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ABSTRACT
About 70% of all breast cancers are estrogen receptor alpha positive (ER+; 

ESR1). Many are treated with antiestrogens. Unfortunately, de novo and acquired 
resistance to antiestrogens is common but the underlying mechanisms remain unclear. 
Since growth of cancer cells is dependent on adequate energy and metabolites, the 
metabolomic profile of endocrine resistant breast cancers likely contains features 
that are deterministic of cell fate. Thus, we integrated data from metabolomic and 
transcriptomic analyses of ER+ MCF7-derived breast cancer cells that are antiestrogen 
sensitive (LCC1) or resistant (LCC9) that resulted in a gene-metabolite network 
associated with EGR1 (early growth response 1). In human ER+ breast tumors treated 
with endocrine therapy, higher EGR1 expression was associated with a more favorable 
prognosis. Mechanistic studies showed that knockdown of EGR1 inhibited cell growth in 
both cells and EGR1 overexpression did not affect antiestrogen sensitivity. Comparing 
metabolite profiles in LCC9 cells following perturbation of EGR1 showed interruption of 
lipid metabolism. Tolfenamic acid, an anti-inflammatory drug, decreased EGR1 protein 
levels and synergized with antiestrogens in inhibiting cell proliferation in LCC9 cells. 
Collectively, these findings indicate that EGR1 is an important regulator of breast cancer 
cell metabolism and is a promising target to prevent or reverse endocrine resistance. 

INTRODUCTION

Resistance to endocrine therapy is a major clinical 
problem for the management of estrogen receptor positive 
(ER+) breast cancers. ER+ tumors comprise 70% of all 
breast cancer cases. Antiestrogens such as tamoxifen, 
ICI 182,780/faslodex/fulvestrant (ICI) or aromatase 
inhibitors (AI) are widely used endocrine therapies but 
little is known about the complex cellular pathways that 
contribute to resistance [1, 2]. Deregulation of metabolic 
pathways regulated by oncogenes such as MYC has been 
implicated in endocrine resistant breast cancer [3–5]. 

However, to understand the systems-level changes in 
endocrine resistance, biologically relevant interactions 
between genes and metabolites need to be identified and 
validated. Using paired cell lines that are either sensitive 
or resistant to antiestrogens we generated and integrated 
data from transcriptomics (microarray analysis) and 
metabolomics (GC/MS and UPLC/MS). Within our gene-
metabolite integrated model, we selected to further study 
the role of EGR1 (early growth response 1), a gene that is 
known to be deregulated in some cancers [6]. 

EGR1 is an immediate-early gene induced by estrogen, 
growth factors, or stress signals, and can exhibit both tumor 
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suppressor and promoter activities. A nuclear phospho-protein 
and transcription factor that can promote cell proliferation and 
cell death [7, 8], EGR1 can be induced by external stimuli, 
with its induction being either transient or sustained. Such 
a diverse array of functions is achieved through differential 
regulation of EGR1 expression and its selection of target 
genes [7]. A highly conserved DNA-binding domain on 
EGR1 targets the GC-rich consensus sequence GCG (G/T) 
GGGCG. Transcriptional activity of EGR1 is further 
regulated by NAB-1 and NAB-2 (NGF-I A-binding proteins) 
[9, 10]. EGR1 can promote growth of some hormone 
regulated cancers including prostate cancer [11]. EGR1 
mediated signaling is important for the normal development 
of female reproductive organs [12] but its precise role in 
breast cancer remains unclear. The EGR1 gene is deleted in 
some ER-negative breast tumors [13]. In ER+ breast cancer 
cells, EGR1 is induced by estrogen treatment following 
raf-1 kinase activation [14] and is inhibited with acquired 
resistance to ICI [15]. EGR1 has been associated with sensing 
cellular glucose levels [16, 17], in fatty acid metabolism 
and inflammation [18] in various cells. In this study, we 
investigated the role of EGR1 in endocrine resistance to 
validate an integrated model consisting of differentially 
expressed genes and metabolites in endocrine resistant breast 
cancer cells. Decreased levels of EGR1 in ER+ breast cancer 
cells and human tumors correlated with decreased sensitivity 
to antiestrogens. However, sustained inhibition of EGR1 with 
siRNA or tolfenamic acid (TOLE) suppressed the growth 
of endocrine resistant breast cancer cells and interacted 
synergistically with both 4-hydroxytamoxifen (hereafter 
referred to as TAM), major active metabolite of tamoxifen, 
and ICI in inhibiting cell proliferation. EGR1 inhibition also 
disrupted fatty acid metabolism in endocrine resistant cells. 
Overall, our gene-metabolite integrated model suggests a 
novel role for EGR1 in regulating cellular metabolism in 
endocrine resistant breast cancer. 

RESULTS

Analysis and integration of transcriptomics and 
metabolomics data from endocrine sensitive and 
resistant breast cancer cell lines 

Comparing LCC1 and LCC9 cell lines yielded 
4,010 unique differentially expressed genes (DEGs), 46 
unique m/z values for metabolites from the Metabolomics 
Shared Resources Core (MSRC) analysis conducted at 
Georgetown University Medical Center and 12 identified 
metabolites from the Metabolon analysis at an FDR 
threshold of 0.01 for the first two analyses, respectively; 
0.05 for the third analysis. (Figure 1A and 1B). A heatmap 
was generated using all differentially expressed genes. 
Data visualization by principal component analysis (PCA) 
analysis was performed for both the MSRC and Metabolon 
metabolome analyses. While there was inherent noise, 
LCC1 and LCC9 cells were clearly separated in both plots. 

Figure 1C shows the integrated network of differentially 
expressed genes and putative metabolites in LCC9 cells 
(endocrine resistant) using 300 DEGs, 46 unique m/z 
values for metabolites from the MSRC analysis and 11 
identified metabolites from the Metabolon analysis. The 
genes and metabolites present in the integrated network 
are also presented in Table 1. Based on our metabolomics 
analysis, glutamate and prostaglandin levels were 
significantly higher in LCC9 compared with LCC1 cells 
(log2 FC=1.522, p-value = 0.00011, q-value = 0.00574; 
respectively log2 FC=1.047, p-value = 0.00019, 
q-value = 0.00759). Estradiol and endothelin along with 
three genes (PTGS1, PTGS2 and GRM7) were added to the 
network based on predictions from the STITCH database. 

Results from the pathway analyses are presented 
in Table 2. Table 2A represents results using the 
significant metabolites, Table 2B using the top 300 
genes, and Table 2C using both metabolites and genes. 
In particular, we noted the D-glutamine and D-glutamate 
metabolism pathway (Table 2A, p-value = 0.001,  
q-value = 0.052), several key signaling pathways (Table 2B, 
and prostaglandin synthesis and regulation (Table 2C, 
p-value < 0.001, q-value = 0.002 when combining genes 
and metabolites).

