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ABSTRACT

The traditional methods of drug discovery follow the “one drug-one target” 
approach, which ignores the cellular and physiological environment of the action 
mechanism of drugs. However, pathway-based drug discovery methods can overcome 
this limitation. This kind of method, such as the Integrative Penalized Matrix 
Decomposition (iPaD) method, identifies the drug-pathway associations by taking 
the lasso-type penalty on the regularization term. Moreover, instead of imposing 
the L1-norm regularization, the L2,1-Integrative Penalized Matrix Decomposition (L2,1-
iPaD) method imposes the L2,1-norm penalty on the regularization term. In this paper, 
based on the iPaD and L2,1-iPaD methods, we propose a novel method named L1L2,1-
iPaD (L1L2,1-Integrative Penalized Matrix Decomposition), which takes the sum of 
the L1-norm and L2,1-norm penalties on the regularization term. Besides, we perform 
permutation test to assess the significance of the identified drug-pathway association 
pairs and compute the P-values. Compared with the existing methods, our method 
can identify more drug-pathway association pairs which have been validated in the 
CancerResource database. In order to identify drug-pathway associations which 
are not validated in the CancerResource database, we retrieve published papers to 
prove these associations. The results on two real datasets prove that our method can 
achieve better enrichment for identified association pairs than the iPaD and L2,1-iPaD 
methods.

INTRODUCTION

With the rapid development of data generated from 
genetic analyses and functional genomics, identifying 
drug targets has become more and more feasible [1]. 
The modern drug discovery has found thousands of drug 
targets and the clinical testing agents. These agents can 
produce curative effects via regulating different targets 
in various biological and related diseases of pathways. 
Traditional drug discovery methods follow the “one drug-
one target” line. But many complex diseases are related to 
dysfunction of multiple pathways rather than individual 
genes [2]. These methods ignore the relationship among 

genes and the systemic nature of human diseases. In 
general, pathways are defined as the interaction of multiple 
genes, that is, pathways can be regarded as the target of 
drugs [3, 4]. Abnormal biological pathways can provide 
views for the aberrant imbalance underlying diseases and 
find targets for complex diseases intervention [5].

Compared with the “one drug-one target” methods, 
the systematic biology approach takes the drug effects 
into the global physiological environment account [6]. 
These existing computational methods for identifying 
drug targets include the Gene Set Enrichment Analysis 
(GSEA) method [7], the FacPad method [2], the iFad 
method [5] and the iPaD method [8], etc. The GSEA 
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method has several disadvantages. Firstly, for every paired 
drug-pathway association, calculation must be done once 
at every turn. Secondly, the genes which belong to the 
same pathway will have the common weights, therefore, 
when a subblock of genes serve as the critical interaction 
groups for a specific drug. In summary, the GSEA method 
is time-consuming and inaccurate. The FacPad method 
has been proposed to identify drug-pathway association 
pairs, and it develops a sparse Bayesian factor analysis 
model to deal with treatment response data that are derived 
from microarray platforms [2]. And the iFad method is 
also a sparse Bayesian factor model, which is proposed to 
infer the drug-pathway association using gene expression 
and drug sensitivity data. In literature [5], the authors 
apply this method on the NCI-60 data set. The gene 
expression and drug sensitivity data are downloaded from 
the CellMiner database [9] (http://discover.nci.nih.gov/
cellminer). The iFad method is effective in identifying 
paired drug-pathway associations. Since this method uses 
the Markov Chain Monte Carlo (MCMC) [10] to perform 
statistical inferences, it is computationally expensive. 
Also it has many turning parameters which should be 
specified by users. In order to improve the algorithm 
speed and performance, a method named iPaD (integrative 
Penalized Matrix Decomposition) is proposed by Li et 
al.[8] to identify paired drug-pathway associations. The 
iPaD method applies the integrative penalized matrix 
decomposition method to analyze the gene expression 
data and the drug sensitivity data. The scalable bi-convex 
optimization algorithm is used to solve the objective 
function. Since the L1-norm penalty can produce sparsity, 
the L1-norm regularization item is added on the drug-
pathway association matrix. By applying the iPaD 
method on the NCI-60 and Cancer Cell Line Encyclopedia 
(CCLE) datasets, Li et al. [8] prove that the iPaD method 
performs better than the iFad method in computational 
efficiency and identifying drug-pathway association 
pairs. Since the L2 1, -norm regularization can penalize 
each row of the matrix as a whole and can enhance 
the sparsity among the rows [11], based on this theory, 
a method named L2 1, -iPaD (L2 1, -integrative Penalized 
Matrix Decomposition) is proposed to identify paired 
drug-pathway associations [12]. The L1-norm penalization 
can produce scattered and unstructured sparsity matrix, 
yet L2 1, -norm penalization can produce structured row 
sparsity matrix [11]. Moreover, the sum of the L1-norm 
and L2 1, -norm penalization can produce row structure 
with intra-row sparsity. In this paper, for the purpose of 
enhancing the sparsity of the drug-pathway association 
matrix and improving the performance of the method, we 
use the sum of the L1-norm regularization and L2 1, -norm 
regularization instead of the L1-norm regularization. In this 
article, a novel method named “L L1 2 1, -iPaD” is proposed 
to identify paired drug-pathway associations. Our method 
has the following advantages. Firstly, for the first time, we 
propose the L L1 2 1, -iPaD method by replacing the L1-norm 

