvant therapy consisting of 
temozolomide and a weekly dose of plerixafor, a CXCR4 
inhibitor, together with lapatinib, high dose metformin and 
niacinamide [44]. What role the individual components 
played is unknown, but high dose metformin use may be 
noteworthy (Section 3.f.). 
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Tabouret et al have shown in paired primary and 
recurrent resection tissues that post-radiation recurrent 
GB had upregulated CXCR4/CXCL12 signaling [45]. 
However, a clinical trial of plerixafor in GB failed to show 
benefit [ClinicalTrials.gov Identifier:NCT01339039]. 
Data by Pharm et al may hint at the reasons why this trial 
failed despite the durable response described by Rios et al 
using plerixafor and a number of clinical and preclinical 
reports confirming the importance of CXCR4/CXCL12 
in GB growth and invasion [46]. Pharm et al found that 
CXCR4/CXCL12 signaling in GB exists in a mutually 
inverse relationship (see-saw, reciprocal) with signaling of 
vascular endothelial growth factor receptor (VEGFR) [46]. 

Since several reports show metformin-mediated 
reduction of VEGFR function in both preclinical [47-49] 
and in mice fed a high fat diet and clinically in polycystic 
ovarian syndrome (PCOS) and type 2 diabetes settings 
[50-52], inhibiting both systems- VEGFR function by 
metformin and CXCR4/CXCL12 by plerixafor, might be 
required to achieve a durable antitumor response. 

To summarize, preventing EMT during GB 
treatment might be a constructive step. Below are a sextet 
of already-marketed drugs with evidence that they inhibit 
in coordinated fashion one or another aspect of the EMT 
process. They are designed to be given all together to GB 
patients, during and alongside the standard therapeutic 
temozolomide based protocol for glioblastoma [53]. In 
Section 2. below we present data indicating that all 3 
glioblastoma treatment modalities- primary resection, 
radiation as well as temozolomide provoke EMT entry 
in glioblastoma, EIS Regimen might well be started even 
before biopsy and continued through end of temozolomide.

TREATMENT TRIGGERS EMT

It should not be considered odd that our mainstay 
current treatment modalities for cancer- cytotoxic 
chemotherapy, radiation, and resection- have all been 
shown to enhance or trigger EMT and thus have tumor 
growth-promoting aspects. In chess, fencing, or other 
forms of combat, including other fields of medicine, 
actions that in sum further our goals and prolong life, also 
contain within those actions elements that work against our 
goal. The chess aphorism “All moves create weaknesses 
and strengths” applies to all areas of medical intervention. 
So our job is to assess that balance in deciding to offer a 
treatment. The EIS Regimen is designed to run alongside 
all phases of initial GB standard treatments - surgical 
resection, temozolomide, and radiation - with the purpose 
to diminish the EMT triggered by treatment. 

Surgery induces EMT

That surgery induces EMT in tissues within the 
operative field should not be surprising in that EMT is an 

integral feature of normal wound healing and is triggered 
by any tissue integrity disruption [54]. 

We give here a few examples of tissue disruption 
by surgery or even simple needle core biopsy triggering 
EMT. Breast cancer fine needle biopsy engages EMT in 
mice [55]. Of potential clinical concern, incision biopsy 
of oral squamous cell carcinoma causes tumor-associated 
macrophages to produce increased local TGF-beta [56, 57] 
that in turn contributes to local immunosuppression and 
EMT as outlined in Section 3.a. below. Similarly, during 
human breast cancer diagnosis, the site of needle biopsies 
show recruitment of inflammatory cells that cause an 
increased proliferation rate of surrounding breast cancer 
cells [58]. Standard transrectal ultrasound guided prostate 
biopsy results in detectable prostate cancer cells in the 
circulation in half of patients [59]. Incisional biopsy of 
oral squamous cell carcinoma results in 16% of patients 
having post-biopsy circulating tumor cells indicative of 
post-EMT status [60] whereas excision wide enough to 
not disrupt the tumor tissue integrity did not result in post-
operative circulating tumor cells [61 ].

Conclusion: GB tissue disruption might engage 
EMT in scattered residual cells.

Cytotoxic chemotherapy induces EMT

Temozolomide enhances migration and EMT in 
some- but not all- ex vivo glioma cell lines and fresh 
patient glioblastoma cells [62]. Temozolomide exposure 
induces several EMT markers including high vimentin, 
TGF-beta, beta-catenin, and fibronectin in T98G glioma 
cells [6]. In testing breast cancer cells for doxorubicin 
cytotoxicity, 2 independent groups found that those cells 
not killed by doxorubicin were induced to undergo EMT 
and those post-EMT cells were relatively doxorubicin 
resistant [63, 64]. Similar doxorubicin induction of EMT 
was confirmed in triple negative breast cancer [64] and 
in hepatocellular carcinoma cells [65, 66], colon cancer 
cells [67] and non-small cell lung cancer cells [68]. 
Gastric cancer cells exposed to sublethal doxorubicin 
were phenotypically mesenchymal and overexpressed 
vimentin, twist and beta-catenin [69]. 5-FU induced EMT 
and increased TGF-beta in colon cancer cells [70]. Most 
relevant to our subject, doxorubicin also induces EMT in 
glioma cells [71]. KM12L4 and HT29 colon cancer cell 
lines exposed to oxaliplatin lose E-cadherin, increase 
vimentin, and become motile while becoming more 
resistant to oxaliplatin [72]. During chronic exposure to 
paclitaxel, ovarian cancer cell lines take on a mesenchymal 
phenotype, lose E-cadherin and increase expression of 
vimentin and fibronectin [73].

