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ABSTRACT
Breast cancer (BC) is the most common diagnosed cancer and the leading cause of 

cancer death in women worldwide. There is an obvious need for a better understanding 
of BC biology. Alterations in the serum metabolome of BC patients have been identified 
but their clinical significance remains elusive. We evaluated by 1H-Nuclear Magnetic 
Resonance (1H-NMR) spectroscopy, filtered plasma metabolome of 50 early (EBC) and 
15 metastatic BC (MBC) patients. Using Principal Component Analysis, Partial Least-
Squares Discriminant Analysis and Hierarchical Clustering we show that plasma levels 
of glucose, lactate, pyruvate, alanine, leucine, isoleucine, glutamate, glutamine, valine, 
lysine, glycine, threonine, tyrosine, phenylalanine, acetate, acetoacetate, β-hydroxy-
butyrate, urea, creatine and creatinine are modulated across patients clusters. In 
particular lactate levels are inversely correlated with the tumor size in the EBC cohort 
(Pearson correlation r = −0.309; p = 0.044). We suggest that, in BC patients, tumor 
cells could induce modulation of the whole patient’s metabolism even at early stages. 
If confirmed in a lager study these observations could be of clinical importance.

INTRODUCTION

Breast cancer (BC) is the most common diagnosed 
cancer and the leading cause of cancer death in women 
worldwide, accounting for 25% of all cancer cases and 
15% of all cancer deaths among females. Mortality 
rate has declined over the last decades mainly due 
to advances in screening methods, leading to earlier 
diagnosis, and successful multidisciplinary treatments 
of the early diseases [1]. However, despite progresses in 
therapies and supportive cares of advanced diseases, the 
majority of relapsing patients die of the malignancy or its 
complications [2].

So there is an obvious need for a better 
understanding of BC biology.

Metabolomics, the global qualitative and quantitative 
evaluation of metabolites in a biological system, by NMR 
spectroscopy, mass spectrometry or combined techniques 
[3, 4] has emerged as a unique tool to investigate the 

modification of metabolites of cancer cells or in biofluids 
and tissues of cancer patients [5, 6].

Many studies have shown significant alterations in the 
plasma or serum of BC patients. However, because of the 
considerable diversity of these results, BC metabolomics 
remain exploratory [7–9]. Moreover, the origin of these 
systemic metabolic modifications remains a subject of 
debates. At first glance they could be considered as direct 
leakages of cancer cells metabolites but recent reports 
suggest that host response to cancer is also important even 
at early stages [10]. The serum composition, as far as the 
endogenous metabolites are considered, could be remodeled 
due to such host-tumor interactions [7, 8, 10].

We report here a 1H-NMR-based metabonomic 
study describing metabolic plasma modifications across 
EBC and MBC patients cohorts and tentatively propose 
some biological explanations opening new putative 
perspectives for BC metabonomics evaluation and the 
management of patients.
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RESULTS

Population and clinico-pathological parameters

Fifty EBC and fifteen MBC patients were included 
in this study. Two patients with non-invasive histology 
were finally excluded from metabolomics analysis.

EBC plasma samples analyses

A first PCA analysis blindly performed on all samples 
identified five outliers: one patient had very high lactate 
plasma level probably due to inadequate blood collection or 
manipulation, two presented high ethanol levels and two patients 
showed high glucose levels due to non insulin dependent 
diabetes. They were all excluded from further analyses.

As shown in Figure 1, PCA (A), hierarchical analyses 
(B) and PLS-DA (C) next allowed to significantly split up 

the whole EBC population into 3 clusters named LR-1, LR-2 
and LR-3 (CV-ANOVA p < 0.001; permutations parameters: 
R2 = [0.0, 0.242]; Q2 = [0.0, −0.233]). Table 1 outlines the 
main characteristics of both patients and tumors in the whole 
EBC population as well as in the three clusters identified 
by the multivariate analysis. We did not find any significant 
clinical differences between these clusters, except for the 
younger age in LR-2 (ANOVA p = 0.014). Although not 
significant (Kruskal-Wallis test p = 0.131), a trend towards 
a smaller mean tumor size in cluster LR-1 as compared 
to LR-3 (See Table 1 for data) was observed. Identified 
metabolites with VIP values ≥ 1 were: lactate, glucose, 
pyruvate, glutamine, glutamate, alanine, valine, leucine, 
glycine, creatine, creatinine, urea, acetate, acetoacetate and 
β-hydroxyburyrate.

Table 2 shows the VIP and AUC values of the 
discriminant metabolites. Lactate, pyruvate, alanine levels 
were significantly higher and acetate, glucose and glutamine 

Figure 1: Multivariate statistical analysis on EBC population. (A) Scores scatter plot obtained after PCA on EBC population. 
Model parameters: R2cum = 0.737; Hotelling T2 = 0.95. Eigth proposed principal components (B) Hierarchical clustering on EBC 
population: 3 patient’s subgroups emerged: LR-1 (red), LR-2 (blue) and LR-3 (green). The distance is calculated with Ward and sorted 
by size. (C) PLS-DA on EBC population - clusters defined by HC : LR-1(red square); LR-2 (blue triangle); LR-3 (green dot). Model 
parameters: R2Xcum = 0.35; R2 Ycum = 0.649; Q2cum = 0.519 Hotelling T2 = 0.95 ; Two proposed principal components.
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levels were significantly lower in cluster LR-1 compared to 
clusters LR-2 and LR-3. After Bonferroni adjustment, the 
differences observed in lactate, pyruvate and glutamine levels 
remained statistically significant (α Bonferroni = 0.0033).