regularization with the sum of the L1-norm regularization 
and L2 1, -norm regularization. Secondly, the L L1 2 1, -iPaD 
method can be used to analyze gene expression and drug 
sensitivity data. Thirdly, it gives an effective method to 
identify drug-pathway association pairs. Experimental 
results in two real datasets prove that the L L1 2 1, -iPaD 
method is effective.

The remainder of this paper is organized as follows. 
Firstly, we will introduce two real datasets, give out 
the experimental results and show the comparison of 
our method with the state-of-art methods. Then we will 
provide discussion of this article and outline the future 
works. And thirdly, we will introduce the notations and 
definitions in this paper. Finally, we will describe the 
related works and methodology of the L L1 2 1, -iPaD.

THE INTRODUCTION FOR DATASETS

CCLE data set

The CCLE data set is downloaded from the CCLE 
project, which is a competitive resource to implement 
a detailed genetic characterization for a large panel 
of human cancer cell lines. The CCLE project (http://
software.broadinstitute.org/software/cprg/?q=node/11) can 
provide public access analysis, visualization of DNA copy 
number, mutation data, mRNA expression, and so on, for 
about 1046 cancer cell lines. The CCLE data set consists 
of 480 cell lines with drug sensitivity data for 22 drugs 
and transcription data for 1802 genes covering 58 KEGG 
pathways. In fact, the CCLE data set in the CCLE project 
contains 18988 genes and 24 chemical drugs. The detailed 
data processing can be found in [8]. The drug sensitivities 
are measured by area over the dose-response curve 
(‘activity area’). EC 50 , IC50 and maximum activity area 
(‘Amax’) can also measure drug sensitivities. But activity 
area has two advantages. Firstly, it has less missing values. 
Secondly, it can both reflect drug potency and efficacy. 
But EC 50 and IC50 can only reflect drug potency, and Amax 
can only reflect its efficacy. In this paper, the density of 
the gene-pathway association prior knowledge matrix 
H 1( ) is 3.95%. And for the drug-pathway association prior 
knowledge matrix H 2( ), we set it to zero.

NCI-60 data set

The NCI-60 data set contains 57 cell lines with 
gene expression data for 1863 genes covering 58 KEGG 
[13] pathways and drug sensitivity data for 101 drugs. 
The NCI-60 data set is from the NCI-60 project, which 
provides various type of ‘Omics’ features of 60 cell lines 
with 9 different cancer types. The gene expression data 
and the drug sensitivity profiles are downloaded from the 
CellMiner database [9]. The detailed data processing can 
be found in [5]. The drug sensitivity data are obtained by 
GI50 values, those values can reflect the potency of drugs. 
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The GI50 is defined as the needed concentration for 50% 
of maximum cell growth inhibition. The drug sensitivity 
data values are equal to the log10 50GI( ). Higher values 
mean higher drug sensitivity of the cell lines. Besides, the 
density of the gene-pathway association prior knowledge 
matrix H 1( ) is 3.95%. And the density of the drug-pathway 
association prior knowledge matrix H 2( ) is 0.51%.