Conclusion: Current cytotoxic chemotherapy drugs 
tend to engage EMT programs.
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Radiation induces EMT

We have many examples where radiation that didn’t 
kill exposed cells, triggered them to undergo EMT. Radio-
resistant glioma cells exhibit a specific signature enriched 
in genes belonging to the EMT process [74]. Reviews in 
2014 and again this year (2017) of collected data from 
multiple different cancers make a strong argument that a) 
ionizing radiation induces increased metastasis potential 
and enhanced invasiveness of surviving cancer cells and b) 
it does so via induction of EMT programs [75, 76]. 

Empirically, radiation enhancement of migration 
and triggering of EMT specifically in GB can be readily 
demonstrated [77-83]. 

Radiation enhanced centrifugal migration of U87 
glioma cells implanted in mice and also increased brain 
levels of IL-1, PGE2, IL-6, and TNF-alpha (see Section 
3.d below) [77]. U251 glioma cells were triggered to 
enter EMT and migrate after exposure to X-rays [79]. 
Non-gamma ionizing radiation at intermediate doses 
also triggered glioma cells to migrate and express EMT 
markers. At doses above intermediate, cell death occurred, 
below intermediate dose failed to induce EMT [80]. That 
“cells surviving radiation can become more aggressive and 
invasive” was confirmed in 2 independent studies GB [81, 
82]. Most instructive was the study of Desmarais et al with 
radiation of rats with orthotopic implanted glioma cells. 
Radiation enhanced the implanted glioma cells’ migration 
and shortened survival compared to control rats implanted 
with the same glioma cells but not radiated [83]. 

Similar ionizing radiation induction of migration 
and other EMT attributes can be demonstrated in other 
cancers. For example non-lethal X-radiation at 0.4 Gy/min 
induced migration, individual cell morphology changes 
typical of EMT, strong upregulation of EMT mediating 
transcription factors Snail and Twist, decreased E-cadherin 
and increased vimentin and fibronectin in MCF-7 breast 
cancer cells [84]. Nearly identical increases in motility 
and phenotype changes with concomitant decreases in 
E-cadherin and increases in vimentin and fibronectin 
have been described in irradiated colorectal cancer 
cell lines [85]. Human non-small cell lung cancer cells 
surviving 10 Gy radiation showed increased motility and 
increased MMP-2/-9 [86]. Dramatic demonstration of the 
development of microtentacles after colon cancer cell 
exposure to 5Gy X-ray can be seen in scanning electron 
micrographs [87]. Endometrial cancer cells [88] and 
squamous esophageal cancer cells [89] take on typical 
EMT phenotypic changes and increase migration after 
gamma radiation. Biopsy from the radiated field in rectal 
cancer shows regions of cells having undergone EMT with 
elevated Slug, Snail, and vimentin [90]. 

Two breast, 2 colon and 2 lung adenocarcinoma cell 
lines subjected to 2 Gy increased vimentin and motility 
while taking on typical mesenchymal morphology [91]. 

Altogether, these data strongly suggest that GB cell 
response to radiation contribute to the EMT process and 
the acquisition of an invasive and aggressive phenotype.

Conclusion: So while radiation of the post-resection 
area improves overall survival, it also induces EMT in the 
few surviving cells that have migrated deep into brain, 
setting the stage for later aggressive regrowth of tumor. 
Or as Niccolo Machiavelli (1469 - 1527) said in 1513 
“People should either be caressed or crushed. If you do 
them minor damage they will get their revenge; but if you 
cripple them there is nothing they can do. If you need to 
injure someone, do it in such a way that you do not have 
to fear their vengeance.” EIS Regimen was crafted with 
that in mind.

THE EIS REGIMEN: EMT TRIGGERS, 
MAINTENANCE FACTORS, AND 6 
CURRENTLY AVAILABLE DRUGS TO 
INHIBIT BOTH

The EMT-triggering targets presented here have 
been selected based in part on a) their having readily 
available repurposed drugs to inhibit them that b) are 
already FDA, EMA, ANSM (French FDA equivalent) and 
Health Canada approved for use in humans. The guiding 
precept was that we must treat today’s disease in today’s 
patient with the medicines and tools we have available 
today. Additionally, the growing cost of medical care 
worldwide, particularly in oncology is a further incentive 
to repurpose already marketed, clinically used non-
oncology drugs to augment effectiveness of traditional 
oncology drugs. The EIS Regimen uses medicines that 
have been well-proven to be safe and effective in their 
original indication. If they will be likewise effective as 
adjunct in treating GB must be tested.

Inhibiting TGF-beta: pirfenidone

Of all the EIS Regimen drugs, the one with the 
strongest evidence for benefit during GB treatment is 
pirfenidone. Pirfenidone is a 185 Da drug first approved 
to treat idiopathic pulmonary fibrosis [92, 93]. It has since 
been investigated in treating hepatic fibrosis and other 
diseases where excessive fibrosis is a problem. It is well-
tolerated, side effects do not usually necessitate stopping. 
Side effects of pirfenidone tend to be gastrointestinal and 
generally mild - nausea, dyspepsia, vomiting, anorexia, or 
less commonly rash - but all without long term sequelae 
[94, 95]. 