We show a significant inverse correlation between 
lactate levels and tumor size (Figure 2; Pearson correlation 
r = −0.309; p = 0.044). This correlation does not reach 
significance for pyruvate, alanine, glucose, acetate and 
glutamine levels (data not shown). Correlations between 
metabolites levels are shown in Table 3. Interestingly, 
there is a significant positive correlation between lactate, 
pyruvate and alanine levels as well as a significant negative 
correlation between alanine and glucose levels. Correlation 
between lactate and glucose levels is negative but not 
significant.

MBC plasma samples analyses

PCA and HC analyses tended to separate the whole 
MBC population into two main clusters (MT-1 and MT-2)  
and a cluster of 2 patients (MT-3) (data not shown).

Table 4 outlines the main patients and tumors 
characteristics of the whole MBC population and of the HC 
defined clusters. Due to its small size, MT-3 cluster did not allow 
robust PCA and statistical analyses. It was eventually excluded.

PLS-DA analysis restricted to the 2 main clusters (MT-1  
and MT-2) was significant (Figure 3; CV-ANOVA p = 0.001; 
permutations parameters R2 = [0.0, 0.832]; Q2 = [0.0, −0.252]). 
We did not find any significant clinical difference between 
these clusters. Although not significant, patients in the cluster 
MT-2 presented a shorter overall survival and a more extended 

Table 1: Characteristics of patients and tumors of whole EBC population and of multivariate data 
analysis defined clusters

GROUPS TOTAL POPULATION LR-1 LR-2 LR-3
Total number of patients: 43 8 19 16

Mean age (years): 56
(29–82)

61.5* 
(48–76)

50.2 
(29–65)

59* 
(44–82)

BMI (Kg /m2) 29
(14 .8–37.8)

29.2 
(19.8–37.8)

25.9 
(14.8–31.6)

25.4 
(20.4–31.5)

Tumor histological type: Number (%)

Invasive carcinoma NST 37
(86)

8
(100)

17
(89)

12
(75)

Lobular invasive carcinoma 6
(14) 0

2
(11)

4
(25)

TUMOR STADIFICATION Number (%)

T1 23 
(53.5)

7
(87.5)

9
(47.3)

7
(43.7)

T2 10 
(23.2)

1
(12.5)

4
(21.5)

5
(31.2)

T3–T4 10
(23.2) 0 6

(31.5)
4

(25.0)

Positive node(s) 8
(18.6)

2
(25)

4
(15.7)

3
(18.75)

Median Tumor size (mm) 27.1 13 15 21
TUMOR INTRINSIC SUBTYPES Number (%)

Luminal A 17 
(39.5)

5
(62.5)

4
(21)

8
(50)

Luminal B 17
(39.5) 2(25)

10
(52.6)

5
(31.2)

Luminal B Neu amplified 2 
(4.6)

1
(12,5)

1
(5)

0
(0)

Neu amplified 2 
(4.6) 0 1

(5)
1

(6.2)

Triple Receptor Negative 5  
(11.6) 0 3

(15.7)
2

(12.5)

Statistical Analyses: *significant level (p < 0.05) compared to LR-2.
ANOVA was used for BMI and age; if ANOVA test significant, Pairwise Multiple Comparison Procedures (Tukey test) were used.
Kruskal-Wallis on Ranks were used for tumor size.
Fischer Test was used for tumor staging and tumor intrinsic subtypes.
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disease (more than one metastatic site) than patients from 
cluster MT-1 (14.3 months vs 23.6 months; t-test p = 0.3). 
Identified metabolites with VIP values >1 were: glucose, 
lactate, alanine, leucine, isoleucine, glutamate, glutamine, 
valine, lysine, tyrosine, phenylalanine, threonine, β-hydroxy-
butyrate, acetate, acetoacetate, urea, creatine and creatinine.

According to the AUC, lactate and glucose levels 
were significantly higher and glutamate, valine, lysine, 
tyrosine, phenylalanine, creatinine, acetate and acetoacetate 
were significantly lower in cluster MT-2 as compared to 
cluster MT-1. After Bonferroni adjustment (α Bonferroni = 

0.0027) only the differences observed in lysine, tyrosine, and 
phenylalaline levels remained statistically significant. Table 
5 shows the VIP AUC values of the discriminant metabolites.

