
Oncotarget78163www.impactjournals.com/oncotarget

DNA methylation/hydroxymethylation in melanoma
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ABSTRACT

Melanoma is a malignant tumor of melanocytes and is considered to be the 
most aggressive cancer among all skin diseases. The pathogenesis of melanoma 
has not been well documented, which may restrict the research and development of 
biomarkers and therapies. To date, several genetic and epigenetic factors have been 
identified as contributing to the development and progression of melanoma. Besides 
the findings on genetic susceptibilities, the recent progress in epigenetic studies has 
revealed that loss of the DNA hydroxymethylation mark, 5-hydroxymethylcytosine 
(5-hmC), along with high levels of DNA methylation at promoter regions of 
several tumor suppressor genes in melanoma, may serve as biomarkers for 
melanoma. Moreover, 5-Aza-2′-deoxycytidine, an epigenetic modifier causing DNA 
demethylation, and ten-eleven translocation family dioxygenase (TET), which 
catalyzes the generation of 5-hmC, demonstrate therapeutic potential in melanoma 
treatment. In this review, we will summarize the latest progress in research on DNA 
methylation/hydroxymethylation in melanoma, and we will discuss and provide 
insight for epigenetic biomarkers and therapies for melanoma. Particularly, we will 
discuss the role of DNA hydroxymethylation in melanoma infiltrating immune cells, 
which may also serve as a potential target for melanoma treatment.

INTRODUCTION

Melanoma is the most aggressive form of skin 
cancer, in which metastasis is the most common cause 
of death in patients. Melanoma commonly arises from 
cutaneous melanocytes, but it can also occur on mucosal 
surfaces such as the oral cavity, gastrointestinal sites, 
and genital mucosa as well as the uveal tract of the eye 
and leptomeninges. The pathogenesis of melanoma has 
not been well elucidated; however, several risk factors 
have been revealed to be associated with melanoma, 
such as hair color [1], skin phototype, numerous nevi, 
ultraviolet exposure [2], and family history of melanoma 
[3]. Therefore, genetics and environmental factor-induced 
epigenetic alterations have been found to contribute to 

melanoma. In recent decades, billions of dollars have 
been invested into the research on genetic susceptibilities 
to melanoma and development of genetic therapies. Thus 
far, thousands of mutational events have been observed 
in the melanoma genome, and the melanoma genome has 
been revealed to be characterized by high frequencies of 
mutations carrying a signature of ultraviolet-B radiation 
[4–5]. BRAF is the gene most frequently mutated (50-
70%) in melanoma, and BRAFv600E is the most common 
mutation, which is usually found in benign nevi [6]. 
Despite the advances in gene targeting therapy, the 
development of inhibitors of mutant BRAF kinase, 
for example, as therapeutic agents, is stagnant due to 
resistance to the therapy [7]. In addition, variations 
in DNA sequence alone cannot completely explain 
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the biological differences that separate benign nevi 
from melanoma. Therefore, increasing attention is being 
focused on the participation of epigenetic events.

Epigenetics refers to the study of potentially 
heritable changes in gene expression and function that 
do not involve alterations of the original nucleotide 
sequence of DNA. Epigenetic modifications are primarily 
comprised of DNA methylation, histone modification, 
and microRNA (miRNA)-mediated and long non-coding 
RNA (lncRNA)-mediated regulation. These epigenetic 
mechanisms ultimately determine whether genes are 
expressed or silenced; therefore, these epigenetic 
mechanisms play critical roles in various life processes 
such as cell differentiation, growth, development, aging 
and immune response [8]. Epigenetics provides an 
explanation for how environmental factors contribute 
to our individual phenotype as well as an explanation 
for susceptibilities to certain diseases such as cancer. 
In addition, epigenetic status may be more easily 
manipulated, compared to gene therapies, rendering 
epigenetic modifications more therapeutically reversible. 
Therefore, in this review, we will summarize the latest 
progress made in research on epigenetic modifications, 
especially DNA methylation/hydroxymethylation, 
in melanoma, and we will discuss their potential 
applications as biomarkers and therapeutic strategies for 
personalized treatment.