Pirfenidone works in part by blocking TGF-beta 
signaling [92, 94, 96]. TGF-beta is a 25 kDa signaling 
protein proteolytically clipped from a large precursor 
protein. TGF-beta signaling is a major driver of EMT in 
cancer generally [97, 98] and in GB’s EMT specifically 
[12, 13, 99-102]. 
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TGF-beta is a facilitating element of many cancers 
by promoting angiogenesis, immune suppression and 
EMT induction [103]. After cell surface binding to its 
heteromeric receptor complex serine/threonine kinase, 
multiple processes including activation of nuclear 
transcription factors and cytoplasmic cytoskeleton 
changes - are set in motion and initiate and sustain 
EMT [104]. Multiple intermediary transcription factors 
activated by TGF-beta including Snail, Slug, Twist, SIP1/
ZEB, and E47, down regulate E-cadherin expression 
and engage EMT related programs [105]. Chronic TGF-
beta-mediated stimulation in both cancer or pathologic 
wound healing may drive excess extracellular matrix and 
collagen synthesis and deposition [106]. TGF-beta induces 
phosphorylation of Smad, p38, Akt, and smooth muscle 
actin and collagen mRNA levels - all elements of EMT- 
in normal pulmonary fibroblasts during development of 
pulmonary fibrosis. All these changes can be inhibited by 
pirfenidone [107]. Pirfenidone inhibits experimentally 
TGF-beta driven migration and EMT in normal epithelia 
[108, 109]. 

Experimental unilateral ureteral obstruction in 
rats results in tubulointerstitial changes characteristic 
of EMT- increased TGF-beta1, type III collagen, 
α-SMA, S100A4, fibronectin and reduced expression 
of E-cadherin. Pirfenidone treatment tended to diminish 
these changes [110], reducing obstruction provoked EMT 
and renal fibrosis. Pirfenidone also inhibited TGFbeta 
driven collagen and fibronectin overproduction in non-
small cell lung cancer cell lines [111]. In dextran-induced 
murine colitis, pirfenidone reduced the elevated TGF-
beta mRNA, SMAD signaling, and consequent fibrosis 
[112]. Pirfenidone inhibited migration of ex vivo TGF-
beta stimulated nasal polyp fibroblasts concomitantly 
with blocking TGF-beta-induced SMAD phosphorylation 
[104]. 

These data are effects we expect pirfenidone to 
likewise do during GB treatment. Of added benefit during 
GB, pirfenidone has activity also in inhibiting TNF-alpha 
and platelet derived growth factor (PDGF) [96], both 
growth factors implicated in driving GB growth. TGF-beta 
triggers prostate cancer cell motility and enhances bone 
marrow cell recruitment to the growing tumor stroma. 
[113, 114]. 

An early (1994) study showed that while TGF-
beta enhanced invasiveness and migration of glioma 
cells, it also decreased mitotic rate, indicative of EMT 
induction [115]. A recent study (2016) showed that an 
experimental peptide TGF-beta inhibitor, P144, decreased 
GB invasion, migration, and increased apoptosis 
[116]. microRNA-564 mediated decrease in TGF-beta 
inhibited proliferation and invasiveness of U87 glioma 
cells [Jiang]. Phytoderived delphinidin inhibited TGF-
beta-mediated increases in fibronectin and migration of 
U87 glioma cells by interfering with translation factor 
SMAD and others, downstream from TGF-beta receptors 

[117]. None of the latter 3 anti-TGF-beta agents- P114 
peptide, microRNA-564, or delphinidin- are marketed 
pharmaceuticals available to treat GB patients today. 
Pirfenidone is.

Ohshio et al have shown that blocking TGF-beta 
release from lung cancer cells reduced their motility and 
invasiveness, increased their expression of E-cadherin and 
reverted their morphology to epithelial from mesenchymal 
but had no effect on the cells viability [118]. Similarly, 
in hepatocellular carcinoma TGF-beta synthesized and 
released by tumor infiltrating monocytes, drives the 
proper carcinoma cells’ EMT [119]. A parallel relationship 
between monocyte lineage cells and malignant phenotype 
has been described in GB as well [120]. 

Circulating IL-6 and TGF-beta levels are elevated 
in chronic hepatitis C. After 2 years treatment with 
pirfenidone (400 mg, 3 times daily), levels of both 
cytokines were lowered by ~ 50% [121]. See Section 
3.d. below for discussion on advantages of diminishing 
IL-6. Retinal pigment epithelial cells after exposure to 
TGF-beta undergo phenotypic, biochemical marker and 
enhanced migration changes typical of EMT. Exposure 
to pirfenidone prevented these effects of TGF-beta 
by preventing SMAD translocation to nucleus [122]. 
Pirfenidone inhibits TGF-beta increases after bleomycin 
exposure in rats as well [123]. TGF-beta signaling in 
connection with another EIS drug, metformin, is discussed 
under section 3.f.