RESULTS

In this Section, we evaluate the performance of our 
proposed L L1 2 1, -iPaD method by applying to the CCLE 
and NCI-60 datasets. To show the effectiveness of our 
proposed method, we also compare our method with the 
iPaD and L2 1, -iPaD methods in this Section.

The results on the CCLE data set

In this experiment, we first use the five-fold cross-
validation to obtain the optimal λ1 and λ2 values, and 
then obtain the sparse drug-pathway association matrix 
B 2( ) corresponding to the optimal parameter values. 
Similar to the iPaD and L2 1, -iPaD methods, our method 
also can assess the relative importance of the coefficients 
in the drug-pathway association matrix B 2( ) via solving 
the L L1 2 1, -problem for a decreasing λ  sequence. For 
each λ  value, we record the order of the coefficients 
in which they become nonzero. In general, the more 
important coefficients ought to become nonzero earlier 
than the less important coefficients. However, this 
procedure cannot be used to assess the significance of 
the coefficients. Therefore, we perform permutation test 
to assess the significance of the coefficients in the drug-
pathway association matrix B 2( ). In this paper, we run 
2000 permutations to obtain the P-values. The P-values 
of our method, the L2 1, -iPaD and iPaD methods on the 
CCLE data set are listed in Table 1, in which the superior 
results are shown in bold type. In this paper, the known 
drug-pathway associations are served as the validated 
information. In Table 1, the drug named Nutlin-3 is 
related with the Chronic myeloid leukemia pathway. A 
published paper suggests that Nutlin-3 can up-regulate 
the expression of Notch1 in both lymphoid and myeloid 
leukemic cells for a part of the negative feedback 
antiapoptotic mechanism [14]. Besides, the authors in 
[15] confirm that IAP inhibition using a small synthetic 
inhibitor (LBW-242) increases the sensitivity of CML 
cells to TKI. This drug-pathway association pair is not 
validated in the CancerResource, but our method can find 
their associations. And in Table 1, only 5 drug-pathway 
association pairs are validated in the CancerResource. 
For the rest 10 drug-pathway associations which are not 
validated in the CancerResource, we retrieve published 
papers to prove their associations. Only one association 
pair is not found from published papers. Besides, similarly, 

the authors in [16] suggest that cotreatment with LBH589 
and 17-AAGcan induce more apoptosis of IM-resistant 
primary CML-BC and acute myeloidleukemia cells than 
treatments with either agent alone. And in this paper, our 
new method also can find that 17-AAG is associated with 
the Chronic myeloid leukemia pathway. Moreover, the 
drug-pathway pairs corresponding to nonzero elements 
in the matrix B 2( ) are selected as the identified drug-
pathway association pairs. In this experiment, our method 
identifies 413 drug-pathway pairs that have p-value no 
more than 0.05, and 70 drug-pathway pairs are validated 
in the CancerResource database. The L 2 1, -iPaD method 
identifies 368 drug-pathway pairs that have p-value no 
more than 0.05, and 66 drug-pathway pairs are validated 
in the CancerResource database. However, iPaD identifies 
88 drug-pathway pairs that have p-value no more than 
0.05, and only 25 drug-pathway pairs are validated in the 
CancerResource database. When we set the P-value cutoff 
as 0.005, 51 drug-pathway association pairs are identified 
by the iPaD method, with 16 association pairs validated 
in the CancerResource database. But for our method and 
the L 2 1, -iPaD method, 53 drug-pathway association pairs 
are identified, with 16 association pairs validated in the 
CancerResource database. In addition, in [8], we can 
easily find that the results of iFad and GSEA methods are 
poorer than the iPaD method, so in this paper, we does not 
compare our method with the iFad and GSEA methods.