Levels (AUC) of the discriminant metabolites across 
the whole population, EBC and MBC patients

The same data analyses as described above were 
applied to the whole study population (EBC and MBC 
patients). We obtained significant separation (CV-
ANOVA p < 0.001) between groups of patients although 

Table 2: Levels (AUC) of discriminant metabolites in EBC clusters LR-1, LR-2 and LR-3
METABOLITES δ1H (ppm)a VIP value AUC (LR-1)b AUC (LR-2)b AUC (LR-3)b p valuec

CARBOHYDRATES

LACTATE 1.32 13.76 11.31
(10.8–11.89)

7.91*
(6.72–8.54)

5.87*$

(5.51–6.33) < 0 .001

PYRUVATE 2.36 2.02 0.50
(0.45–0.56)

0.36*
(0.3–0 .41)

0.34*
(0.31–0.36) < 0.001

GLUCOSE 3.76 2.55 2.90
(2.7–3.09)

3.23
(3.03–3.29)

2.98
(2.75–3.13) 0.008

CETONIC BODIES

ACETATE 1.92 1.65 0.19
(0.17–0.22)

0.18
(O.13–0.19)

0.21
(0.18–0.24) 0.025

ACETO-ACETATE 2.28 1.50 0.13
(011–0.16)

0.12
(0.09–0.21)

0.16
(0.12–0.26) 0.20

3-HX-BUTYRATE 4.16 1.48 0.18
(0.14–0.32)

0.20
(015–0.35)

0.22
(0.11–0.67) 0.92

AMINO ACIDS

ALANINE 1.46 0.98 1.95
(1.78–2 .29)

1.56
(1.44–1.87)

1.60
(1.55–2.05) 0.026

GLUTAMINE 2.42 1.20 1.50
(1.44–1.53)

1.48
(1.31–1.58)

1.68$

(1.59–1.78) 0.003

GLUTAMATE 2.00 1.12 0.43
(0.35–0.52)

0.32
(0.27–0.39)

0.48
(0.29–0.65) 0.15

LEUCINE 0.96 1.33 0.86
(0.77–1.09)

0.93
(0.78–1.04)

1.00
(0.89–1.07) 0.43

VALINE 0.98 0.95 0.93
(0.77–1.04)

0.87
(0.74–0.99)

0.89
(0.82–1.05) 0.75

GLYCINE 3.56 1.28 0.66
(0.58–0.86)

0.66
(0.48–0.80)

0.71
(0.49–0.95) 0.48

UREA METABOLITES

UREA 5.79 1.05 0.25
(0.19–0.47)

0.33
(026–0.66)

0.49
(0.32–0.96) 0.30

CREATININE 4.06 1.6 0.21
(0.19–0.23)

0.22
(0.19–0.25)

0.26
(0.23–0.3) 0.07

CREATINE 3.94 1.41 0.24
(0.21–0.29)

0.23
(0.16–0.28)

0.29
(0.23–0.33) 0.18

A: Chemical shift 
B: Area Under the Curve (AUC):  median (25%–75%).
C: Kruskal-Wallis One Way Analysis of Variance on Ranks and if significant Pairwise Multiple Comparison Procedures 
(Tukey test): After Bonferroni correction significant p level value < 0.003(*: significant compared to LR-1; $: significant 
compared to LR-2).
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some overlaps were noticed. We identified the same set 
of discriminant metabolites as already reported in EBC 
and MBC patients (data not shown; PLS-DA model 
parameters: R2 Xcum = 0.351;R2 Ycum = 0.353; Q2 cum = 
0.224; two proposed components).

In Figure 4, the levels (AUC) of nine of these 
discriminant metabolites (lactate, pyruvate, alanine, 
glucose, glutamine, acetate, phenylalanine, lysine and 
tyrosine) showed significant differences across the whole 
study population (Kruskal-Wallis p < 0.05). Differences of 
levels for valine and urea nearly reached significant scores 
(Kruskal-Wallis p = 0.052 and 0.055, respectively – data not 
shown) After Bonferroni adjustment (α Bonferroni = 0.0045) 
only the differences observed in lactate, pyruvate, glucose 
glutamine  and lysine levels remained statistically significant.

DISCUSSION

In the field of BC, several 1H-NMR based 
metabonomic studies compared plasma or serum 
metabolites profiles between EBC and MBC patients or 

dissected the EBC or MBC profiles themselves [9, 14] A 
few compared EBC patients to healthy controls [15, 16] 
and one study recently reported a comparative evaluation 
between BC and other cancer types [17]. From these results, 
the concept of serum or plasma metabolonomic signatures 
of BC has emerged with the hope of improving the 
prediction and early detection of relapses. However, due to 
the diversity of the reported metabolomics signatures of BC, 
the approach still remains exploratory [7, 8]. Correlations 
between 1H-NMR serum or plasma metabolomics 
signatures and either the primary tumor characteristics in 
EBC or the severity of disease in MBC remain elusive 
[9, 11], except for the association between lipoprotein 
subfractions and EBC tumor characteristics in one report 
[18]. Some authors suggest that the metabolomics profiles 
could be the result of the presence of BC cells themselves 
and the host-tumor interactions [8, 10].

With this last question in mind we evaluated by 
1H-NMR spectroscopy, the plasma metabolome of early 
and metastatic BC patients. In accordance with the 
literature, our results show that the plasma levels of a set 

Figure 2: Correlation between lactate plasma level and tumor size in EBC patients. Square plot, LR-1(red square); LR-2 
(blue triangle); LR-3 (green dot) Pearson Correlation r = −0.309; p = 0.044.

Figure 3: PLS-DA on MBC population. Patients clusters defined by HC: MT-1 (blue diamond) and MT-2 (orange star). Model 
parameters: R2Xcum = 0.398; R2Ycum = 0.976; Q2cum = 0.869; Hotelling T2 = 0.95, Two proposed principal components.
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of metabolites are modulated across different sub-groups 
of EBC and MBC patients [7, 8]. 