Decreased EGR1 expression correlates with 
decreased responsiveness to antiestrogens in 
human breast tumors

To determine whether EGR1 expression was 
associated with disease free survival, we used publicly 
available gene expression datasets (see Methods; 
Figure 2; Table 3) for ER+ human breast tumors treated 
with endocrine therapy (adjuvant tamoxifen or AI as 
the only systemic therapy). Kaplan-Meier estimates 
of relapse-free survival over time (rfs_t) showed that 
high EGR1 gene expression levels were significantly 
correlated with favorable prognosis in at least two 
different datasets where breast tumors were treated with 
tamoxifen: in Symmans et al., GSE17705 [HR=0.38 
(0.21–0.69); p = 0.00083] [19] and Loi et al., GSE6532 
(ER+ samples on GPL96 platform) [HR=0.62(0.4–0.95); 
p = 0.028] [20] (Figure 2A and 2B). Furthermore, in 
Miller et al., GSE20181 [21], pre-treatment versus  
90 days post-treatment comparisons for treatment with 
the aromatase inhibitor Letrozole showed significantly 
increased levels of EGR1 expression (p < 0.0001) only in 
the responder group (Figure 2C).

EGR1 regulates cell proliferation in both 
endocrine sensitive and resistant breast cancer 
cell lines

To elucidate the role of EGR1 in endocrine 
responsiveness, we inhibited (RNAi) or overexpressed 
the EGR1 cDNA in LCC1 and LCC9 cells, followed by 
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Table 1: Genes and metabolites from integrated network (Figure 1C)

Name Expanded Name Type Probe/
Metabolite ID log2 fold-change p-value q-value

ESR1 ESR1 gene 205225_at –4.036 2.36E-12 6.91E-09
LGALS3 LGALS3 gene 208949_s_at –3.232 4.4E-11 3.55E-08
KITLG KITLG gene 211124_s_at –2.666 5.47E-08 4.43E-06
SOCS3 SOCS3 gene 227697_at –2.575 5.68E-10 1.96E-07
EGR1 EGR1 gene 201694_s_at –2.333 6.25E-08 4.88E-06
IL1R1 IL1R1 gene 202948_at –2.331 4.10E-08 3.71E-06
ABAT ABAT gene 209459_s_at –2.219 2.44E-08 2.53E-06
STC2 STC2 gene 203438_at –2.176 3.24E-10 1.29E-07
ABCG2 ABCG2 gene 209735_at –2.133 7.61E-10 2.34E-07
LFNG LFNG gene 228762_at –2.121 1.67E-09 4.12E-07
ABCC3 ABCC3 gene 208161_s_at –2.061 4.81E-09 8.16E-07
ERBB4 ERBB4 gene 214053_at –1.884 6.01E-09 9.71E-07
EDN1 EDN1 gene 218995_s_at –1.823 2.36E-09 5.31E-07
SLC12A2 SLC12A2 gene 204404_at –1.779 3.16E-09 6.38E-07
GHR GHR gene 205498_at –1.734 2.62E-08 2.68E-06
DLK1 DLK1 gene 209560_s_at 1.829 3.2E-09 6.41E-07
CD36 CD36 gene 206488_s_at 1.906 4.86E-08 4.15E-06
LGALS3BP LGALS3BP gene 200923_at 2.065 3.38E-09 6.60E-07
AOX1 AOX1 gene 205083_at 2.14 3.54E-10 1.38E-07
SLC7A11 SLC7A11 gene 209921_at 2.231 1.77E-09 4.23E-07
GNAI1 GNAI1 gene 227692_at 2.866 2.59E-10 1.19E-07
EGR3 EGR3 gene 206115_at 2.975 1.21E-08 1.55E-06
RUNX2 RUNX2 gene 232231_at 3.02 4.77E-09 8.15E-07
CYP2B6 CYP2B6 gene 206754_s_at 3.161 1.2E-10 6.69E-08
DUSP4 DUSP4 gene 204014_at 4.272 4.56E-11 3.56E-08
HPGD HPGD gene 203913_s_at 5.252 2.16E-10 1.08E-07
GRM7 GRM7 gene

Added to the networkPTGS1 PTGS1 gene
PTGS2 PTGS2 gene

docosapentaeno.
Docosapentaenoic acid 
(22N-6) metabolite HMDB01976 –1.911 0.00001 0.00141

DGLA
8;11;14-Eicosatrienoic 
acid metabolite HMDB02925 –0.938 0.00024 0.00859

Mead_acid
5;8;11-Eicosatrienoic 
acid metabolite HMDB10378 –0.938 0.00024 0.00859

lysine Lysine metabolite HMDB00182 0.872 0.00010 0.00521

pyroglutamate Pyroglutamic acid metabolite HMDB00267 1 0.00012 0.00586

PGE1 Prostaglandin E1 metabolite HMDB01442 1.047 0.00019 0.00759

PGFM
3,14-dihydro-15-keto 
PGF2a metabolite HMDB04685 1.047 0.00019 0.00759

prostaglandin Prostaglandin D1 metabolite HMDB05102 1.047 0.00019 0.00759

NMDA
N-Methyl-D-Aspartic 
acid metabolite HMDB02393 1.094 0.00006 0.00421

dihydrodipicol.
L-2;3-
Dihydrodipicolinate metabolite HMDB12247 1.094 0.00006 0.00421
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treatment with vehicle (ethanol), TAM, ICI or 17β-estradiol 
(E2). Figure 3A and 3B shows Western blot data that 
confirm the EGR1 protein levels with knockdown (EGR1-
siRNA) or overexpression (EGR1-cDNA). Figure 3C 
and 3D show graphs of EGR1 protein levels normalized 
to actin protein levels from three independent experiments 
where LCC1 and LCC9 cells were transfected with either 
EGR1 siRNA, cDNA, or their respective controls. Under 
control conditions (control siRNA or empty vector/EV), the 
EGR1 protein levels were 1.25-fold higher in LCC1 cells 
compared with that in LCC9 cells. Thus, we confirmed 
the model prediction in Figure 1C that endogenous 
EGR1 expression is higher in LCC1 cells and lower in 
LCC9 cells. In EGR1 siRNA transfected cell, EGR1 
protein levels decreased 2.5- and 3.8-fold in LCC1 and 
LCC9 cells, respectively, compared with control siRNA 
transfected cells. In EGR1 cDNA transfected cell, EGR1 
protein levels increased 1.4-fold and 2.5-fold in LCC1 
and LCC9 cells, respectively, compared to that in empty 
vector (EV) transfected cells. Independent of antiestrogen 
treatment, transfection with EGR1-siRNA significantly 
reduced cell proliferation in both cell lines within 48 h 
compared with control-siRNA (Figure 3D). To determine 
whether EGR1 siRNA changed cell viability, we studied 
changes in apoptosis and necrosis in LCC1 and LCC9 cells 
transfected with either control or EGR1 siRNA for 48 h. 
Figure 3E shows significant decrease in cell viability in 
both LCC1 and LCC9 cells transfected with control siRNA 
compared with EGR1 siRNA. Transfection with EGR1-
cDNA did not initially affect LCC1 or LCC9 proliferation 
(Figure 3F). However, 5-days post-transfection, EGR1-
cDNA transfected LCC1 and LCC9 cells each exhibited 
a significant decrease in proliferation compared with 
their respective EV-transfected controls (Figure 3G). 
LCC1 cells, at 5-days post-transfection with EGR1-
cDNA and treated with ICI, showed a modestly additive 

growth inhibition relative to EV control cells. At 5-days 
post-transfection with EGR1-cDNA and E2 treatment, 
LCC1 cells showed a significant decrease in E2 response 
compared to their EV controls. Thus, some basal level of 
EGR1 protein expression may be essential for the survival 
of both endocrine sensitive and resistant cells, whereas 
changes beyond this base level in sensitive cells determines 
their responsiveness to E2.  