Then we compute the identification and verification 
rates of drug-pathway association pairs on the CCLE 
data set. Specifically, we make the ratio of number of 
identification (or verification) and total number of drug-
pathway pairs as the identification (or verification) rate. 
The identification and verification rates of drug-pathway 
association pairs on the CCLE data set for the L L1 2 1, -iPaD, 
L2 1, -iPaD and iPaD methods can be found in Table 2 
and Table 3. It is obvious that our method can identify 
more drug-pathway association pairs than other existing 
methods.

The results on the NCI-60 data set

Similar to the L2 1, -iPaD and iPaD methods, we also 
apply our method to the NCI-60 data set. For the NCI-
60 data set, we also run 2000 permutation to evaluate 
the significance of the coefficients in the drug-pathway 
association matrix B 2( ). The P-values of our method, 
the L2 1, -iPaD and iPaD methods on the NCI-60 data set 
are listed in Table 4. The authors in [17] prove that the 
mechanism of action of the EA derivatives prepared 
in this study is more complex than the inhibition of 
glutathione S-transferase p ascribed as unique effect 
to EA and might help to overcome tumor resistances. 
And in Table 4, Melphalan is associated with T cell 
receptor signaling pathway. A study published in 2003 
suggests that Melphalan can control the expression of 
T cell receptor signaling pathway [18]. In Table 4, only 
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Table 1: The top 15 identified drug-pathway associations on CCLE data set by L L1 2,1-iPaD, L2,1-iPaD and iPaD 
methods

Drug Pathway 
L L1 2,1 -iPaD L2,1-iPaD iPaD Validated

 P-value

Nutlin-3 Chronic myeloid 
leukemia 0 1.74E-43 1.09E-17 CR

PD-0332991 Chronic myeloid 
leukemia 0 6.93E-41 3.16E-13 CR

LBW242 Chronic myeloid 
leukemia 1.51E-45 2.80E-44 8.08E-17 [28]

17-AAG Chronic myeloid 
leukemia 5.52E-45 9.46E-43 3.41E-16 [16]

L-685458 Chronic myeloid 
leukemia 6.81E-44 4.33E-43 3.32E-19 [29]

AZD0530 Colorectal cancer 1.46E-43 1.62E-41 8.81E-13 [30]

PHA-665752 Chronic myeloid 
leukemia 1.03E-41 1.09E-40 3.41E-16 [31]

Paclitaxel Chronic myeloid 
leukemia 2.11E-40 2.14E-38 4.58E-12 [32]

AZD0530 Chronic myeloid 
leukemia 5.86E-40 7.12E-38 4.76E-18 CR

PD-0325901 Thyroid cancer 1.25E-28 3.59E-12 2.57E-05 [33]

ZD-6474 Chronic myeloid 
leukemia 1.52E-22 1.62E-21 2.36E-10 [34]

RAF265 ECM-receptor interaction 2.19E-17 1.26E-15 2.32E-04 Unfound

AZD0530 ErbB signaling pathway 1.13E-16 4.41E-16 5.10E-06 CR

Erlotinib Chronic myeloid 
leukemia 3.71E-15 5.69E-15 2.34E-08 [35]

Nilotinib ErbB signaling pathway 4.00E-14 1.23E-13 1.80E-05 CR

Table 2: The identification and verification rates on CCLE data set with P-value<0.005

Method Number of 
identification

Number of 
verification Verification rate Identification 

rate

L L1 2 1, -iPaD 53 16 0.0125 0.0415

L2 1, -iPaD 53 16 0.0125 0.0415

iPaD 51 16 0.0125 0.0399

Table 3: The identification and verification rates on CCLE data set with P-value<0.05