Our results highlight the heterogeneity of the plasma 
metabolites inside the EBC and MBC populations and the 
differences between the two clinical situations. The absence of 

matching healthy control group strictly limits our conclusions 
to the pathologic situation but we think that the evolution of 
the metabonomic profile inside the EBC group and the results 
published by others could authorize some speculations about 
the tumor impacts on the systemic metabolism.

Table 3: Correlations between AUC metabolites in the EBC population
Acetate 

1.92 ppm
Alanine

1.48 ppm
Glucose  

5.24 ppm
Glutamine 
2.46 ppm

Lactate
1.34 ppm

Pyruvate
2.38 ppm

Acetate
1.92 ppm ---

Alanine
1.48 ppm 0.2270 ---

Glucose
5.24 ppm −0.4793* −0.4015* ---

Glutamine2.46 ppm 0.2822* 0.1513 −0.2989* ---
Lactate

1.34 ppm −0.2212 0.3206* −0.1962 −0.3395* ---

Pyruvate
2.38 ppm −0.1296 0.3146* −0.3114* −0.1729 0.6821* ---

In green: positive correlation and in red: negative correlation.
Pairwise two-side test: *p value < 0.05.

Table 4: Clinico-pathological characteristics of the mbc cohort and of the clusters identified by 
multivariate data analysis

GROUPS TOTAL POPULATION
(range) 

MT-1
(range)

MT-2
(range)

MT-3
(range)

Total number of patients: 15 5 8 2

Mean age (years): 62
(44–83)

66
(58–75)

61
(44–83)

57
(53–62)

BMI (Kg /m2) 24.8
(19.9–33.6)

26.7
(21.3–33.9)

24.4
(20–33.6) NA

Tumor histological type Number (%)

Invasive carcinoma NST 13
(87)

3
(60)

8
(100)

2
(100)

Lobular invasive carcinoma 2 
(13)

2
(40) 0 0

TUMOR INTRINSIC SUBTYPES Number (%)

Luminal A /B 9 
(60)

3
(60)

4
(50)

2
(100)

Neu Amplified 2 
(13) 0 2

(25) 0

Triple Receptor Negative 4 
(27)

2
(40)

2
(25) 0

METASTATIC SITES Number (%)

Bone only 3 
(20)

2
(40)

1
(12.5)

1
(50)

Liver 6
(40)

2
(40)

4
(50) 0

More than 1 site 7 (47) 2 (40) 5 (62,5) 1 (50)
First line metastatic therapy 10 (67) 3 (60) 6 (75) 1 (50)

Mean overall survival (OS) (months) 17.6 (2–45) 23.6 14.3 15

Welch two sample t-test was used for age, BMI and OS.
Fisher test was used for “more than one site” parameter, significant p level< 0.05.
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In the following discussion, we will propose a 
putative coherent metabolic model to explain these 
systemic metabolic changes.Across the EBC subgroups, 
we show statistically significant modulations of several 
metabolites: lactate, pyruvate, glutamine, glucose, alanine 
and acetate; these three last ones however not remaining 
significant after Bonferroni adjustment. We also find 
significant correlations between levels of some of them. 
Lactate, pyruvate and alanine are positively correlated; 
pyruvate and alanine are negatively correlated with 
glucose; glutamine is negatively correlated with glucose 
and lactate. Moreover, we observe a weak but significant 
inverse correlation between lactate levels and the tumor 

size, smaller tumors being associated with higher plasma 
lactate levels. Correlations between tumor size and the 
other metabolites are not significant. To our knowledge, 
these observations have never been reported in the 
metabonomics breast cancer literature.

A first explanation could be that this weak but 
significant correlation could be linked to the small LR-1 
patients subgroups exhibiting  higher  BMI and higher mean 
age, these clinical parameters influencing the metabolites 
levels. Actually Psychogios et al. reported important 
variations of lactate serum levels determined by metabolomic 
studies in healthy populations, due to many parameters such 
as BMI and age [4]. However, the BMI differences are not 

Figure 4: Levels (AUC) of the discriminant metabolites across the whole population, EBC and MBC patients. Box 
plots: horizontal line within the box = mean; bottom and top lines of the box = 25th and 75th percentiles, respectively. Kruskal-Wallis 
One Way Analysis of Variance on Ranks, p significant < 0.05. After Bonferroni correction, significant p value = 0.0045. Pairwise Multiple 
Comparison Procedures (Dun’s Method), p significant < 0.05. Red star : compared to LR-1; blue star : compared to LR-2; green star : 
compared to LR-3: orange star: compared to MT-1.
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Table 5: Levels (AUC) of discriminant metabolites in MBC clusters MT-1 and MT-2

METABOLITES δ1H (ppm)a VIP value AUC (MT-1)b AUC (MT-2)b P valuec

CARBOHYDRATES

LACTATE 1.32 6.94 5.40
(4.18–5.74)

6.39
(6.02–8.78) 0.006

GLUCOSE 3.46 4.64 2.89
(2.76–3.02)

3.35
(3.11–3.64) 0.003

CETONIC BODIES

ACETATE 1.92 2.38 0.21
(0.18–0.25)