Pirfenidone was first suggested as a potentially 
useful treatment adjunct for GB in 2007 [124]. In this 
Section we detailed further evidence that TGF-beta is 
an important GB growth factor and major trigger for 
GB cells’ EMT. Inhibition of TGF-beta expression 
in malignant glioma cells by pirfenidone is worth 
investigating as adjunctive treatment alongside of current 
primary GB treatment with resection, temozolomide and 
radiation. 

Inhibiting RANKL: quetiapine

Quetiapine is a 383 Da generic psychiatric drug 
originally marketed to treat psychoses. It has since been 
found to have other attributes, including norepinephrine 
reuptake inhibition and strong antihistamine effects 
leading to adjunctive use in treating depression and 
insomnia, respectively. 

Our addition of quetiapine to the EIS Regimen 
hinges on a single report showing that quetiapine inhibits 
the Receptor Activator of Nuclear Factor Kappa B Ligand 
(RANKL) signaling [125]. Secondary consideration 
recommending quetiapine’s addition was that it is well 
tolerated in a non-psychiatric population- it will not add 
to side effect burden. 

RANKL becomes overexpressed in parallel with 
vimentin and N-cadherin during TGF-beta-induced EMT 
in prostate cancer cell lines [126]. RANKL signaling may 
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be more of a mediator of EMT behaviors than a trigger 
to initiate or maintain EMT programs. An interesting 
dataset connects RANKL to EMT. RANKL-activation 
of RANK increased expression of vimentin, N-cadherin, 
Snail, and Twist, decreased the expression of E-cadherin 
and drove EMT in normal breast acinar cells and a number 
of cancers including breast cancer [127], hepatocellular 
carcinoma [128, 129], endometrial [130, 131], lung [132] 
and prostate cancer [126]. 

GB secreted RANKL enhances GB invasive 
motility in part by paracrine signaling to surrounding non-
malignant astrocytes, triggering these astrocytes to secrete 
TGF-beta that in turn facilitates centrifugal glioma cell 
migration/invasion [133]. Thus the EIS Regimen attempts 
to undermine the RANKL and TGF-beta mediated growth 
enhancing cycle between glioma cell and surrounding 
normal astrocytes by coordinated inhibition with 
quetiapine and pirfenidone.

Inhibiting beta-catenin-mediated canonical Wnt 
signaling: rifampin

Rifampin (synonymous with rifampicin) is an 823 
Da antibiotic introduced to clinical use in the 1960’s, used 
today largely for treating tuberculosis, Hansen’s disease, 
treatment resistant Staphylococcal, and H.pylori infections 
[134]. Rifampin functions in EIS Regimen to a) reduce 
microglial activation and b) inhibit Wnt/beta-catenin 
signaling (these 2 attributes might be related).

a) Rifampin is neuroprotective by inhibiting 
microglial activation and is in active study in Parkinson’s 
disease on that basis [135, 136]. 

b) Wnt signaling forms an important growth 
element in many cancers [137, 138] including in GB 
[139, 140]. Wnt signaling is divided into canonical and 
non-canonical [141]. Canonical Wnt signals through the 
92 kDa intracellular transcription factor beta-catenin. 
After Wnt ligand binding, beta-catenin is translocated to 
the nucleus where it binds to cognate DNA recognition 
sequences and promotes transcription of a number of 
target genes. In the absence of Wnt ligand, beta-catenin 
is degraded via the ubiquitin-proteasome pathway 
[142]. Poly-phosphorylation and poly-ubiquitination 
mark beta-catenin molecules doomed for proteasomal 
destruction [142]. beta-catenin can also be sequestered in 
cytoplasm by binding to the intracellular domain of E- or 
N-cadherin and therefore become unavailable to serve as 
a transcription factor in nucleus [137-140]. 

Experimental beta-catenin agonists enhance glioma 
cell migration that is impaired in the presence of beta-
catenin inhibitors [143]. For instance, tetrandrine is a 623 
Da phytoderived molecule that inhibits glioma cell (and 
urothelial cancer cell) migration by blocking beta-catenin 
translocation to the nucleus [144, 145]. EIS Regimen uses 
rifampin to do the same.

 In early 2016, an unusual case of retarded 
progression in a non-small cell lung cancer patient being 
treated for tuberculosis with rifabutin led Li et al [146] 
to experimentally investigate the anti-cancer effect 
of rifabutin. Rifabutin is an 847 Da antibiotic closely 
related to the older rifampin. It was found that rifabutin 
prevented Wnt-mediated beta-catenin’s protection from 
proteasomal degradation and by this mechanism inhibited 
non-small cell cancer’s growth both in vitro and in an 
in vivo xenograft model [146]. Since rifabutin doesn’t 
cross the BBB but the closely related rifampin does, the 
latter would be preferable in inhibiting canonical Wnt/
beta-catenin nuclear signaling in GB. Canonical Wnt is a 
convergence point for many signaling systems triggering 
EMT, promoting glioma growth, and driving centrifugal 
glioma cell motility [147-156]. 

beta-catenin signaling upregulation forms part of 
glioma cells’ development of temozolomide resistance 
[151]. Upregulation of beta-catenin signaling as a response 
to ionizing radiation is a component mediating GB’s EMT 
response after radiation exposure [154] (as discussed 
in Section 2.c. above). Experimental, non-marketed 
beta-catenin signaling inhibitors inhibited experimental 
glioma’s growth [145, 149, 152, 156]. 