DNA METHYLATION AND 
HYDROXYMETHYLATION

DNA methylation is a relatively stable and 
heritable epigenetic mark in several eukaryotic 
organisms. It is a biochemical process in which a 
methyl group is added to a cytosine or adenine at the 
5-position on the pyrimidine ring of the methyl group 
where the DNA base thymine is located, converting 
cytosine to methylcytosine [9]. The CpG dinucleotides 
tend to cluster in regions called CpG islands, defined 
as regions of more than 200 bases with a G + C 

content of at least 50% and a ratio of observed to 
statistically expected CpG frequencies of at least 60%. 
Approximately 60% of gene promoters are associated 
with CpG islands and are normally unmethylated, 
although some of them (approximately 6%) become 
methylated in a tissue-specific manner during early 
development or in differentiated tissues [10]. This 
finding may explain why all cells in an organism share 
the same genetic information, but they show different 
phenotypes. In general, CpG island methylation is 
associated with gene silencing. DNA methylation serves 
as a mark that indicates repression of gene expression; 
therefore, it is involved in several biological processes, 
such as cell differentiation and proliferation. DNA 
methylation inhibits gene expression by various 
mechanisms. Methyl-CpG-binding domain (MBD) 
proteins, for example, can be recruited by methylated 
DNA; in turn, MBD family members recruit histone 
modifying and chromatin-remodeling complexes to 
the methylated sites [11]. Moreover, DNA methylation 
can directly inhibit transcription by precluding the 
recruitment of DNA-binding proteins to their target 
sites [12]. However, DNA methylation does not occur 
exclusively at CpG islands; it may also occur at CpG 
island shores, which refer to regions of lower densities 
of CpG that lie close to CpG islands and are associated 
with transcriptional inactivation (Figure 1). Most 
tissue-specific DNA methylation occurs not at CpG 
islands but at CpG island shores [13]. In mammalian 
cells, DNA methylation is restricted to regions of CpG 
islands, which are typically present in promoter regions 
[14] (Figure 2). The process of DNA methylation is 
mediated by methyltransferases, such as DNMT1, 
DNMT3a, and DNMT3b, and each of them displays 
different functional capacities. For example, DNMT1 
maintains methylation status during cell replication, 
whereas DNMT3a and 3b usually induce de novo 
methylation [15].

In contrast, DNA demethylation is a process that 
occurs passively, especially by the programmed failure 

Figure 1: The CpG islands and CpG island shores.
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of transmission of methylation patterns during a round 
of cell division, and re-activates or re-expresses silenced 
genes [16]. Unlike DNA methylation, DNA demethylation 
has been less studied, and active DNA demethylation in 
mammals has been recognized only recently. This process 
occurs through the sequential iterative oxidation of the 
methyl group of 5-mC and removal of the final modified 
group by the actions of thymine DNA glycosylase 
(TDG) as well as the base excision repair pathway to 
yield cytosine from 5-mC [16]. Oxidation of 5-mC to 
5-hydroxymethylcytosine 5-hmC is the first and most 

important step of this reaction, which is mediated by the 
TET family dioxygenase enzymes, including TET1, TET2 
and TET3 [17]. 5-hmC is the most abundant intermediate of 
the active DNA demethylation process and acts as a positive 
transcriptional regulator in normal development and cancer 
[18–19], and its levels are directly correlated with the levels 
of differentiation in a wide variety of human tissues [20]. All 
three TETs can further oxidize 5-hmC to 5-formylcytosine 
(5-fC) and 5-carboxylcytosine (5-CaC), resulting in tissue 
levels in the order of 5-mC>5-hmC>5-fC>5-CaC [21]. 
Meanwhile, both formylcytosine and carboxylcytosine 

Figure 2: How DNA methylation regulates transcription.

Figure 3: The cycle of DNA methylation and demethylation.
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can be excised by TDG, which triggers subsequent base 
excision repair (BER), indicating a potential role for active 
demethylation [19, 22] (Figure 3).

Generally, 5-hmC levels are significantly lower 
and vary greatly depending on the cell type (0.1-0.7% 
of total cytosine) compared to the relatively constant 
levels of 5-mC in somatic tissues (3–4% of total cytosine) 
[23–24]. The three TET family proteins vary in levels in 
different cell types. For example, TET1 and TET2 are 
highly expressed by embryonic stem cells and in early 
embryogenesis, and their levels decrease when cells exit 
pluripotency and undergo differentiation. TET2 is highly 
expressed in the hematopoietic system, while TET3 is 
overexpressed in germ cells/oocyte, brain tissue and more 
ubiquitously in somatic cells. TET proteins are responsible 
for generating all of the 5-hmC in the genome [25], 
and the loss of TET functions may have dire biological 
consequences. Numerous loss-of-function mutations of 
tet2 have been identified in myeloid cancers where tet2 
has been shown to be a key tumor suppressor. In addition, 
TET1 has been recently revealed to play an oncogenic role 
in MLL-rearranged leukemia [26]. Moreover, the loss of 
5-hmC has been observed in several malignancies, such 
as breast cancer [27], liver cancer [28], and kidney cancer 
[29], and has even been proposed as a prognostic marker 
in ovarian cancer [30]. However, if TET proteins are 
capable of oxidizing 5-mC to 5-CaC, the question arises 
as to why this reaction stops at 5-hmC and why 5-hmC 
is stable and abundant in the genome. Recent findings 
of differences among TET proteins suggest that perhaps 
5-hmC and other oxidized forms may have epigenetic 
roles in addition to their function as DNA demethylation 
intermediates [31–32].