0.16
(0.14–0.17) 0.011

ACETO-ACETATE 2.28 1.50 0.18
(0.15–0.55)

0.10
(0.06–0.16) 0.045

Β-HYDROXYBUTYRATE 1.20 1.21 0.16
(0.12–1.03)

0 .16
(0.08–0.24) 0.524

AMINO ACIDS

GLUTAMATE 2.14 1.84 0.51
(0.45–0.58)

0.38
(0.34–0.44) 0.011

GLUTAMINE 2.46 1.84 1.54
(1.34–1.61)

1.23
(1.05–1.53) 0.09

VALINE 0 .98 2.79 0.96
(0.88–1.21)

0.74
(0.51–0.86) 0.011

ALANINE 1.46 1.27 1.54
(1.37–1.93)

1.43
(1.27–1.73) 0.28

LEUCINE 0.96 1.82 0.89
(0.84–1.32)

0.74
(0.67–0.83) 0.065

ISOLEUCINE 0.94 2.06 0.25
(0.23–0.39)

0.19
(0.16–0.21) 0.018

LYSINE* 1.90 2.16 0.94
(0.85–1.11)

0.69
(0.53–0.72) 0.001

TYROSINE* 7.19 1.56 0.23
(0.19–0.33)

0.16
(0.11–0.17) 0.001

PHENYLALANINE* 7.33 1.13 0.18
(0.17–0.19)

0.12
(0.12–0.14) 0.001

THREONINE 4.24 1.11 0.19
(0.15–0.22)

0.09
(0.06–0.12) 0.06

UREA METABOLITES

CREATININE 4.06 1.28 0.53
(0.42–0.58)

0.39
(0.25–0.47) 0.045

CREATINE 3.92 2.33 0.37
(0.17–0.45)

0.23
(0.12–0.36) 0.28

UREA 5.81 2.06 1.01
(0.68–1.72)

0.62
(0.29–0.92) 0.065

a: chemical shift 
b: Area Under the Curve: median (25–75%)
c: Wilcoxon test: Statistically Significant (p < 0.05). After Bonferroni correction, significant p value = 0.0027
*Significant p level.



Oncotarget49923www.impactjournals.com/oncotarget

statistically different between our EBC sub-groups and we 
did not find any significant correlation between BMI and the 
metabolites levels. Recently published metabolomics studies 
reported somewhat contradictory results on BMI and human 
blood metabolite profiles [19, 20].

A second hypothesis to explain these observations 
could be that cancer cells and their microenvironment 
consume lactate leading to its levels drop with growing 
tumor mass. Several facts do not support such a speculation: 
cancer cells themselves produce and excrete large amounts 
of lactate in their stroma where this metabolite plays subtle 
and complex roles favoring tumor progression [21, 22]; 
Kallinowski F. et al. showed that in human breast cancer 
xenografts in nude rats, lactate is released from tumors 
[23]; Kennedy KM. et al. found  that, in vitro, lactate 
can be metabolized by some but not all types of BC cells 
[24]. Moreover this hypothesis would not explain the 
modulations observed for other metabolites and it is not 
accurate to transpose local tumor metabolism to the whole 
human body [25]. So, we are not convinced that the drop 
in lactate levels and other associated systemic metabolic 
alterations are directly linked to the tumor metabolism.

The observation that the modifications of lactate, 
pyruvate and alanine levels inside the EBC groups 
are positively correlated leads us to formulate a third 
hypothesis. We would suggest that the drop in the lactate 
plasma levels observed in EBC, associated with the 
modifications of pyruvate and alanine, is a clue of the 
activation of the lactate cycle (Cori cycle) and liver neo-
glycogenesis. Lactate, released by muscles, and breast 
tumor in this case, is transported to the liver where it 
regenerates pyruvate and glucose avalaible for systemic 
metabolism. Alanine produced by transamination of 
pyruvate in muscles is transported to the liver where it 
enters neo-glycogenesis after inverse transamination to 
pyruvate. Pyruvate itself can be metabolized to lactate or 
be transported to the liver, entering also neo-glycogenesis. 
So the metabolism of these three metabolites and the 
increased activity of Cori cycle concur to a net increase of 
blood glucose, available to cancer cells and their stroma, 
and a decrease of lactate and glucogenic amino acid (AA) 
such as alanine. This phenomenon has been proposed 
many years ago to explain the disparity observed in 
lactate blood levels in different types of cancers [26–28].  
Levin et al. suggested that elevated glucose level in 
blood cancer patients could be the result of increased 
gluconeogenic flux from lactate and glucogenic amino 
acids [29]. Altered glucose metabolism in metastatic 
carcinoma has been known since as long as 1975 [30]. 
It has been suggested more recently that activation of so-
called metabolic futile cycles, such as Cori cycle, could 
contribute to cancer cachexia [31]. DeBernardinis et al. 
suggested cancer-muscle relation through glutamine and 
Luo Y et al. published data supporting this hypothesis at 
least in vitro [32, 33]. However, these publications were in 
advanced cancer situation. 