Inhibiting the canonical Wnt/beta-catenin signaling 
with rifampin is a worthwhile strategy to explore in GB 
treatment. 

Inhibiting Rac1-mediated non-canonical Wnt 
signaling and IL-6: naproxen

Non-canonical Wnt signaling occurs without 
participation of beta-catenin [140, 141]. Rac1 (acronym 
for ras-related C3 botulinum toxin substrate 1) is a 21 
kDa GTPase that serves as a transducer, an intracellular 
link between non-canonical Wnt signaling events and 
end-effects in the nucleus [139-141]. Experimental 
Rac1 inhibition potentiates cytostasis and cytotoxicity 
by imatinib, gefitinib [157] and erlotinib in GB [158]. 
Experimental Rac1 inhibition inhibits colon cancer cells’ 
migration as well [159]. 

Naproxen is a 230 Da, commonly used 
cyclooxygenase (COX) inhibitor, marketed as an 
analgesic. Cerebrospinal fluid (CSF) naproxen levels 
not higher than 3 microM may be achieved under usual 
treatment conditions. Oprea et al have reported EC50 for 
Rac1 of R-naproxen being 18 microM [160]. Given the 
achievable brain tissue levels of naproxen as compared to 
Rac1 inhibition data by Oprea and coworkers, naproxen 
would not be the ideal Rac1 inhibitor. Albeit something 
more potent would be preferable and medicinal chemistry 
studies aimed to development of more effective Rac1 
inhibitors are warranted, preclinical investigations on the 
potential therapeutic effect of naproxen on GIC-driven 
orthotopic GB may provide useful indications on the role 
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of Rac1 in GB’s EMT. Again, although not ideal we must 
fight GB with the tools we have at hand.

IL-6 is a cofactor promoting GB’s EMT. Collected 
data on growth promotion and apoptosis inhibition 
functions of IL-6 in GB up to 2011 was reviewed by 
Yeung and coworkers [161 ] Since then circulating IL-6 
was found elevated in GB [162] as was CSF IL-6 level 
[163]. 

COX inhibitors tend to reduce IL-6 by decreasing 
intracellular cAMP [164-166]. Specific recent examples 
of this: naproxen clinically reduced IL-6 in IL-6-
overproducing pheochromocytoma [167], in sera of patient 
with osteoarthritis [168], in subchondral osteoartrthritis 
osteoblasts [169], and in osteoarthritis patient synovial 
cells ex vivo [170]. Also in rheumatoid arthritis plasma 
and synovial fluid show increased IL-6 that is decreased 
by naproxen treatment [171]], and in a cardiac myxoma 
patient with elevated IL-6 [172]. In accord with what 
we know of intracellular control of IL-6 generation, 
COX inhibition generally reduces circulating IL-6. IL-6 
suppression may be a worthy target during GB treatment. 

It is established that GB cells synthesize IL-6 and it 
functions as a significant growth and migration enhancing 
factor [173-194]. 

Selected examples: Exogenous IL-6 enhanced 
glioma cell migration in vitro [173]. A pharmaceutical 
monoclonal anti-IL-6 antibody inhibited glioma cell 
proliferation [174], radiation induced increased IL-6 
synthesis (cf Section 2.c. above) [176] contributing to 
glioblastoma related reduced immune function. There 
is an IL-6 based positive feedback loop in glioblastoma 
where extracellular IL-6 results in intracellular STAT3 
phosphorylation (activation) that in turn upregulates 
glioblastoma cells’ IL-6 synthesis [181]. Glioblastoma 
show IL-6 gene amplification and patients with greater 
degree of amplification have shorter overall survival 
[184, 185]. Peripheral blood mononuclear cells from GB 
patients secrete abnormally large amounts of IL-6 as well 
[190]. Immunohistochemical IL-6 staining of GB tends to 
be heavier in perinecrotic areas [190]. 

In a parallel fashion reminiscent of radiation 
induction of EMT (see Section 2.c. above), IL-6 synthesis 
by GB cells was stimulated by intermediate dose radiation 
whereas low or high dose radiation did not increase IL-6 
[180]. Earlier studies have shown that GB cells increase 
IL-6 synthesis and release after sublethal radiation and that 
this release increases with time over the first post-radiation 
day [191]. Aspirin, a balanced COX1-2 inhibitor reduced 
GB cell synthesis of IL-6 and induced cell death, an effect 
that was counteracted by adding exogenous IL-6 [192]. 

However, 2 clinical failures to find naproxen 
lowering of IL-6 (after spinal surgery and in rheumatoid 
arthritis) [195, 196] are of concern. This matter mandates 
monitoring IL-6 during EIS Regimen to determine if 
naproxen is in fact working as intended.

The observation that IL-6 can transactivate EGFR 

in GB in the absence of any EGFR ligand in GB [197], 
may help to explain why the EGFR inhibitor erlotinib 
was not effective clinically in treating GB tumors even 
when these are growth suppressed by erlotinib in vitro and 
overexpress EGFR in vivo [198]. 

In conclusion, limiting IL-6 function seems to be 
an eminently worthwhile goal in treating glioblastoma. 
Naproxen might not be an ideal drug to use for that, but 
naproxen is cheap, readily available, well-tolerated, and 
the drug we have today. 