EGR1 regulates fatty acid metabolism in 
endocrine resistant breast cancer cells

To determine the role of EGR1 in affecting cell 
metabolism in LCC9 cells, we transfected cells with either 
the EGR1-siRNA or control siRNA for 48 h, or with the 
EGR1 cDNA (EGR1-cDNA) and the respective EV 
controls. Five biological replicates were used for each group. 
Metabolomics analysis was performed by Metabolon. Data 
analysis followed the same steps as for the LCC1/LCC9 
comparison. Negative correlation between the fold-changes 
from the two experiments indicated good global agreement 
between the knockdown and overexpression approaches 
(Figure 4). Applying an FDR cut off = 0.1 yielded 18 
metabolites for the siRNA experiment; 15 of these 
metabolites had HMDB IDs (Table 4). Pathway analysis 
of these 15 metabolites was done using MetaboAnalyst 
[22] and IMPaLA: Integrated Molecular Pathway Level 
Analysis [23] (Table 5). No metabolites reached statistical 
significance for the EGR1 overexpression analysis. Several 
metabolites that were significantly regulated following 
EGR1 knockdown including 7-hydroxycholesterol and 
acetyl CoA, had fold-changes in the opposite direction when 
EGR1 was overexpressed. 

Results from the siRNA and cDNA experiments 
suggest that disrupted EGR1 expression may have a subtle 
impact on the metabolic profile of LCC9 breast cancer 

LysoPE_(16:0/0. LysoPE(16:0/0:0) metabolite HMDB11503 1.294 0.00017 0.00712

lysoPC LysoPC (17:0/0. metabolite HMDB12108 1.365 0.00002 0.00248

L-valine L-valine metabolite HMDB00883 1.438 0.00013 0.00612

alpha-(methyla.
alpha-(methylamino)
isobutyric acid metabolite HMDB02141 1.438 0.00005 0.00399

betaine betaine metabolite HMDB00043 1.438 0.00005 0.00399

glutamate glutamate metabolite HMDB03339 1.522 0.00011 0.00574

LysoPC_(17:0/0. LysoPC(17:0) metabolite HMDB12108 1.795 0.00002 0.00248

hydroxybutyrate* hydroxybutyrate metabolite HMDB00710 1.297 0.00079 0.03740

hypotaurine* Hypotaurine metabolite HMDB00965 2.017 0.00001 0.00132

endothelin Endothelin metabolite

Added to the networkestradiol Estradiol metabolite
The table shows the genes and metabolites from Figure 1C. The metabolite names are putative metabolites, so they could be 
one of the many annotations obtained. The metabolites marked with * were from Metabolon and experimentally validated.
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cells.  However, since cell proliferation was significantly 
reduced in with EGR1-siRNA (at 48 h; Figure 3B) and 
with EGR1-cDNA (at 5-days; Figure 3D), these seemingly 
subtle metabolic changes at 48 h post-transfection likely 
underestimate their ability to affect cell phenotype. 

Pathway analysis using the significant metabolites 
from the siRNA experiment is presented in Table 5. Two of 
the pathways implicate fatty acid metabolism (biosynthesis 
of unsaturated fatty acids, transport of fatty acids). Fatty 
acids are a critical source of energy for mitochondrial 
oxidation and cellular ATP generation.  Silencing of 
EGR1 was accompanied by high levels of glycerol and 
multiple monoacylglycerols such as 1-myristoylglycerol 

that may reflect an increase in complex lipid hydrolysis. 
Consequently, long chain fatty acids such as palmitoleate 
and medium chain fatty acids including caprylate and 
heptanoate were also elevated compared to control-
siRNA cells. Fatty acid availability may ultimately alter 
mitochondrial β-oxidation. 

TOLE down-regulates EGR1 and sensitizes 
resistant cells to antiestrogens

 Since EGR1 is an essential regulator of cell 
survival, we tested the effect of TOLE, a nonsteroidal 
anti-inflammatory drug (NSAID) that induced cell 

Figure 1:  Analysis and integration of gene and metabolites in LCC1 (sensitive) and LCC9 (resistant) ER+ breast 
cancer cells. (A) Heatmap: R package Limma was used for microarray analysis of LCC1 versus LCC9 data; significantly different genes 
were selected (q-value < 0.1, fold change, FC > 2) to plot the heatmap; there were 3-biological replicates. (B) Principal component analysis: 
PCA analysis performed for the transcriptomics and metabolomics datasets - MSRC and Metabolon. (C) Integration of differentially 
expressed genes and putative metabolites comparing LCC9 (resistant) and LCC1 (sensitive) cells. Metabolites are shown as rectangular 
nodes, and genes as ellipses. Orange nodes are over-expressed; blue nodes are under-expressed; darker color represents a higher fold 
change (FC). Lowest log2 FC = –5.66, highest log2 FC = 5.89. Grey nodes are those added into the network based on prediction by 
STITCH. Edge thickness increases with the confidence of the connection as predicted by STITCH. Gene-metabolite connections are shown 
in grey lines, gene-gene connections are shows as purple lines, and metabolite-metabolite connections are shown as gold lines. EGR1 is 
significantly decreased in LCC9 cells (log2 FC= –2.33). 
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Table 2A: Pathway analysis of significant metabolites (from MSRC and Metabolon) performed 
using MetaboAnalyst (http://www.metaboanalyst.ca/), showing pathways with p-value < 0.05

Name of pathway Number of significant metabolites in pathway /
Number of metabolites in pathway p-value q-value

Arachidonic acid 
metabolism

7/62 < 0.001 0.020

D-Glutamine 
and D-glutamate 
metabolism

3/11 0.001 0.052

Lysine degradation 5/47 0.003 0.073
Arginine and proline 
metabolism

6/77 0.005 0.101

Sphingolipid 
metabolism

3/25 0.015 0.237

Glycerophospholipid 
metabolism

3/39 0.048 0.640

Table 2B: Pathway analysis of top 300 genes (according to q-value) using Reactome (www.
reactome.org), showing pathways with p-value < 0.05

Name of pathway Number of top genes in pathway/
Number of genes in pathway p-value q-value