The mechanism for loss of 5-hmC in cancer

In the past decades, a more comprehensive frame-
work of DNA demethylation has been documented and 
the loss of methylation has been found to occur by various 
mechanisms: active loss through iterative oxidation 
of 5-mC to 5-hmC, 5-fC and 5-CaC by TET proteins 
followed by excision of 5-fC and 5-CaC by TDG [16]; 
active loss through deamination of 5-mC to U catalyzed by 
AID and APOBEC1 followed by BER [33]; passive loss 
whereby methylation is diluted during several division 
cycles due to lack of maintenance activity by DNMT1 
and ubiquitin-like proteins containing PHD and RING 
finger domains 1 (UHRF1), and a RING finger-associated 
mammalian SRA (SET- and RING-associated) domain 
protein that is required to maintain 5-mC in the CG context 
[34]. UHRF1 SRA specifically recognizes hemi-5-mCG 
sites [35], which are the products of semi-conservative 
DNA replication. In addition, by recruiting maintenance 
DNMT1, UHRF1 SRA facilitates the restoration of 
hemi-5-mCG to full-5-mCG after each round of DNA 
replication in mammals [36]. In the current understanding, 

passive demethylation is the dominant mechanism for 
demethylation of the genome, combined with active 
removal of 5-mC by TET proteins and replicative loss of 
both 5-mC and 5-hmC [37–40]. Loss of 5-hmC in tumors 
occurs through two mechanisms: inactivating mutations 
of Tet and inhibition of TET activity by isocitrate 
dehydrogenase 1/2 (IDH1/2) mutations [41–45], and these 
mutations are common in leukemia rather than in solid 
cancers. Only one study revealed that Dnmt1 mutations 
[46] and the resultant losses of substrates of 5-mC are not 
key players in tumorigenesis.

Abnormal 5-mC level and regulated genes in 
melanoma

In previous studies, global DNA hypomethylation 
was observed in the neoplastic progression of 
carcinogenesis [47–48]. One hypothesis is that 
hypomethylation allows previously neoplastic cells to 
proliferate and eventually metastasize as well as to exert a 
survival advantage [49]. Moreover, DNA hypomethylation 
in or around centromeric repeats and other repetitive 
sequences has been observed to be associated with 
chromosomal instability [50]. On the other hand, DNA 
hypermethylation of CpG islands at promoter sites is 
believed to contribute to tumorigenesis by silencing tumor 
suppressor genes 17. Numerous tumor suppressor genes, 
which are hypermethylated and involved in biological 
processes, including cell cycle regulation, DNA repair, cell 
signaling, transcription and apoptosis, have been reported 
in melanoma (Table 1). Furthermore, the tendency towards 
hypermethylation has been termed the ‘CpG island 
methylator phenotype’ (CIMP) [51–52].

Apart from CDKN2A, RAR-b2, RASSF1A and 
IDH1, which have been intensively discussed in other 
reviews [49, 53], the hypermethylation of other genes 
has also been linked to melanoma. LINE-1, for example, 
a transposable element that has been used as a surrogate 
marker for global methylation in several cancer studies, has 
been found to be hypermethylated in Brazilian melanoma 
patients and is suggested to be a biomarker for cutaneous 
melanoma [54]. LINE-1 methylation status is reported 
to be associated with cancer risk, whereby both the 
hypermethylation and hypomethylation status appear to 
vary between different cancer types [55–57]. In addition, 
it has been suggested that Claudin 11 (CLDN11) could be 
a useful epigenetic biomarker for identifying melanoma 
[58–59]. The Claudin gene family consists of 27 members, 
which encode membrane proteins of the paracellular tight 
junction. The locations of metastases have been observed to 
be significantly correlated with the methylation frequency, 
indicating that the methylation levels in primary melanoma 
may contribute to differences in the metastatic capacity 
of melanomas. It would be interesting to analyze the 
functional alteration by CLDN11 inactivation in greater 
detail. Moreover, the methylation status of MGMT, which 
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Table 1: The hypermethylated genes in melanoma 