Method Number of 
identification

Number of 
verification Verification rate Identification 

rate

L L1 2 1, -iPaD 413 70 0.0549 0.3237

L2 1, -iPaD 368 66 0.0517 0.2884

iPaD 88 25 0.0196 0.0689
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6 drug-pathway association pairs are validated in the 
CancerResource. For the rest 9 drug-pathway associations 
which are not validated in the CancerResource, we 
retrieve published papers to prove their associations. 
Only one pair associations are not found from published 
papers. So, our method can also identify associations, 
which are not validated in CancerResource, in the NCI-
60 data set between drugs and pathways. For example, 
a paper studied in 2000 writes that an in vitro study the 
effects of MPA (Mycophenolic acid) on human peripheral 
blood lymphocyte activation markers and on cell cycle 
characteristics are investigated [19]. Moreover, the drug-
pathway pairs corresponding to nonzero elements in the 
matrix B 2( ) are selected as the identified drug-pathway 
association pairs. In this experiment, our method identifies 
593 drug-pathway pairs that have p-value no more than 

0.05, and 163 drug-pathway pairs are validated in the 
CancerResource database. The L 2 1, -iPaD method identifies 
562 drug-pathway pairs that have p-value no more than 
0.05, and 163 drug-pathway pairs are validated in the 
CancerResource database. However, iPaD identifies 247 
drug-pathway pairs that have p-value no more than 0.05, 
and only 74 drug-pathway pairs are validated in the 
CancerResource database. And when we set the P-value 
cutoff as 0.005, the results of our method is similar to the 
L 2 1, -iPaD method, but the number of identification and 
verification are higher than the iPaD method. Similar to 
the CCLE data set, we also compute the identification and 
verification rates of drug-pathway association pairs on the 
NCI-60 data set. The identification and verification rates of 
drug-pathway association pairs on the NCI-60 data set for 
the L L1 2 1, -iPaD, L2 1, -iPaD and iPaD methods can be found 
in Table 5 and Table 6.

Table 4: The top 15 identified drug-pathway associations on NCI-60 data set by L L1 2,1-iPaD, L2,1-iPaD and iPaD 
methods

Drug Pathway 
L L1 2,1 -iPaD L2,1-iPaD iPaD

Validated 
P-value

Hydroxyurea
Neuroactive 

ligand-receptor 
interation

0 0 NAN [36]

Rebeccamycin T cell receptor 
signaling pathway 1.78E-17 4.12E-16 4.65E-10 Unfound

Tiazofurin Cell cycle 7.70E-12 8.19E-11 7.54E-07 CR

Selenazofurin Cell cycle 8.27E-11 1.75E-10 2.78E-07 CR

Mycophenolic acid Cell cycle 9.02E-11 2.61E-10 2.52E-06 [19]

Lucanthone Tight junction 2.06E-08 9.97E-09 4.31E-06 CR

Primaquine
Neuroactive 

ligand-receptor 
interation

4.46E-08 1.14E-06 2.69E-04 [37]

Ethacrynic acid Glutathione 
metabolism 1.17E-07 2.29E-02 6.36E-03 CR

Aminoglutethimide Primary 
immunodeficiency 6.55E-07 1.30E-06 1.16E-04 [38]

Diallyl disulfide Acute myeloid 
leukemia 8.76E-07 8.13E-06 8.41E-05 [39]

Bleomycin Focal adhesion 1.46E-06 1.17E-05 4.56E-04 [40]

Geldanamycin Gap junction 1.46E-06 7.89E-06 1.87E-04 [41]

Melphalan T cell receptor 
signaling pathway 3.76E-06 2.64E-05 6.16E-04 CR

Lomustine Tight junction 6.74E-06 1.06E-05 2.64E-04 CR

Vitamin K3
Metabolism of 
xenobiotics by 

cytochrome P450
9.98E-06 2.22E-05 2.71E-04 [42]
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DISCUSSION