Inhibiting hedgehog: itraconazole

Itraconazole, an old 706 Da antifungal drug, is 
undergoing a renaissance of interest for its anticancer 
effects [199, 200]. The primary mode of anti-cancer 
action is inhibition of Hh signaling [199, 200]. Hh is an 
important driver of GB growth [201-207]. Hh signals 
through intracellular transcription factor Gli [205, 206]. 
Gli1-driven transcription induces EMT via induction of 
Snail, a repressor of E-cadherin in many other cancers.

Itraconazole inhibits release of Gli1 thus keeping 
it sequestered in the cytoplasm [205]. GB patients with 
low Gli1 expression had longer overall survival [202]. 
The experimental Hh signaling inhibitor cyclopamine, or 
suppressing Gli1 expression by using siRNA interference 
led to decreased cell proliferation and enhanced apoptosis 
in U87 glioma cell line [208]. 

In preclinical studies itraconazole inhibition of 
Hh signaling inhibited growth of breast cancer [209], 
melanoma [210], and endometrial cancer [211].

Activating AMPK: metformin

Metformin is a 129 Da drug in common first line 
use when type 2 diabetes is diagnosed [212 ]. In 2013, 
metformin was called “a rising star to fight (EMT) in 
oncology” by Barriere and coworkers who recounted 
multiple putative modes of metformin’s anti-cancer 
action [213]. Further, Del Barco et al have reviewed the 
empirical epidemiological evidence for a metformin anti-
cancer effect [214] and Chae et al the relevant clinical 
studies [215]. 

Across many cancers a large chart review shows 
decreased mortality in patient’s treated with metformin 
[216 ] although the effect has not been large. Increased 
lactate secretion, reduced oxygen consumption, inhibition 
of mitochondrial inner membrane I complex activity 
(inner membrane NADH ubiquinone oxidoreductase), 
and activation of AMPK-signaling have been proposed 
as mechanisms for metformin’s anticancer effects [217]. 
To what degree one or the other of these mechanisms is 
the consequence of one of the other listed mechanisms 
is unknown. Inhibition of the mitochondrial respiratory 
chain complex 1 is the leading candidate for a primary 
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mode of anti-cancer action [218]. By inhibiting function of 
mitochondrial respiratory chain complex 1, mitochondrial 
ATP production and oxygen consumption are decreased. 
Compensatory increases in lactate and shift to relative 
reliance on glycolytic ATP production result in AMPK 
activation, with mTOR function consequent to that. 
Decreased proliferation, cell cycle arrest, autophagy, 
apoptosis and other forms of cell death would then follow 
from this ensemble.

AMPK is a ubiquitous heterotrimeric protein 
acting as a kinase with multiple identified targets [219]. 
Metformin, through inhibition of the mitochondrial 
respiratory chain complex 1, activates AMPK [220, 
221] that in turn suppresses several transcription 
factors including Snail and Slug [28, 222]. Circulating 
leukocytes of metformin-treated diabetes patients had 
hypomethylated E-cadherin promoters and increased 
E-cadherin levels [28]. Metformin specifically inhibits 
TGFbeta -induced EMT in non-small cell lung cancer cell 
lines [223]. Independent studies showed that metformin 
inhibited TGF-beta-stimulated loss of E-cadherin and gain 
of vimentin [106, 224] as well the decrease of N-cadherin 
and prostate cancer cell motility [224]. 

Decreasing N-cadherin expression can also be 
an AMPK-independent mode of metformin action in 
reversing or inhibiting EMT [225]. TGF-beta activated 
intracellular transcription factors Snail and Twist and 
cervical cancer EMT are also diminished after metformin 
[106, 226]. Human endometrial cancer biopsy tissue from 
patients on metformin had more E-cadherin compared to 
patients on other anti-diabetes agents [227]. This bodes 
well for our use of metformin to inhibit EMT during 
primary GB treatment.

Although tumor bed radiation after GB resection 
is standard treatment of GB and has proven survival 
benefit, radiation does participate in enhancing residual 
GB cell migration as outlined in Section 2.C. above. 
Metformin inhibits radiation induced EMT features 
and increased motility in esophageal squamous cell 
carcinoma cells where metformin also reduced radiation-
induced expression of mesenchymal markers vimentin 
and N-cadherin and reduced transcription factors Slug, 
Snail, and Twist [228]. In a parallel manner, exposure to 
docetaxel decreases prostate cancer cells’ mitosis rate, 
but increases motility, lowers E-cadherin expression, 
increases MMP-9 and changes morphology typical of 
EMT. Metformin partially reversed this docetaxel-induced 
increased motility, lowered E-cadherin, and increased 
MMP-9 [229]. 

Metformin also reduced EMT phenotypic changes 
observed in lung adenocarcinoma cells exposed to 
TGF-beta, by decreasing Snail2, Twist, and vimentin 
expression, while increasing E-cadherin [230]. Similarly, 
metformin also increased E-cadherin, decreased 
N-cadherin and MMP-9 in a xenografted mouse gastric 
cancer model [231]. In melanoma cells metformin partially 

reversed EMT and in vitro colony formation triggered 
by low pH [232]. Metformin increased E-cadherin and 
phosphorylated AMPK, while decreasing N-cadherin in 
hepatocellular carcinoma cells [233]. 