Gene Relevance to melanoma Ref

LINE-1 Associated with metastasis [54]

CLDN11 Inactivation of tumor related gene [58-59]

TERT, MGMT,
KIT, TNF, MITF

Associated with clinical characteristics [63]

RASSF6, 
RASSF10

Observed in metastatic melanoma and inhibits invasion in 
melanoma cells

[92-93]

GPX3 Related to the pathogenesis of MM [94]

MMP-9 Overexpression of MMP9 in MM [95]

SYNPO2 Decreased expression in MM [96]

CDKN1C Arrests cell cycle in G1 by inhibiting G1 cyclin-CDK [97-98]

LXN Inhibition of cell proliferation [97]

WFDC1, SYK, 
 QPCT, PCSK,
MFAP2, etc

Unknown [97]

ASC/PYCARDC/
PYCARD

Inhibition of tumorigenesis by reducing IKKα/β phosphorylation [99]

Col11A1 Promotion of tumor aggressive via TGF-β1-MMP3

SOCS1 Reduction of cytokine-induced effects; 
Blockade of G1/S and M phase;
Association with CDH1

[100]

ZFYVE28, ZBTB47, etc Unknown [100]
Caspase 8 Linked to cadmium-stimulated cell growth and inhibition of death 

pathway
[101]

CDH1 A cell adhesion molecules; loss correlates with high tumor grade 
and poor prognosis

[102-103]

MGMT Renders cancer cells resistant [102]
RAR-b2 Tumor suppressor gene [102]
CIITA-PIV Acts on IFN-γ pathway [103]
SOCS2 Attenuates cytokine-induced effects [103]
TNFRSF10C (DcR1/2) Decoy receptor that protects cells from TRAIL-mediated apoptosis [103]
TPM1 Control of actin-mediated cell motility [103]
TIMP3 Dominant negative regulator of angiogenesis [103-104]
CDKN2A Arrests cell cycle in G1 by inhibiting CDK4 and CKD6 and 

activating pR8
[105]

DPPIV Decline in serum from melanoma patients [106-107]

FRZB A metastasis suppressor; inhibits Wnt5a signaling [108-109]

SOCS3 Inhibits IL-17/Stat3 pathway; suppresses tumor growth in mouse 
mode

[110-111] 

THBS1 Mediates cell-to-cell and cell-to-matrix interactions which is 
important for platelet aggregation and angiogenesis 

[112]

TM Downregulation associated with transformation and progression [113]
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encodes a repair protein by removing alkyl groups from the 
O6-position of guanine residues and its promoter, has been 
proposed as a biomarker in glioblastoma [60–61], colorectal 
cancer [62] and melanoma [63]. In melanoma, epigenetic 
silencing of this gene has been demonstrated in tumors and 
serum of patients [63–65], suggesting an important role of 
MGMT in tumor development. MITF is another example 
of a DNA hypermethylated gene, which is a transcription 
factor that controls cell cycle and melanogenesis genes 
[66–67]. The hypermethylation of the MITF promoter has 
been reported in peripheral blood of melanoma patients 
who develop more than one lesion, and the MITF gene has 
been observed to be hypermethylated in primary tumors 
compared to metastatic tumors. Interestingly, the expression 
of MITF varies intratumorally and among different 
melanoma specimens [68], with high expressions being 
associated with active differentiation or proliferation and 
relatively low expressions indicating invasion capacity [69]; 
these findings suggest that high methylation levels at the 
MITF promoter might be associated with a more aggressive 
disease and that the higher methylation levels at the MITF 
gene of primary tumors compared to metastatic tumors have 
a role in controlling the cell cycle. However, more studies 
are needed to further clarify the functional alterations and 
roles of hypermethylated genes observed in melanoma.

Abnormal 5-hmC level and regulated genes in 
melanoma

As the global hypomethylation marker within the 
bulk of the genome, the loss of 5-hmC has been observed 
and used as a biomarker to distinguish melanomas from 
physiological melanocytes and benign melanocytic 
proliferations [70]. In the same study, a strong correlation 
between the loss of 5-hmC and poor prognosis in 
melanoma has been identified, suggesting 5-hmC level as 
a potential biomarker with predictive value. Other studies, 
conducted in the subsequent years, have confirmed this 
finding [71–75]. Based on this phenomenon, a principle 
question arises as to the loss of 5-hmC being the cause 
or consequence of melanoma. Another question is 
regarding the unknown mechanism of the loss of 5-hmC 
in melanoma. Although reduced levels of IDH2 and TET 
proteins have been observed in melanoma, the upstream 
modulation and consequences of this alteration are still 
unclear. Targeting TET proteins has been suggested to be 
a therapeutic strategy in cancer [76]. However, due to the 
overall hypomethylation levels in melanoma, it is unclear 
whether TET proteins may act as a cure or a killer.