Identifying drug-targets is a momentous issue for the 
bioinformatics and a crucial step for the drug discovery. In 
this paper, we proposed a novel method named “L L1 2 1, -iPaD” 
to identify the paired drug-pathway associations, and used it 
to jointly analyze the gene expression and drug sensitivity 
data. In addition, for the L L1 2 1, -iPaD method, two parameters 
need to adjust. So, we use five-fold cross-validation to 
choose the optimal parameters. Besides, we perform 
permutation test to assess the significance of the identified 
drug-pathway association pairs. In order to evaluate the 
performance of our method, we apply it to two real datasets, 
including the CCLE and NCI-60 datasets. Moreover, we 
compare our method with the iPaD and L2 1, -iPaD methods. 
The experimental results demonstrate that our method is 
superior to the iPaD and L2 1, -iPaD methods. Our method 
can identify more drug-pathway association pairs which 
are validated in the CancerResource database than other 
methods. Besides, for the rest drug-pathway associations 
which are not validated in the CancerResource database, we 
retrieve published papers to prove their associations.

With the development of the high-throughput 
technology, more and more genomic data sets are 
generated from various fields. At present, one of our 
central task is to develop the feasible and efficient method 
to analyze them. Our method is one of the useful ways 
for identifying drug-pathway association pairs. In the 
future, we will develop more efficient and robust methods 
to jointly analyze high dimensional data and to solve the 
computational challenges.

NOTATIONS AND DEFINITIONS

In this Section, we summarize the definition of 
norms, which will be used in the methods. Given a matrix 
M = ( )mi j, , mi denotes the i-th row of the matrix M .

For the matrix M∈ ×Rd n, the L1-norm of a matrix was 
first presented in [20], whose definition can be written as

 M
1 11
=

== ∑∑ mi jj

n

i

d
, . (1)

The Frobenius norm of the matrix M  can be defined as

 M m
F i jj

n

i

d i
i

dm= =
== =∑∑ ∑, .2

11 2

2

1
 (2)

And the L2 1, -norm of a matrix was first introduced in 
[21]. Until now, the L2 1, -norm has been used in many 
fields, such as the feature extraction [22] and the image 
processing [23, 24] etc. The L2 1, -norm of the matrix M  
is defined as

 M m
2 1

2
11 21, , .= =
== =∑∑ ∑mi jj

n

i

d i
i

d  (3)

The Lr p, -norm of the matrix M  can be written as follows 
[16]:

M m
r p j

n p r

i

d
p

i
i

d

r

p p

m
,

.= ( )





 = ( )== =∑∑ ∑i, j11

1

1

1

 (4)

RELATED WORKS

iPaD method

Let Y 1 1( ) ×∈
( )

RN G  and Y 2 2( ) ×∈
( )

RN G  denote drug 
sensitivity data and transcription data matrices, respectively. 
N  is the number of the samples (usually cell lines). G 1( ) 
and G 2( ) are the number of genes and number of drugs, 
respectively. Besides, X∈ ×RN K  denotes a pathway activity 
matrix, that is, it indicates the activity level of K  pathways 
in the N  samples. For the traditional iPaD method [8], 
the authors decompose the matrix Y 1( ) into the matrices X 
and B 1( ), and the matrix Y 2( ) into the matrices X and B 2( ). 
Therefore, the model can be introduced as follows:

 
Y XB E

Y XB E

1 1 1

2 2 2

( ) ( ) ( )

( ) ( ) ( )

= +

= + ,
 (5)

Table 5: The identification and verification rates on NCI-60 data set with P-value<0.05

Method Number of 
identification

Number of 
verification Verification rate Identification 

rate

L L1 2 1, -iPaD 593 163 0.0278 0.1012

L2 1, -iPaD 562 163 0.0278 0.0959

iPaD 247 74 0.0126 0.0422

Table 6: The identification and verification rates on NCI-60 data set with P-value<0.005

Method Number of 
identification

Number of 
verification Verification rate Identification 

rate

L L1 2 1, -iPaD 89 34 0.0058 0.0152

L2 1, -iPaD 89 33 0.0056 0.0152

iPaD 72 26 0.0044 0.0122
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where E 1( ) and E 2( ) are the error matrices. B 1( ) and B 2( ) 
denote the gene-pathway association and drug-pathway 
association matrices, respectively. In general, the model 
(5) can be formulated as follows:

 min ,
, ,X B B

Y XB Y XB
1 2

1 1 2 2 2 2

( ) ( )

( ) ( ) ( ) ( )− + −
F F

 (6)

where ⋅
F
 denotes the Frobenius norm.