Triple negative breast cancer (TNBC, cells not 
expressing estrogen receptor, progesterone receptor, or 
HER2) are particularly aggressive. In these patients, 
elevated TGF-beta production further worsens the patient’s 
prognosis. In vitro, metformin attenuated the TGF-beta-
stimulated TNBC cell growth, invasion and motility [234]. 
Metformin inhibited EMT in cell lines of thyroid [235], 
non-small cell lung [236] and prostate cancer [237], and 
reversed EMT in non-small cell lung [238], breast [239] 
and prostate cancer [240]. In melanoma, metformin 
increased E-cadherin and inhibited cell motility, migration 
and invasion [241]. 

Experimental renal ischemia-reperfusion results in 
tubulointerstitial fibrosis accompanied by increased TGF-
beta, IL-6, and vimentin with decreased E-cadherin. All 
these, changes may be partially reversed by metformin 
[242]. In proximal tubular epithelial cells TGF-beta1 
treatment causes a decrease in AMPK phosphorylation 
and activation together with increased fibronectin and 
alpha-smooth muscle actin expression and decrease in 
E-cadherin. Metformin inhibited these TGF-beta induced 
changes by increasing phosphorylated AMPK [243]. 

Metformin reversed 17beta-estradiol-induced 
EMT in endometrial adenocarcinoma cells via an AMPK 
activating step [222]. Activation of AMPK by metformin 
inhibited TGF-beta-induced Smad2/3phosphorylation, 
increase in IL-6 and fibronectin in cancer cells [244], 
indicative of EMT inhibition. AMPK activation reduces 
DNA promoter activity resulting downstream to TGF-
beta1 and a slight decrease in serum TGF-beta in diabetic 
patients [245]. 

In non-small cell lung cancer cells, the inverse 
relationship between rising IL-6 expression and falling 
E-cadherin expression was inhibited by metformin [236]. 
TGF-beta induced EMT in prostate cancer cells, increasing 
E-cadherin, vimentin and Slug, effects mitigated by 
metformin [246]. Thus metformin is a promising partner 
drug for pirfenidone. 

As positive data accrues, using metformin as 
an adjunct to cancer therapies becomes a more and 
more attractive strategy. For instance, in hepatocellular 
carcinoma cells metformin alone gave considerable 
growth inhibition and augmented cytotoxicity of cytotoxic 
drugs 5-FU, doxorubicin, cisplatin increases oxidative 
stress synergistically leading to increased apoptosis in 
treated cells [247]. 

Metformin was synergistic with sorafinib in 
increasing intracellular ROS, decreasing efflux pump 
activity and increasing apoptosis in glioma cells [248]. 
That metformin augmented temozolomide GIC killing in 
GB explant culture was shown in 2011 [249] and again 
independently in 2016 [250]. Metformin’s cytotoxic 
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activity to glioma cells is somewhat selective for the 
GIC subpopulation [251]. Metformin inhibits glioma cell 
proliferation at lower concentrations and proliferation 
plus migration at higher concentrations [252]. Metformin 
exposure enhanced cytotoxic effects to glioma cells of 
either temozolomide or radiation and retarded glioma 
xenograft growth [253]. By progressive temozolomide 
exposure over 9 months, glioma cells resistant to 
temozolomide were developed. Exposure to metformin 
several days before exposure to temozolomide more than 
reverted these cells’ sensitivity to temozolomide. The 
authors confirmed metformin retardation of glioma growth 
in a xenograft model [254]. 

Leidgens et al found glioma cell exposure to 
metformin resulted in decreased glioma cell proliferation 
and increased AMPK activation, as found by others, but 
also inhibition phosphorylation of STAT3 in [255].

Despite being rather hydrophilic, metformin 
achieves approximately equal plasma and brain 
tissue levels. In rats after single dose oral metformin 
administration, 28 micromol/l plasma and 14 micromol/kg 
brain tissue were measured [256]. The range of metformin 
plasma levels typically seen in asymptomatic diabetes 
patients is unusually wide for a therapeutic drug, reflecting 
its safety [257]. Of considerable additional potential 
benefit, metformin reduced glioma-induced brain edema 
in a rat model [258]. 

SAFETY

Pirfenidone

In clinical practice pirfenidone often has no side 
effects. Mild nausea in 23%, rash /photosensitivity in 20% 
(treated minus placebo) of patients were most common 
side effects when treating idiopathic pulmonary fibrosis 
[259]. These side effects were generally well tolerated.

Quetiapine

Quetiapine has a circulating half-life of 7 hours but 
its dopaminergic (at D2) and serotonergic (at 5-HT2A) 
receptor antagonistic occupancy is transient. It has 
significant antidepressant and antipsychotic properties 
for both of which it is in wide use world wide [260]. 
Quetiapine is quite well tolerated also in non-psychiatric 
populations. Some daytime sedation is common after 
starting quetiapine but this usually wears off after 
several day’s use. It should only be given once daily at 
bedtime. This day sedation commonly recurs after each 
dose increase but again wears off after several day’s use. 
Importantly for a drug with anti-psychotic properties, 
quetiapine-related extrapyramidal signs and symptoms do 
not differ from placebo [260]. 