Notably, the studies mentioned above are focused 
on the 5-hmC levels in the whole melanoma skin lesion, 
rather than specifically in melanocytes, which means the 
tumor infiltrating immune cells may also be included. In 
our previous study, the infiltrating CD8+ and CD4+ T cells 
were 20-50% of the total cells under the microscope, and 
the 5-hmC levels were lost in the T cells (unpublished 

data). As is well known, T cells play a critical role in 
the anti-tumor immune responses. Furthermore, it is a 
well-accepted notion that cancer cells, such as malignant 
melanocytes express high levels of PD-L1, which can 
help cancer cells escape from the PD-1-expressing T 
cells [77–83]. The questions arise as to whether there 
is a relationship between high levels of PD-1 and loss 
of 5-hmC in T cells and whether the loss of 5-hmC 
contributes to the reduced cytotoxicity of CD8+ T cells in 
melanoma. Indeed, loss of 5-hmC in the promoter region 
of Pdcd-1 has been reported to contribute to the lasting 
PD-1 expression in T cells in a peptide immunotherapy 
(PIT) mouse model [84], suggesting a possible role of 
5-hmC in PD-1 expression. However, Pdcd-1 is just one 
example of a melanoma-related gene; little is known 
about the involvement of other genes, such as perforins, 
which are DNA methylation-sensitive genes and have 
been observed to be hypomethylated in autoimmune 
diseases in our previous studies [85–86]. In addition, high 
levels of 5-hmC have been observed in lupus T cells [87], 
which are the hyper-activated T cells in contrast to tumor 
infiltrating T cells [8]. Therefore, further investigation into 
the epigenetic modifications of tumor infiltrating T cells 
may shed light on the pathogenesis of melanoma and other 
cancers and provide novel therapeutic strategies.

Epigenetic biomarkers and therapies in 
melanoma

As mentioned above, the methylation levels in the 
promoters of LINE-1, TERT, MGMT, KIT, TNF, MITF [54, 
63], among others., and especially the loss of 5-hmC by 
immunohistochemistry, have the potential to be used as 
biomarkers to aid in distinguishing malignant melanocytic 
lesions from dysplastic or borderline melanocytic lesions 
[70]. The loss of 5-hmC provides a simple and fast method for 
diagnosis, and it has been recapitulated in other human tumors.

With the reversible advantage, several epigenetic 
therapies have been approved by the FDA. Azaciticine 
(VidazaTM) and Decitabine (Dacogen®), which are the 
DNMT-1 inhibitors, have been approved for treating 
myelodysplastic syndromes; the drugs are still in clinical 
trial for melanoma treatment [49]. However, the sole use 
of DNMT inhibitors in melanoma treatment has yielded 
mixed results, which might be due to the heterogenicity of 
tumors and the overall epigenetic alterations. Moreover, 
reduced expression of TET2 in melanoma may provide 
novel options [88–89]. As discussed above, the DNA 
methylation status has been observed to be low in the 
neoplastic progression of carcinogenesis. Therefore, 
gene specific modification should be considered for 
future application. As the Crisper-Cas9 technique is in its 
blooming era, genetic and epigenetic therapy may benefit 
from this gene editing revolution. Furthermore, the DNA 
methylation levels in tumor infiltrating T cells may also 
provide novel strategies for treatments.
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PERSPECTIVES

Despite the developments in chemotherapy and 
genetic therapies, poor prognosis of metastatic melanoma 
and increasing incidence of this malignant disease demands 
novel and quick strategies for earlier diagnosis and 
personalized therapies with higher efficacy. In addition to 
DNA methylation, other epigenetic modifications, such 
as histone modification and non-coding RNAs, as well as 
the interplay of these modifications, should be intensively 
studied for a better understanding of the pathogenesis of 
melanoma. The varying levels of microRNAs have been 
observed to be one of the consequences of DNA methylation 
in cancers [90–91]. Epigenetic alterations may also promote 
genetic mutations and genomic rearrangements in cancer, 
though the underlying mechanisms remain unclear. The 
tumor microenvironment, which might contribute to 
the unique phenomenon of loss of 5-hmC in melanoma, 
should be investigated further to improve the current 
understanding, which may have immense translational 
implications for benefiting patients afflicted with advanced 
melanoma and other cancers.
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