For the Eq.(6), the optimization model of iPaD 
method [8] is defined as follows:

 

min
X B B

Y XB Y XB B
, ,1 2

1 1 2 2 2 2 2

1( ) ( )

( ) ( ) ( ) ( ) ( )− + − +
F F

λ

  subject to    ,

                     

X

B

i j
i

i j

j K

i j

,

,

, , ,

, ,

2

1

1 1

0

∑ ≤ ∀ =

= ∀( )



(( ) =( ): ,,Hi j
1 0

 (7)

where B 2

1

( )  is the L1-norm of the matrix B 2( ). λ  is a 
crucial parameter and used to adjust the sparsity of the 
matrix B 2( ). In general, the bigger the value of λ  is, the 
more sparse the matrix B 2( ) is. Since a drug is usually 
related to a few pathways, the matrix B 2( ) may be sparse. 
Because the L1-norm can produce sparsity, the authors in 
[8] add the L1-norm constraint on the matrix B 2( ). And, the 

prior knowledge matrix H 1 0 1
1( ) ×∈{ }
( )

, K G  is an indicating 
matrix, that is, the matrix H 1( ) is used to indicate elements 
in the matrix B 1( ) . If Hi j,

1 1( ) = , it indicates that the j-th gene 
is associated with i-th pathway. However, if Hi j,

1 0( ) = , it 
indicates that the j-th gene is not associated with the i
-th pathway. The authors in [8] assume that the known 
gene-pathway associations are complete, so, they pay 
attention to discover the novel drug-pathway associations. 
Therefore, the second constraint condition is used to 
incorporate known gene-pathway associations. Besides, 
the first constraint condition is used to guarantee that the 
model is identical.

L2,1-iPaD method

Since the L2 1, -norm penalty can produce rows 
sparsity [25], another effective method named L2 1, -iPaD is 
proposed to identify the novel drug-pathway association 
pairs [12]. In this paper, the L2 1, -norm regularization 
is used to replace the L1-norm regularization to enforce 
sparse constraint on rows. And it modifies the optimization 
problem (7) as follows:

 

min
X B B

Y XB Y XB B
, , ,1 2

1 1 2 2 2 2 2

2 1( ) ( )

( ) ( ) ( ) ( ) ( )− + − +
F F

λ

  subject tto   ;

                     

X

B

i j
i

i j

j K

i

,

,

, , ,

,

2

1

1 1

0

∑ ≤ ∀ =

= ∀( )



,, : ,,j i j( ) =( )H 1 0

 (8)

where B 2

2 1

( )
,
 denotes the L2 1, -norm of the matrixB 2( ).

METHODOLOGY

Since the gene-pathway association information 
is available and complete, the central interest lies in 
the inference of the matrix B 2( ), that is, the paired drug-
pathway associations. We further consider enhancing 
the sparsity of the matrix B 2( ). Thus, we add the L1-norm 
regularization to impose the penalty among all elements in 
the matrix B 2( ) and propose our new L L1 2 1, -iPaD method. 
The objective function of the L L1 2 1, -iPaD method is defined 
as follows:

 
min

X B B
Y XB Y XB B B

, , ,1 2

1 1 2 2 2 2

1
2

1 2
2

2 1( ) ( )

( ) ( ) ( ) ( ) ( ) ( )− + − + +
F F

λ λ

   subject to   ,

                     

X

B

i j
i

i

j K,

,

, , ,2 1 1∑ ≤ ∀ = 

jj i ji j1 10 0( ) ( )= ∀( ) =, , : ,,H

 (9)

where λ1 and λ2 are two adjustable parameters, which 
can increase or decrease the sparsity of the matrix B 2( ). In 
general, the bigger the λ1 and λ2 are, the more sparse the 
matrix B 2( ) is. Optimization problem (9) is convex. That 
is, when we fix B 1( ) and B 2( ), optimizing X is a convex 
problem, and when we fix X, optimizing B 1( ) and B 2( ) are 
both convex optimization subproblems. Since it is difficult 
to directly obtain the solution, an effective method is 
proposed to solve the optimization problem in Eq.(9).