Translocation of ZAP-70 to Immunological 
synapse 16/39 < 1.00E-10 < 1.00E-10
Phosphorylation of CD3 and TCR zeta chains 16/44 < 1.00E-10 < 1.00E-10
PD-1 signaling 16/45 < 1.00E-10 < 1.00E-10
Generation of second messenger molecules 16/57 < 1.00E-10 < 1.00E-10
Co-stimulation by the CD28 family 16/96 < 0.001 < 0.001
MHC class II antigen presentation 18/141 < 0.001 < 0.001
Downstream TCR signaling 16/123 < 0.001 < 0.001
Cytokine Signaling in Immune system 41/747 < 0.001 < 0.001
Interferon Signaling 24/291 < 0.001 < 0.001
Interferon gamma signaling 18/176 < 0.001 < 0.001
TCR signaling 16/145 < 0.001 < 0.001
ERBB2 Activates PTK6 Signaling 4/18 < 0.001 0.026
ERBB2 Regulates Cell Motility 4/19 < 0.001 0.029
Interleukin-19, 20, 22, 24 3/9 < 0.001 0.035
Downregulation of ERBB4 signaling 3/10 0.001 0.045
SHC1 events in ERBB2 signaling 4/25 0.002 0.064
Nuclear signaling by ERBB4 5/44 0.002 0.077
Signaling by PTK6 6/80 0.007 0.205
GRB2 events in ERBB2 signaling 3/20 0.008 0.245
Interferon alpha/beta signaling 8/140 0.009 0.252
PTK6 Activates STAT3 2/7 0.009 0.253
PI3K events in ERBB2 signaling 3/22 0.011 0.273
Termination of O-glycan biosynthesis 3/28 0.021 0.450
Growth hormone receptor signaling 3/29 0.022 0.450
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Signaling by ERBB2 4/54 0.026 0.450
Activation of anterior HOX genes in hindbrain 
development during early embryogenesis 6/113 0.030 0.450
Activation of HOX genes during differentiation 6/113 0.030 0.450
Signaling by Interleukins 15/425 0.031 0.450
Constitutive Signaling by Aberrant PI3K in 
Cancer 5/85 0.032 0.450
Adaptive Immune System 31/1075 0.035 0.450
Immune System 52/1984 0.035 0.450
RA biosynthesis pathway 3/39 0.047 0.450
NCAM signaling for neurite out-growth 11/300 0.047 0.450
ABC-family proteins mediated transport 4/66 0.048 0.450

Table 2C: Pathway analysis of top 300 genes (according to q-value) and significant metabolites 
using http://impala.molgen.mpg.de/ 

Name of 
pathway

Source of 
pathway

Pathway analysis for genes Pathway analysis for 
metabolites

Pathway 
analysis for 
genes and 

metabolites

Number of 
top genes in 

pathway/
Number 

of genes in 
pathway

p-value q-value

Number of 
significant 
metabolites 
in pathway/
Number of 
metabolites 
in pathway

p-value q-value p-value q-value

Prostaglandin 
Synthesis and 
Regulation

Wikipathways 4/28 < 0.001 0.457 2/9 0.016 0.687 < 0.001 0.002

ABC-family 
proteins 
mediated 
transport

Reactome 4/36 < 0.001 0.457 2/10 0.019 0.746 < 0.001 0.006

Synthesis of 
Prostaglandins 
(PG) and 
Thromboxanes 
(TX)

Reactome 3/15 < 0.001 0.457 3/34 0.038 1 < 0.001 0.009

Arachidonic 
acid 
metabolism

Reactome 3/54 0.029 1 7/78 0.001 0.096 < 0.001 0.011

Transmembrane 
transport 
of small 
molecules

Reactome 15/594 0.006 0.63 9/178 0.014 0.618 < 0.001 0.024

Transport 
of inorganic 
cations/
anions and 
amino acids/
oligopeptides

Reactome 5/94 0.006 0.63 4/46 0.017 0.73 0.001 0.027
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GABA 
synthesis, 
release, 
reuptake and 
degradation

Reactome 2/20 0.025 1 2/15 0.042 1 0.008 0.180

Figure 2: Lower EGR1 levels correlate with lower survival in ER+ breast cancer patients treated with endocrine 
therapy. (A) and (B) Kaplan-Meier plots were generated using the Symmans et al. and Loi et al. datasets to estimate the number of 
patients living over time post endocrine treatment (Tamoxifen) with indicated levels of EGR1 expression in their breast tumors; rfs_t 
(recurrence free survival time) (C) Pre-treatment vs. 90 days post-treatment (Letrozole) comparisons show significantly increased levels of 
EGR1 expression (p < 0.0001) only in the responder group.
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death in an EGR1-dependent manner in colorectal 
cancer cells [24]. Western blot analysis of whole 
cell lysates from LCC1 cells (Figure 5A, left panel) 
show decreased levels of EGR1 at 48 h following 
treatment with 100 nM TAM or ICI, or 50 µM TOLE. 
In LCC9 cells (Figure 5A, right panel), treatment 
with TAM and ICI increased EGR1 protein levels 
at 72 h compared with control cells. TOLE treatment 
decreased EGR1 levels in LCC9 cells. In both LCC1 
and LCC9 cells, co-treatment with TOLE and either 
TAM or ICI decreased EGR1 levels. In LCC1 cells, 
treatment with 100 nM TAM or ICI alone significantly 
(p < 0.001) inhibited cell number; a combination of  
50 µM TOLE and TAM or ICI significantly (p < 0.001) 
decreased cell number compared with the individual 
treatments but the interaction was not synergistic 
(Figure 5B). In LCC9 cells, treatment with TAM or ICI 

had no effect on cell number compared with vehicle, but 
TOLE treatment alone (p < 0.001) or in combination 
with either TAM (RI = 1.31; p < 0.001) or ICI (RI = 1.20;  
p < 0.001) synergistically reduced the number of 
cells within 72 h, implying a partial restoration of ICI 
sensitivity. To confirm that inhibition of cell number with 
TOLE was mediated through EGR1 downregulation, 
we treated LCC9 cells that were either transfected with 
control siRNA or EGR1 siRNA followed by treatment 
with increasing doses of TOLE (0–50 µM). EGR1 
knockdown resulted in a significant decrease in TOLE-
mediated inhibition in cell number at 25 and 50 µM 
(p < 0.05; Figure 5C). Together, these data indicate that 
antiestrogen treatment can differentially affect EGR1 
levels in endocrine sensitive versus resistant cells. 
Furthermore, TOLE can downregulate EGR1 levels and 
re-sensitize endocrine resistant cells to antiestrogens. 

Table 3: Gene expression public dataset for ER+ breast cancer used for correlating EGR1 
expression and endocrine response

Dataset Treatment Duration Sample_Size
Symmans et al. Tamoxifen 5 years 298
Loi et al. Tamoxifen N/A 181
Miller et al. Letrozole 0,10-14,90 day time-point 36 in each time-point

Table 4: Metabolites that were significantly altered with EGR1-siRNA knockdown in LCC9 cells, 
with q-value < 0.1 with EGR1-siRNA versus EGR1-control siRNA in LCC9 cells

Name HDMB ID KEGG ID Results from siRNA experiment Results from cDNA experiment

log2 
fold-

change

p-value q-value log2 
fold-

change

p-value q-value

stearoyl-arachidonoyl-glycerophosphoinositol 
(1) 1.818 < 0.001 0.097 –0.006 0.988 0.999

1-arachidonoylglycerophosphoinositol HMDB61690 2.829 < 0.001 0.097 –0.060 0.865 0.999