Our data suggest that cancer-related neo-
glycogenesis is active at early stages and increases 
with progressive malignant disease as suggested by the 
metabolic evolution across EBC. We acknowledge that the 
lack of healthy control group weakens our hypothesis. In a 
preliminary small study using the same NMR techniques, 
on unfiltered residual serum samples, we showed that 
some, but non significant, separation between EBC 
and healthy women was mainly due to lipids fractions, 
glucose, alanine, lactate, β-hydroxy-butyrate and acetate 
(Oral presentation in ESMRMB Congress, Lisbon 2012). 
Although immature, these data are in line with other 
publications. We would like to pinpoint the MS based 
metabolomic study of Shen et al. They observed that 
plasma alanine levels were lowered in EBC patients 
compared to healthy controls and especially in patients 
bearing the aggressive TRN tumors. No information are 
available on tumor size. [34]. Interestingly, in another 
study evaluating serum 1H-NMR metabolomic profile of 
EBC and responses to chemotherapy, the combination 
of lactate, alanine and glucose levels were significant in 
multivariate analysis to predict tumor response [35]. Gu H. 
et al. identified lactate, glucose and alanine among other 
metabolites discriminating serum samples collected from 
BC patients and healthy controls [16]. 

Coming back to our data, we observed that AAs 
are heavily involved across the whole study population: 
alanine, leucine, isoleucine, glutamate, glutamine, valine, 
lysine, glycine, threonine, tyrosine, and phenylalanine. All 
AAs identified but the cetogenic leucine and lysine, are 
glucogenic, which is coherent with the neoglucogenic-
cancer induced hypothesis. Interestingly glutamine levels are 
rising significantly across the EBC subgroups then falling in 
MBC cohorts. It has been proposed that this AA is exported 
from the muscle to the tumor to participate to its protein 
synthesis or as a metabolic fuel for the Krebs cycle [31]. 

Comparing the serum levels of 15 AAs as 
measured by high performance liquid chromatography 
on serum EBC patients to healthy volunteers, Poschke 
et al. published significant increased levels of glutamine, 
glutamate, serine, alanine, valine, leucine. There was 
no significant correlation with tumor stage but the 
basal like tumors patients had the highest AAs serum 
levels [36]. Huang S. et al., using mass spectrometry, 
identified discriminant blood metabolites in BC patients 
at all-stages and measured their average log-fold changes 
versus control samples. From these data, they constructed 
models to separate early stage BC from all-stage BC. They 
observed that glutamine levels were higher and alanine 
levels lower during early tumorigenesis [37]. Other studies 
reported contradictory results but showed a clear effect of 
BC on patient AAs metabolism [37, 38].

We suggest that, even in EBC, the tumor could 
induce some protein catabolism with the release of 
some neoglucogneic AAs. However, sarcopenia was 
not evaluated in our study and there was no significant 
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correlation with the BMI, but it is known that whole-body 
protein turn-over rates are increased in cancer patients 
prior to clinical cachexia signs [39]. In MBC patients, 
we observed a drop in all the already identified AAS but 
glycine, with the worsening of the disease, potentially 
reflecting the exhausted MBC patient metabolism.

Our data could be interpreted as signs of an 
activation of neoglucogenesis in BC patients, using 
lactate and neoglucogenic AAs, increased proteins 
muscle catabolism with release of AAs. These systemic 
metabolism modifications seem to occur early in the 
disease. Liu L. et al. showed metabolic shifts induced by 
human lung cancer cells line in tumor-bearing mice [40]. 
This is in line with the evolution of the literature on the 
shifts in metabolism in cancer patients. A shift in energy 
metabolism in cancer cells was first described by Otto 
Warburg and was termed as « aerobic glycolysis » [41]. 
Progressively, many other evidences have accumulated 
leading to the larger and more complex concept of 
«°reprogramming energy metabolism°», recently qualified 
as an emerging hallmark of cancer [42]. Since many years 
it was also recognized that the presence of a cancerous 
tumor could induce global and systemic alterations in the 
patient’s metabolism. However the mechanisms allowing 
a few cells to influence the whole metabolism were largely 
unknown [28, 29, 43, 44]. Recently it was even suggested 
that solid tumor behave as systemic metabolic dictators 
and the molecular basis of cancer cachexia have been 
outlined [45, 46]. It is proposed that cancer interacts with 
muscle, liver, and adipose tissue metabolisms to maintain 
its growth at the expense of the patient homeostasis. 
Inflammatory state, induced by and against the tumor 
could be the driving force leading to these metabolic 
modifications and several cytokines seem to be involved 
[45, 31, 47]. We recently published data showing the 
involvement of the Macrophage Migration Inhibitory 
Factor (MIF) in BC. MIF serum levels were significantly 
increased in EBC [48, 49]. Interestingly, this pleiotropic 
and proinflammatory cytokine is also involved in glucose 
metabolism and in the development of diabetes, insulin 
resistance and obesity which is a known risk factor for BC 
and recurrence of this disease [50–53].

The main pitfalls of our study are the relatively small 
numbers of patients, its transversal design and the data 
acquisition by 1D 1H-NMR analytical technique alone. 
Main drawbacks of 1D-NMR spectroscopy approach are 
its sometimes-difficult metabolites identification and semi-
quantitative only evaluation. It so could be of interest to 
validate our data by a MS-based technique, considered 
more sensitive, more specific and providing more accurate 
quantification. The advantage of combining the two 
techniques has been reviewed recently [54, 55].