Rifampin

Rifampin has a 4 hr half-life and is relatively safe at 
doses under 1.2 g/day, under which adverse or side effect 
risk is small, although in rare cases serious [261]. Drug-
induced hepatitis is recognized as a rare possibility. Since 
rifampin is a strong inducer of P450 3A4 [262] and use 
with a strong 3A4 inhibitor, itraconazole, is envisioned, 
the net effect will be unclear so caution would be required 
when using other drugs that may be influenced by this 
catabolizing system. Rifampin also strongly increases 
level and activity of CYP2A6, CYP2C8, 2C9, and 2B6 
[262].

Naproxen

Naproxen is so well tolerated that it is widely 
available around the world over-the-counter (i.e. 
available without a prescription), the most common side 
effect being gastrointestinal irritation and microbleeds. 
Stomach or duodenal ulceration occurs rarely. Prior 
H.pylori eradication and administration with a proton 
pump inhibitor will reduce that risk even further. 
Naproxen is a balanced COX1/COX2 inhibitor, has a 
14 hr half-life, is metabolized by multiple hepatic P450 
enzymes, prominent among which are 1A2, 2C8 and 
2C9 and has been marketed since the 1970’s. Naproxen 
hasn’t the cardiovascular risks of other COX inhibitors 
and in fact does share with aspirin some of that drug’s 
cardioprotective antiplatelet function [263]. 

Itraconazole

Itraconazole is a lipophilic, 24 hr half-life, broad 
spectrum anti-fungal drug [264]. Serum levels < 17.1 
mg/L are associated with fewer side effects than are higher 
levels. Out of 9065 patients treated with itraconazole, 17% 
had mild GI upset, liver function elevation in 5%, rash in 
3%, 2% hypokalemia, 1% headache, but only 1 case of 
hepatitis, with multiple rare cases of various other side 
effects [264]. If a proton pump inhibitor is concomitantly 
used, itraconazole must be given with orange or lemon 
juice to achieve good absorption.

Metformin

Most people starting metformin experience no side 
effect. Metformin is one of the safer anti-diabetic drugs 
as it does not induce hypoglycemia. Mild and transient 
GI upset occurs in 5% of non-insulin-dependent diabetes 
patients starting metformin. Rare lactic acidosis has been 
reported [265, 266]. Most of ingested metformin appears 
unchanged in urine and feces [265, 266].
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CONCLUSIONS

All three arms of current GB treatment - surgery, 
cytotoxic chemotherapy with temozolomide, and radiation 
- all tend to engage EMT programs. Post-EMT GB cells 
are more aggressive, more treatment resistant, and are in a 
high migration, apoptosis resistant state. The EIS Regimen 
was developed with the aim of limiting this inherent 
negative consequence of current GB treatment. The EIS 
Regimen uses only already-marketed drugs, repurposed 
for their ancillary attributes in inhibiting one or another of 
the EMT triggers, as described above in Section 3.

As a preliminary step the efficacy of the EIS 
regimen towards GB might best be investigated in 
preclinical survival studies on immunodeficient mice 
bearing GIC-driven orthotopic tumors. This is presently 
the most reliable and informative animal model we have - 
albeit an imperfect one- for exploring the efficacy of novel 
treatments against GB, prior to clinical Phase I/II studies. 

In the meantime, given the lethality of GB, the 
ubiquity of recurrence after primary treatment, the paucity 
of treatments we have to offer after recurrence, it could 
be reasonable to add the EIS Regimen to initial current 
standard in a small pilot study to test the hypothesis of 
this paper, that the EIS Regimen with inhibit treatment-
induced EMT and thereby delay recurrence. Blocking 
EMT with the EIS Regimen was designed to be best 
applied peri-operatively, even before first biopsy, and used 
continuously during radiation and primary treatment with 
temozolomide for at least one year.

This paper proposes the simple idea that, by 
combining individual interventions that might be weak 
individually, we may get an additive therapeutic effect, 
particularly when the drug effects are coordinated as we 
have attempted to do. The expected safety profile of the 
ensemble of EIS Regimen drugs is based on the well-
known safety profile of the individual drugs. 

We are fully aware that some other drivers of 
EMT that have been identified are not addressed by EIS 
Regimen. Functional redundancy may be a major problem 
when trying to pharmacologically block malignancy-
promoting pathways and processes like EMT, given its 
expected safety and the usual outcome of GB as it stands 
today, the EIS Regimen is a rational option that we might 
explore with profit today using today’s tools.

Highlights

• EMT is an element of malignant process where 
tumor cells become loose, more motile but less 
mitotic and less sensitive to cytotoxic drugs and 
radiation

• EMT is a central initial process in establishment 
of metastases or tumor spreading in the organ of 
primary occurrence such as brain.

• Standard cancer treatment modalities- cytotoxic 
chemotherapy, radiation and surgical resection, 
all tend to provoke or increase EMT.

• Six older drugs- itraconazole, metformin, 
naproxen, pirfenidone, quetiapine, and rifampin 
have good preclinical evidence that they can be 
repurposed to interfere with EMT process and 
therefore be of adjunctive benefit when treating 
cancer generally, glioblastoma specifically, to 
run alongside of standard current treatment.
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