7-hydroxycholesterol (alpha or beta) –3.116 < 0.001 0.097 0.361 0.392 0.999

desmosterol HMDB02719 C01802 1.037 < 0.001 0.097 –0.399 0.121 0.999

N-acetylglucosamine HMDB00215 C00140 1.108 0.002 0.097 –0.418 0.216 0.999

5-dodecenoate (12:1n7) HMDB00529 1.329 0.002 0.097 –0.220 0.522 0.999

N-palmitoyl-sphingosine HMDB04949 1.415 0.002 0.097 0.141 0.648 0.999

acetyl CoA HMDB01206 C00024 –3.331 0.002 0.097 0.358 0.750 0.999

dihomo-linolenate (20:3n3 or n6) HMDB02925 C03242 1.080 0.002 0.097 0.086 0.730 0.999

linoleate (18:2n6) HMDB00673 C01595 1.354 0.003 0.097 0.016 0.959 0.999

erucate (22:1n9) HMDB02068 C08316 1.172 0.003 0.097 0.234 0.454 0.999

1-oleoylglycerophosphoserine 1.107 0.003 0.097 –0.062 0.893 0.999

1-myristoylglycerol (1-monomyristin) HMDB11561 C01885 1.937 0.003 0.100 –0.105 0.775 0.999

nicotinamide ribonucleotide (NMN) HMDB00229 C00455 1.076 0.004 0.100 0.170 0.642 0.999

phosphopantetheine HMDB01416 C01134 2.875 0.004 0.100 0.070 0.952 0.999

caprate (10:0) HMDB00511 C01571 1.152 0.004 0.100 –0.122 0.693 0.999

arachidonate (20:4n6) HMDB01043 C00219 1.019 0.004 0.100 0.176 0.493 0.999

uridine 5’-diphosphate (UDP) HMDB00295 C00015 –1.032 0.004 0.100 –0.040 0.945 0.999
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Figure 3: EGR1 expression regulate cell proliferation and viability in both endocrine sensitive and resistant ER+ breast 
cancer cells. (A) Western blot of LCC1 and LCC9 cells showing the effect of EGR1 knockdown (EGR1-siRNA) and its respective control 
(EGR1-control-siRNA) or EGR1 overexpression (EGR1) or its respective control, empty vector (EV). Cells were transfected with siRNA 
or cDNA plasmid for 72 h. EGR1 protein appeared as a doublet, perhaps due to phosphorylation. Actin was used as a loading control. (B–C) 
Quantification of EGR1 protein (normalized to actin) following transfection with EGR1-siRNA compared with control siRNA in LCC1 
and LCC9 cells show 2.5- and 3.8-fold reduction, respectively, (B) EGR1 protein in LCC1 and LCC9 cells show 1.4- and 2-fold increase, 
respectively, with EGR1-cDNA compared with EV, (C, D) EGR1 knockdown in both LCC1 and LCC9 cells significantly decreased cell 
proliferation at 48 h regardless of TAM or ICI treatment (ANOVA, p < 0.001). (E) EGR1 knockdown significantly decreased cell viability 
in both LCC1 and LCC9 cells (ANOVA, p < 0.01; *p <  0.01 for cell death in EGR1-siRNA versus control-siRNA for respective cells lines) 
at 48 h. (F) and (G) EGR1 overexpression for 48 h followed by treatment with TAM or ICI for 3-days or 5-days, respectively. While EGR1 
overexpression did not change cell proliferation of either LCC1 or LCC9 cell under control or treatment conditions at 3-days, at 5-days, 
EGR1 transfected LCC1 and LCC9 cells showed significant decrease in cell proliferation compared with respective cells transfected with 
EV. At 5-day transfection with EGR1 combined with E2 treatment showed a significant decrease in E2 response compared to EV control 
(ANOVA, p < 0.05).
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DISCUSSION 

Molecular adaptations that lead to drug resistance in 
cancer cells are largely dependent on cellular context and 
the nature of the stress signal. To determine the pathways 
that promote endocrine resistance, we integrated gene 
expression data with metabolite concentrations studying 
only those signals that were significantly changed in 
resistant breast cancer cells (LCC9) compared with 
sensitive cells (LCC1). The resulting model implicated 
EGR1 as a gene that is downregulated in endocrine 
resistant cells and proposed an increased activation of 
the glutamine and arachidonic pathways (Figure 1C; 
Tables 2 and 3). Interestingly, pathway analysis of top 
DEGs showed that a number of pathways associated with 
immune response were significantly altered in endocrine 
resistant LCC9 cells. It is still unclear how immune 
response genes are regulated in ER+ breast cancer 
cells and tumors. In breast cancer patients, depression 
in cellular immunity was associated with resistance to 
endocrine therapy [25]. In vivo models of mammary 

tumors suggest a role of immune-associated genes in 
antiestrogen resistance [26, 27]. The signaling interactions 
between cancer cells and the tumor microenvironment 
remain to be elucidated.  In this study, to validate our 
gene-metabolite integration model, we tested whether 
alteration of EGR1, which is down-regulated in LCC9 
cells [15], changed endocrine responsiveness or survival 
in resistant cells. We also asked whether gene expression 
data from human tumors treated with endocrine therapy 
showed a correlation between higher EGR1 levels and a 
more favorable prognosis (Figure 2A).  

EGR1 levels are high in some prostate cancers 
[28, 29], Wilm’s tumors [30], and melanoma cells bearing 
oncogenic B-RAF mutation [31] compared to normal 
tissue. An array of stress stimuli including radiation, 
chemotherapy, or hypoxia can alter EGR1 levels and 
the nature of a response is determined by whether EGR1 
transcriptionally up- or down-regulates specific target 
genes [6, 7, 32]. While the precise role of EGR1 in cell 
survival remains unclear, disruption of endogenous levels 
of EGR1 can either inhibit growth or promote tumor 

Figure 4: EGR1 knockdown in endocrine resistant cells disrupt fatty acid metabolism pathway. Correlation between 
estimated log2 fold changes for the EGR1 knockdown experiment (siEGR1 vs. siCtrlEGR1) and the estimated log2 fold changes for the 
EGR1 siRNA experiment (EGR1 cDNA vs. EV EGR1). The negative correlation indicates agreement a global agreement between the two 
approaches, as the direction of change is expected to be different when comparing the knockdown to the overexpression experiments. 
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Table 5: Pathway analysis on significant metabolites with EGR1-siRNA versus EGR1-control 
siRNA in LCC9 cells

Name of pathway Source of 
pathway

Number of 
significant 
metabolites in 
pathway/
Number of 
metabolites in 
pathway

p-value q-value

Biosynthesis of unsaturated fatty acids - Homo 
sapiens (human)

KEGG 4/32 < 0.001 0.042

Linoleic acid metabolism - Homo sapiens 
(human)

KEGG 3/19 < 0.001 0.042

Signal Transduction Reactome 6/169 < 0.001 0.042

Heparan sulfate/heparin (HS-GAG) 
metabolism

Reactome 3/21 < 0.001 0.042

Regulation of lipid metabolism by Peroxisome 
proliferator-activated receptor alpha 
(PPARalpha)

Reactome 2/5 < 0.001 0.042

Activation of Gene Expression by SREBP 
(SREBF)