Our goal was to dissect the systemic metabolites 
modifications occurring at various stage of BC disease, and 
try to propose biological and physiological explanations, 
not to establish a prognostic or diagnostic signature.  We 

think that our findings deserve further investigations on a 
larger scale because, if confirmed, they could contribute 
to innovative ways of BC management. It is of interest 
to note that one recent publication developed a model 
based on more than 500 preoperatively sera EBC 1H-NMR 
metabolomics profiles that seems to be prognostic for 
recurrence. Higher serum levels of lactate, valine, leucine, 
isoleucine, phenylalanine tyrosine, histidine, glutamate, 
glycine, among others, characterized the higher risk 
metabolomics profile. The authors suggest that the 
metabolomic signal is the result of host state and tumor 
cells [10]. In MBC patients, monitoring metabolomics 
changes along the treatments could help to establish a 
signature of therapeutic response. To our knowledge there 
is no data published on the subject and the management of 
cancer cachexia remains a problem [56].

From a therapeutic research point of view, we suggest 
that drugs with inhibitory effects on cytokines involved in 
the metabolic processes described could be of interest. For 
example, metformin, a well-known oral antidiabetic drug 
has recently received great attention as a potential BC 
therapy. Mechanisms of action are not yet established [57] 
but is noteworthy to remember that metformin can suppress 
plasma MIF concentrations in obese patients [58]. A phase 
II study is ongoing to explore the interest of this drug for 
reduction of obesity-associated BC risk, using plasma 
metabolomic profiles evaluation [59].

In conclusion, we suggest that BC could induce 
systemic metabolic modifications in patients even at early 
non-metastatic stages and worsening with the progression 
of the disease. Cytokines produced by the tumor and 
its microenvironment could be involved in the process. 
If confirmed by a larger study, this finding could be of 
research and clinical interest.

MATERIALS AND METHODS 

Patient populations

This observational study was conducted at the 
Ambroise Paré Hospital (Mons, Belgium). Between July 
2012 and March 2014, we prospectively collected blood 
samples from early (EBC) and metastatic BC (MBC) 
women.

All enrolled patients were women 18 years old 
or older with proven histology of invasive BC. They 
accepted to sign informed consent before inclusion. All 
early stage patients were newly diagnosed and free of 
any treatment prior to serum collection. Tumors were 
evaluated by bilateral mammography, echography and 
echography guided biopsy. Breast Magnetic Resonance 
Imaging was systematically performed, leading to 
second look echography and biopsy in case of additional 
suspect lesion(s). The metastatic population could have 
received one or more BC metastatic treatments, had 
to be progressive and blood collection was performed 
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before any new BC treatment administration. In both 
cohorts, cancer staging work-up was performed following 
international guidelines [60, 2]. Tumors were classified 
according to the World Health Organization 2012 [61] and 
the American Joint Committee on Cancer Cancer Staging 
Manuel (TNM), Seventh Edition. Estrogen receptor 
(ER), progesterone receptor (PR) status, Ki-67 labeling 
index, expression and/or HER2 gene amplification 
were routinely performed following international 
recommendations [62–64]. Positivity for ER and PR was 
defined as an Allred score equal or superior to 3 [62].
HER 2 was considered positive according to American 
Society of Clinical Oncology (ASCO) guideline [65]. 
Breast cancer intrinsic subtypes were defined according 
to the St Galen 2015 Consensus [60]. According to local 
lab values, the distinction between luminal A and luminal 
B was based on a 15% Ki-67 cut-off [66]. All subjects 
with insulin-dependent diabetes, cardiac or renal failure, 
active infections, chronic inflammatory diseases, chronic 
systemic corticoids medication, history of non-BC 
invasive malignancies were excluded. 

Investigation has been conducted in accordance 
with the ethical standards and according to the Declaration 
of Helsinki and to national and international guidelines 
and has been accepted by the members of the institutional 
review board: The Ethics Committee of Ambroise Paré 
Hospital (Mons, Belgium) approved this study on May 
2012 according to the international and Belgian laws.

Plasma samples preparation

Venous blood sample, from fasting patients, was 
taken before any treatment, on 5 ml EDTA vacutainer tube, 
centrifuged at 3,000 × g for 15 min at 4°C within 2 hours.  
Supernatant (plasma) was then split up into 2 tubes and 
immediately stored frozen at −80°C.

1H-NMR samples preparation and spectroscopy

In order to prepare samples for metabolomic 
analysis by 1H-NMR spectroscopy, 500 µL of plasma were 
filtered using 3kDa Amicon® Ultra-0.5 ml Centrifugal 
Filter Devices (Millipore) at 14,000 x g during 30 minutes. 
The filter was initially prewashed four times with distilled 
water to remove any traces of preservatives. Filtered 
proteins were rinsed using an additional 150 μL of D2O. 
Filtrates samples were then transferred to tubes with 100 µL 
of phosphate buffer (NaH2PO4 0.04M, Na2HPO4 0.2 M, 
pH 7.4) containing 3.5mM 3-(trimethylsilyl) -propionic-
2,2,3,3-d4 acid (TSP) and prepared in 100% D2O. 

600 μL of filtered plasma sample were transferred 
into 5 mm NMR tube and analyzed on a Bruker Avance 
500 spectrometer (11.8 T) at 500 MHz for proton 
observation within a 5 mm BBI 1H/D-probe. One-
dimensional spectrum was acquired at 297°K using a 
NOESYPRESAT-1d pulse sequence. 