Wikipathways 2/5 < 0.001 0.042

YAP1- and WWTR1 (TAZ)-stimulated gene 
expression

Wikipathways 2/5 < 0.001 0.042

Glycosaminoglycan metabolism Wikipathways 3/27 < 0.001 0.042

Leishmaniasis - Homo sapiens (human) KEGG 2/6 < 0.001 0.042

Circadian Clock Wikipathways 2/6 < 0.001 0.042

triacylglycerol degradation HumanCyc 3/29 < 0.001 0.042

Defective SLC26A2 causes chondrodysplasias Reactome 3/29 < 0.001 0.042

Defective PAPSS2 causes SEMD-PA Reactome 3/29 < 0.001 0.042

Defective B4GALT7 causes EDS_ progeroid 
type

Reactome 3/29 < 0.001 0.042

Defective B3GAT3 causes JDSSDHD Reactome 3/29 < 0.001 0.042

Defective CHSY1 causes TPBS Reactome 3/29 < 0.001 0.042

Defective CHST3 causes SEDCJD Reactome 3/29 < 0.001 0.042

Defective CHST14 causes EDS_ 
musculocontractural type

Reactome 3/29 < 0.001 0.042

Defective B4GALT1 causes B4GALT1-CDG 
(CDG-2d)

Reactome 3/29 < 0.001 0.042

Defective CHST6 causes MCDC1 Reactome 3/29 < 0.001 0.042

Diseases associated with glycosaminoglycan 
metabolism

Reactome 3/29 < 0.001 0.042

Glycosaminoglycan metabolism Reactome 3/29 < 0.001 0.042

Defective EXT2 causes exostoses 2 Reactome 3/29 < 0.001 0.042

Defective EXT1 causes exostoses 1_ TRPS2 
and CHDS

Reactome 3/29 < 0.001 0.042
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progression [33, 34]. In prostate cancer cell lines, EGR1 
inhibition decreased cell growth, induced apoptosis 
[35], and decreased expression of the pro-inflammatory 
chemokine interleukin 8 (IL8) in a NF-κB-dependent 
pathway [36]. EGR1 has been implicated in the acquisition 
of resistance to hormone therapy particularly through its 
role in the androgen receptor (AR) pathway [37, 38]. 
In breast cancer, the role of EGR1 remains ambiguous. 
In an ER+, carcinogen-induced (7,12-dimethylbenz(a)
anthracene; DMBA), rat mammary tumor model, EGR1 
levels in tumors were reduced relative to normal mammary 
tissues but then increased with TAM treatment [39]. In 
ER-negative breast cancer, the EGR1 gene is frequently 
deleted [13]. Disruption of the ER signaling pathway 
can affect EGR1 levels in ER+ breast cancer cells and 
tumors [14, 39]. Interestingly, overexpression of EGR1 
dramatically reduced E2-mediated proliferation in these 
cells. In a model to identify topological and temporal 
effects of E2 regulatory networks in MCF7 cells, EGR1 
was identified as a mediator of some of the late responses 
to E2 [40]. Thus, EGR1 levels in breast cancer cells may 
be closely regulated by a functional ER pathway. 

A role for EGR1 in regulating cellular metabolic 
pathways has been reported in several disease models 
including cancer. Several cellular metabolic pathways 
were altered with perturbation of EGR1 levels in LCC9 
cells (Table 5), particularly molecules associated with fatty 
acid metabolism. EGR1 and the lipogenic enzyme fatty 
acid synthase (FASN) are elevated in tissues adjacent to 
prostate cancer; this relationship is used as a predictive 
marker of recurrence [41]. FASN activation is required 
for estrogen-mediated signaling in ER+ breast cancer 
cells [42] . EGR1 is an immediate-early prostaglandin E2 
(PGE2) target gene that can mediate eicosanoid regulation 
of genes involved in the immune and inflammatory 
responses [43]. Together, these findings highlight the 
critical role of EGR1 in fatty acid metabolism. 

In LCC9 cells, combining TOLE and antiestrogens 
synergistically inhibited cell growth (Figure 5B). TOLE 
can inhibit synthesis of prostaglandins and has been used 
for treating migraines [44]. In a triple-negative breast 
cancer xenograft model, treatment with TOLE resulted 
in a significant reduction in tumor volume over 5 weeks 
compared to treatment with vehicle alone [45]. TOLE can 

MPS IX - Natowicz syndrome Reactome 3/29 < 0.001 0.042

MPS I - Hurler syndrome Reactome 3/29 < 0.001 0.042

MPS II - Hunter syndrome Reactome 3/29 < 0.001 0.042

MPS IIIA - Sanfilippo syndrome A Reactome 3/29 < 0.001 0.042

MPS IIIB - Sanfilippo syndrome B Reactome 3/29 < 0.001 0.042

MPS IIIC - Sanfilippo syndrome C Reactome 3/29 < 0.001 0.042

MPS IIID - Sanfilippo syndrome D Reactome 3/29 < 0.001 0.042

MPS IV - Morquio syndrome A Reactome 3/29 < 0.001 0.042

MPS IV - Morquio syndrome B Reactome 3/29 < 0.001 0.042

MPS VI - Maroteaux-Lamy syndrome Reactome 3/29 < 0.001 0.042

MPS VII - Sly syndrome Reactome 3/29 < 0.001 0.042

Mucopolysaccharidoses Reactome 3/29 < 0.001 0.042

phospholipases HumanCyc 3/30 < 0.001 0.044
sphingomyelin metabolism/ceramide salvage HumanCyc 3/30 < 0.001 0.044

sphingosine and sphingosine-1-phosphate 
metabolism

HumanCyc 3/36 < 0.001 0.063

the visual cycle I (vertebrates) HumanCyc 3/36 < 0.001 0.063

Transport of fatty acids Reactome 2/9 < 0.001 0.070
Transcriptional Regulation of White Adipocyte 
Differentiation

Wikipathways 2/9 < 0.001 0.070

Regulation of Lipid Metabolism by 
Peroxisome proliferator-activated receptor 
alpha (PPARalpha)

Wikipathways 2/9 < 0.001 0.070

The pathway analysis was performed using tool http://impala.molgen.mpg.de/ . The pathways enriched at q-value < 0.1 are 
shown.
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inhibit cell growth in cancer cells through cyclooxygenase-
independent pathways including inhibition of ErbB2 
expression [46], activation or ATF3 [47], or induction of 
NSAID-activated gene-1 (NAG-1) [48] and EGR1 [24]. 
Contrary to the latter study, in our breast cancer cells, 
treatment with TOLE inhibited EGR1 protein levels in 
LCC9 cells and synergized with ICI and TAM (Figure 5B). 
Thus, cellular context is likely a key determinant of the 
outcomes of EGR1 action.

Overall, we present a comprehensive model 
incorporating the differential expression/concentration 
of genes and metabolites that may interact to determine 
breast cancer cell fate in the response to select endocrine 
therapies. We tested our model by further elucidating the 
role of EGR1 in endocrine sensitive and resistant breast 
cancer cells. Our data suggest that although EGR1 levels 
are significantly reduced in endocrine resistant cells, it is 
an essential driver of cell survival and metabolic pathways 
such as fatty acid metabolism. Targeting EGR1 with 

TOLE may be an effective therapeutic strategy in some 
endocrine resistant breast cancers. Furthermore, EGR1 
levels in human breast tumors may be useful as a favorable 
prognosis marker in ER+ breast cancer. 

MATERIALS AND METHODS

Cell culture and reagents

LCC1 (sensitive) and LCC9 (ICI resistant and TAM 
cross-resistant) cells were established as previously described 
[49–51]. Cells were grown in phenol red–free IMEM (Life 
Technologies, Grand Island, NY; A10488-01) with 5% 
charcoal-stripped calf serum (CCS); this media contains  
2 mM L-glutamine and ~12 mM glucose. ICI182,780 (ICI) 
and 4-hydroxytamoxifen (TAM) were obtained from Tocris 
Bioscience (Ellisville, MO). Tolfenamic acid (TOLE) was 
purchased from Selleck (Houston, TX). All cells were 
authenticated by DNA fingerprinting and tested regularly for 

Figure 5: TOLE decreased EGR1 protein in both sensitive and resistant cells and re-sensitize resistant cells 
to antiestrogens. (A) Western blot analysis of LCC1 and LCC9 cells, treated with vehicle, TOLE (50 μM), TAM (100 nM) or ICI 
(100 nM) or the combination for 72 h. In LCC1 cells, TOLE, TAM or ICI treatment decreased EGR1 protein levels. However, in LCC9 
cells, antiestrogens increased but TOLE deceased EGR1 protein levels. Actin was used as a loading control. (B) Cell proliferation was 
significantly decreased in both LCC1 and LCC9 with treatment with TOLE at 72 h. Combination of TAM or ICI with TOLE did not show 
a significant interaction in LCC1 cells. However, cell proliferation was synergistically decreased in LCC9 cells treated with TOLE +TAM 
(RI = 1.31) or ICI+TOLE (RI = 1.20) within 72 h. ANOVA, p < 0.001; *p < 0.001 for specified treatment and cell line compared to vehicle. 
Dashed line denotes decrease in relative cell proliferation in each cell line with TOLE alone. (C) In LCC9 cells, knockdown of EGR1 with 
siRNA showed significant decrease in cell proliferation with 25 or 50 µM TOLE in LCC9 cells suggesting that TOLE-mediated EGR1 
downregulation contributes to TOLE-induced decrease in cell proliferation in LCC9 cells. ANOVA, p < 0.05; *p < 0.05 for indicated 
concentration of TOLE in control-siRNA versus EGR1-siRNA.
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Mycoplasma infection. All other chemicals were purchased 
from Sigma-Aldrich.

Cell proliferation and viability

 For determination of cell density, cells were plated 
in 96-well plates at 5 × 103 cells/well. At 24 h, cells 
were treated with specified drugs for 48 h (or otherwise 
indicated). After treatment, media were removed, and 
plates were stained with a solution containing 0.5% 
crystal violet and 25% methanol, rinsed, dried overnight, 
and re-suspended in citrate buffer (0.1 M sodium citrate 
in 50% ethanol). Intensity of staining, assessed at  
570 nm and quantified using a VMax kinetic microplate 
reader (Molecular Devices Corp., Menlo Park, CA), is 
directly proportional to cell number [50, 51]. For assessing 
cell viability and cell death (apoptosis and necrosis), 
cells were treated for 48 h, and stained with an Annexin 
V-fluorescein isothiocyanate and propidium iodide, 
respectively (Trevigen, Gaithersburg, MD).

Transfections with EGR1 siRNA or cDNA

Cells were plated at 60–80% confluence. EGR1 
(10 nM of 3 unique 27mer siRNA duplexes; Origene, 
Rockville, MD) or their respective control siRNA, were 
transfected using the RNAiMAX (Invitrogen) transfection 
reagent. For EGR1 overexpression, EGR1 cDNA (catalog 
#SC128132) was purchased from Origene and transfected 
with TransIT-2020 (Mirus). Cells were lysed at 48 h post-
transfection and subjected to Western blot analysis or cell 
number assay as described above. Antiestrogens, 100 nM 
ICI or TAM, or vehicle (0.02% ethanol) was added to the 
transfected cells at 24 h and treatment was allowed for the 
time-points indicated. For 5-day treatments, cells were re-
treated with the indicated drugs in fresh cell culture media 
at day 3. 

Western analyses

Total protein (~20 μg) was isolated from cells 
following 72 h treatment or vehicle control (0.02% DMSO 
or ethanol) for protein analysis as previously described 
[50, 51]. The following antibodies were used: EGR1 
(Cell Signaling, Danvers, MA), and β-actin (Santa Cruz 
Biotechnology, Santa Cruz, CA). 

Generation and integration of transcriptomic 
and metabolomic data from LCC1 and LCC9 
cells

 Transcriptome data

 We obtained and analyzed gene expression and 
untargeted metabolomics data from antiestrogen sensitive 
(LCC1) or antiestrogen resistant (LCC9). Microarray 

analysis was performed using three biological replicates 
from LCC1 and three biological replicates from LCC9 
using Affymetrix HG U133 Plus 2.0 microarray at our 
Genomics and Epigenomics Shared Resources. Briefly, 
total RNA was extracted using the RNeasy kit (Qiagen, 
Valencia, CA, USA). RNA labeling and hybridization 
were performed according to the Affymetrix protocol for 
one-cycle target labeling. For each experiment, fragmented 
cRNA was hybridized in triplicates to Affymetrix 
GeneChip HG-U95 arrays (Affymetrix, Santa Clara, CA). 
Affymetrix data analysis included pre-processing of the 
probe-level Affymetrix data (CEL files). 

Metabolomics data 

Metabolomics analysis was two-part: we sent cell 
samples to both our in-house MSRC and to Metabolon 
Inc. MSRC samples were five biological replicates from 
each of the two groups, each with two technical replicates. 
Metabolon samples were six biological replicates from 
each of the two groups. LC-MS was used to analyze the 
MSRC samples; both LC-MS and GC-MS were used by 
Metabolon. 

For the MSRC protocol, metabolite extraction was 
performed as described by Sheikh et al. [52]. Briefly, 
the residual pellet was resuspended in 200 μL of solvent 
A (98% water, 2% ACN and 0.1% formic acid) for 
Ultra-performance liquid chromatography-electro-spray 
ionization quadrupole-time-of-flight mass spectrometry 
(UPLC-ESI-Q-TOFMS) analysis. Mass spectrometry was 
performed on a Q-TOF Premier (Waters) operating in 
either negative-ion (ESI-) or positive-ion (ESI+) electro-
spray ionization mode with a capillary voltage of 3200 
V and a sampling cone voltage of 20 V in negative mode 
and 35 V in positive mode. The cone gas flow was 25 L/h, 
and the source temperature was 120°C. Accurate mass 
was maintained by introduction of LockSpray interface of 
sulfadimethoxine (311.0814 [M+H]+ or 309.0658 [M-H]−). 
Data were acquired in centroid mode from 50 to 850 m/z in 
MS scanning. Centroided and integrated mass spectrometry 
data from the UPLC-TOFMS was processed to generate a 
multivariate data matrix using MarkerLynx (Waters).