128 free induction decays (FID) with 54,832 data 
points per FID were collected for each sample using a 
spectral width of 10,330.578 Hz, an acquisition time of 
2.65 sec, and a pulse recycle delay of 3 sec. 

After proton 1D-NMR acquisition, FID signal was 
imported into MestReNova 10.0 Software (Mestrelab 
Research, Santiago de Compostela, Spain) for Fourier 
transformation and a line broadening of 0.3 Hz was 
applied. Then the spectra were automatically phase-
and baseline-corrected and calibrated against TSP. The 
resonance of the methyl groups in TSP were arbitrarily 
placed at 0.00 ppm.

Spectral region from 0.08 to 10.00 ppm was 
automatically reduced to 496 integrated regions (buckets) 
of 0.02 ppm width each. The regions from 4.50 to 5.20 
ppm containing residual water signal were removed, as 
well as two regions containing EDTA resonances from 
3.20 to 3.22 ppm and from 3.58 to 3.62 ppm and three 
regions containing contamination from sample storage or 
venepuncture containers (from 2.54 to 2.56 ppm, 2.7 ppm, 
and from 3.06 to 3.18 ppm).

Each integrated region was normalized to the total 
spectrum area.

Multivariate statistical analysis

The integrated reduced data were imported into 
SIMCA-P+12 (Umetrics, Umea, Sweden) for Principal 
Component Analysis (PCA), Partial Least-Squares 
Discriminant Analysis (PLS-DA) and Hierarchical Clustering 
Analysis (HCA, dendrogram), as described previously 
[67, 68]. All data were mean-centred and Pareto scaled [69].

In a first approach, we performed unsupervised 
analyses by PCA and HCA on data from each group of 
patients considered separately. PCA was used to evaluate 
the degree of homogeneity, identified outliers and outlined 
sub-groups. HCA allowed us to isolate clusters of patterns 
and to build a dendogram. The distance was calculated 
with Ward and sorted by size.  To this respect, it has to 
be stressed out that no objective method is available yet 
to mathematically validate the partitioning of the data 
and, consequently, the clusters are intuitively defined. 
This is why the clustering models were then analysed by 
PLS-DA (with Q2 cum> 0.4), allowing their validation 
(CV–ANOVA and permutations test) [70]. The variables 
of importance in the projection (VIP) lists were then 
established. Using a cut-off value of VIP ≥ 1, discriminant 
metabolites were pinpointed for each cluster. In a second 
step, EBC and MBC data were mixed together and 
analysed using the above-described process. 

Identification and quantification of metabolites 

The VIP ≥ 1 metabolites were then identified using 
in-house references, ChenomX (Version 8.1, ChenomX 
Inc., Canada), the Human Metabolome DataBase and 
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published data (Figure 5) [71, 4]. Most of the identified 
metabolites were level 2, according to the Metabolomics 
Standard Initiative (MSI) classification [72]. For 
quantification of each discriminant metabolite, the 
most resolved resonance was selected and fitted. Noisy 
variables and spectral overlap were eliminated before 
integration (MestReNova software). An area under 
curve (AUC) in arbitrary units was obtained. It allowed 
statistical comparison between sub-groups of patients 
[73] (Figure 6).

Statistical analysis

In order to compare the clinical characteristics 
among patients clusters, we used Welch two-samples 
t-tests for MBC data (age, BMI and overall survival). For 
EBC data, we used ANOVA for age and Body Mass Index 
(BMI) associated with Pairwise Multiple Comparison 
Procedure (Tukey Test), Kruskal-Wallis on Ranks for 
tumor size and Fischer test for tumor intrinsic subtypes 
and tumor staging (TNM). 

Figure 6: Quantification of the metabolites by area under the curve (AUC). The most resolved resonance was selected and 
fitted, noisy variables and spectral overlap eliminated before integration (MestReNova software).  AUC (dashed area) is expressed in 
arbitrary units.

Figure 5: Identification of the metabolites. A typical 1H-NMR spectrum of EBC patient filtered plasma. a: isoleucine; b: leucine; c: valine; 
d: β-hydroxybutyrate; e: lactate; f: alanine; g: lysine; h: acetate; i: glutamate; j: glutamine; k: acetoacetate; l: pyruvate; m: creatine; n: creatinine; 
o: glucose; p: glycine; q: urea; r: tyrosine; s: phenylalanine. TSP: 3-(trimethylsilyl) -propionic-2, 2,3,3-d4 acid.



Oncotarget49927www.impactjournals.com/oncotarget

For comparison of median metabolites values 
between patients clusters, we used Wilcoxon test for 
MBC clusters and Kruskal-Wallis one Way Analysis of 
Variance on Ranks for EBC clusters and whole population 
associated with significant Pairwise Multiple Comparison 
Procedures (Dunn’s Method) if significant. False 
Discovery Rate correction was applied using Bonferroni 
method. Adapted p values are shown in the corresponding 
legends [74].

Pearson correlation test was used for correlation 
between metabolites AUC values and tumor size, BMI 
and for correlations between metabolites levels themselves 
associated in this case with Pairwise two-side test if 
significant.
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