For Metabolon, samples were prepared using the 
automated MicroLab STAR® system (Hamilton Company, 
Reno, NV).  A recovery standard was added prior to the 
first step in the extraction process for quality control (QC) 
purposes. Proteins were precipitated with methanol to 
remove protein, dissociate small molecules bound to protein 
or trapped in the precipitated protein matrix, and to recover 
chemically diverse metabolites. The resulting extract was 
divided into five fractions: one for analysis by UPLC-MS/
MS with positive ion mode electrospray ionization, one 
for analysis by UPLC-MS/MS with negative ion mode 
electrospray ionization, one for LC polar platform, one 
for analysis by GC-MS, and one sample was reserved 
for backup. Samples were placed briefly on a TurboVap® 
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(Zymark) to remove the organic solvent.  For LC, the 
samples were stored overnight under nitrogen before 
preparation for analysis.  For GC, each sample was dried 
under vacuum overnight before preparation for analysis. 
The LC/MS portion of the platform was based on a Waters 
ACQUITY ultra-performance liquid chromatography 
(UPLC) and a Thermo Scientific Q-Exactive high 
resolution/accurate mass spectrometer interfaced with 
a heated electrospray ionization (HESI-II) source and 
Orbitrap mass analyzer operated at 35,000 mass resolution.  
The MS analysis alternated between MS and data-
dependent MS2 scans using dynamic exclusion, and the 
scan range was from 80–1000 m/z. The samples destined 
for analysis by GC-MS were were analyzed on a Thermo-
Finnigan Trace DSQ fast-scanning single-quadrupole mass 
spectrometer using electron impact ionization (EI) and 
operated at unit mass resolving power.  The scan range 
was from 50–750 m/z.  Raw data files are archived and 
extracted as described below. The scope of the Metabolon 
LIMS system encompasses sample accessioning, sample 
preparation and instrumental analysis and reporting and 
advanced data analysis.  It has been modified to leverage 
and interface with the MSRC information extraction 
and data visualization systems, as well as third party 
instrumentation and data analysis software. 

Metabolite quantification and data 
normalization

For the MSRC metabolomics data, peaks were 
detected and quantified using the estimated area-under-the-
curve of the LC/MS signals via the CentWave algorithm 
[53]. For the Metabolon data, an in-house software was 
used for detection and integration of peaks [54]. For 
studies spanning multiple days, a data normalization 
step was performed to correct variation resulting from 
instrument inter-day tuning differences.  Essentially, each 
compound was corrected in run-day blocks by registering 
the medians to equal one (1.00) and normalizing each data 
point proportionately (termed the ‘block correction’).   For 
studies that did not require more than one day of analysis, 
no normalization was necessary, other than for data 
visualization.  In certain instances, biochemical data were 
normalized to an additional factor (such as cell counts, 
total protein as determined by Bradford assay, osmolality) 
to account for differences in metabolite levels due to 
differences in the amount of material present in each sample.

Data analysis and integration of transcriptomics 
and metabolomics

Gene expression raw data were processed using the 
RMA algorithm as implemented in the R affy package 
[55], followed by a log2-transformation and analysis using 
a moderated t-test via the limma approach implemented 
in the limma package in Bioconductor [56]. MSRC 

metabolomics data were processed using the XCMS 
approach [53, 57, 58]. Internal controls were used to 
standardize raw values. Intensity values were then log2-
transformed and quantile normalized [59], to avoid infinite 
value produced by 0 expression level during the log2-
transform phase, 1e-06 was introduced to replace all 0 
in the expression profile and the two technical replicates 
were averaged. Putative isotopes were identified via 
the CAMERA package [60] and higher-weight isotopes 
removed. Finally, results were analyzed using limma 
along with surrogate variable analysis [61, 62] to remove 
sources of variability unrelated to the comparison of 
interest. Metabolon data were processed by Metabolon 
as described above and log2-transformed, followed by 
the use of limma. Log2 transformation was performed 
for both data types to meet the normality assumptions 
for t-tests. All statistical tests were adjusted for multiple 
testing using the Benjamini-Hochberg approach to control 
the false discovery rate (FDR). Results are presented as 
both the p-values and the q-values (transformed p-values 
used for FDR control).

Metabolites significant at an FDR of < 0.01 
and < 0.05 for the MSRC set and the Metabolon set, 
respectively, were annotated using the HMDB and Metlin 
databases [63, 64]. Pathway analyses for the genes 
significant at FDR of < 0.01 were performed using Pathway 
Studio (http://www.elsevier.com/online-tools/pathway-
studio) and Enrichr [65] that allowed us to perform 
pathway analysis using the KEGG [66] and Reactome 
[67] databases. Pathway analyses for the top metabolites 
significant at an FDR of < 0.01 for our MSRC analysis and 
< 0.05 for the Metabolon analysis were performed using 
MetaboAnalyst [22] and IMPaLA: Integrated Molecular 
Pathway Level Analysis [23], respectively. 

The top 300 DEGs according to their q-value were 
chosen for integration, along with the metabolites obtained 
after the filtering described above. Knowledge-based 
integration of these gene expression and metabolomics 
results was performed using STITCH [68]. This created 
a network of genes and metabolites using text mining 
and database curation sources. Based on the information 
obtained from these sources, each connection was given 
a confidence value. For our network, connections with at-
least medium confidence were selected [68, 69]. STITCH 
lists up to 50 articles that support each connection in the 
network. For each article, the PubMed ID and abstract 
was provided and the information therein was compared 
for consistency/relevance to the model solution.  STITCH 
added nodes (genes or metabolites) to the predicted 
network to indicate an indirect connection between two 
input nodes. A network was created using the nearest 
5 and nearest 10 interactions of the input genes and 
metabolites. The final network obtained in STITCH was 
downloaded, and formatted using Cytoscape [70] to 
overlay fold change values from our experiments and to 
visualize the network. 
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For EGR1 inhibition and overexpression experiments, 
five biological replicates were considered and the analysis 
was performed by Metabolon. The data analysis followed 
the same steps as that described above for the LCC1/LCC9 
comparison. A relaxed FDR cut off of 0.1 was applied for 
each experiment. Since transfection with EGR1 siRNA 
in LCC9 cells resulted in significant reduction in cell 
proliferation at 48 h, the small metabolic changes at this 
time-point are likely sufficient to affect cell phenotype. The 
metabolites showing significant differences between the 
control group and the inhibition or overexpression group 
were considered in pathway analyses. 

Estimates of relapse-free survival and EGR1 
gene expression levels from public gene 
expression datasets

Publicly available datasets for gene expression from 
human ER+ breast cancer tumors that were treated with 
endocrine therapy were obtained: GSE17705 (Symmans 
et al., treated with Tamoxifen) [19], GSE6532, ER+ 
samples on GPL96 platform (Loi et al., treated with 
Tamoxifen) [20] and GSE20181 (Miller et al., treated with 
Letrozole)  [21]. Kaplan-Meier plots were generated using 
the Symmans et al. and Loi et al. datasets to estimate 
the number of patients living over time post endocrine 
treatment with indicated levels of EGR1 expression in 
their breast tumors. The dataset in Miller et al. was used to 
generate box plots to show difference in EGR1 expression 
in responders. Graphs were generated using tools in the R 
statistical programming language. 

Statistical analysis for cell proliferation 
experiments

Statistical analyses were performed using the 
Sigmastat software package (Jandel Scientific, SPSS, 
Chicago, IL). Where appropriate, cell growth under 
different conditions were compared using ANOVA with a 
post hoc t-test for multiple comparisons. Differences were 
considered significant at p ≤ 0.05. Nature of interaction 
between TOLE, TAM and ICI was defined by measuring 
the R-index (RI). The RI values were obtained by 
calculating the expected cell survival (Sexp; the product 
of survival obtained with drug A alone and the survival 
obtained with drug B alone) and dividing Sexp by the 
observed cell survival in the presence of both drugs (Sobs). 
Sexp/Sobs > 1.0 indicates a synergistic interaction [71].
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