Optimizing X

 
min
X
Y XB

X

−

≤ ∀ =∑
F

i j
i

j K

2

2 1 1subject to   , , , , ,

 (10)

where Y Y Y= 1 2( ) ( )



,  and B B B= 1 2( ) ( )



, . The iPaD 

method [8] used the traditional gradient descent method 
to optimize X. Here, we also apply the gradient descent 
method to solve this problem. The objective function of 
Eq.(10) can be written as follows:

 
Y XB

Y XB Y XB

−

= −( ) −( )





F

T

2

Tr .
 (11)

By computing the derivative of Eq.(11), we can obtain

 
∂ −

∂
− −( )

−( )

Y XB
X

Y XB B

XBB YB

F

2

2

2

=

=

T

T T .
 (12)

So that X can be updated by

 X X XBB YBk k+ = − −( ) =1 2 0 1 2µ T T k, , , , .  (13)
Here, μ is the iteration step size. At every iteration, we 
check whether Xk+1 is located in the feasible fields 
X X: , , ,,i ji

j K2 1 1∑ ≤ ∀ ={ } . If Xk+1 satisfies this 
condition, we perform next step, otherwise, we make 
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X X Xk k k+ + +=1 1 1 . The Nesterov’s method [26] can 
achieve a convergence rate becoming 1 2t  (The original 
convergence rate is 1 t). So, when we update X, we also 
apply this method to quicken the convergence speed.

Optimizing B 1( )

 
min
B

Y XB

B H

1

1 1 2

1 10 0

( )

( ) ( )

( ) ( )

−

= ∀( ) =

F

i j i ji jsubject to   , ,, , : ..
 (14)

Least squares method is a common optimization algorithm 
to solve the unconstrained optimization problems. In order 
to use the prior knowledge matrix H 1( )  to optimize B 1( )

, similar to [8], we also decompose the original problem 
into G 1( ) OLS (ordinary least squares) problems. That is, 
we optimize each column of B 1( ), separately. The problem 
(14) can be introduced as follows:

 
 For  q G

q q q
q H H

∈{ }
−

( ) ( ) ( )

1 2 1

1
1 1 1

, , , ,( )

:,
( )

:, ,
:, :, :,



min
B

Y X B
qq F

( ) ,1
2  (15)

where Y:,q
1( ) is a vector with the elements corresponding 

to the q-th column of the matrix Y 1( ), and X
:, :,H q

1( )  denotes 
the sub-matrix of the matrix X, which is composed of the 
columns corresponding to the non-zero parts of the prior 
knowledge matrix H:,q

1( ). And B
H qq:, ,1
1
( )

( )  is a vector with the q-th 
column vector of B 1( ) corresponding to the non-zero parts 
of the prior knowledge matrix H:,q

1( ).

Optimizing B 2( )

For optimizing B 2( ), we observe each column of the 
matrix B 2( ) and decompose the original problem into G 2( ) 
sum of L1-norm and L2 1, -norm minimization problems:

 
 For  q G

q
q q q

∈{ }
− +

( )

( ) ( ) (
( )

1 2 2

2 2

2

2

1
2

2

, , , ,

:,
:, :, :,



min
B

Y XB Bλ )) ( )+
1 2

2

2 1
λ B:, ,

.q

 (16)

In order to use the prior knowledge on the drug-pathway 
associations (matrix H 2( )), we add the L2-norm on the 
matrix B 2( ). Thus, the problem (16) can be rewritten as 
follows:

 
 For  q G

q
q q H

∈{ }
− +

( )

( ) ( )
( )

1 2 2

2 2

2

2

1 12

, , , ,

:, :,
:, :, -



min
B

Y XB Bλ
qq q qq H q H q2 2 2

2

1
2 1

2

2 1

2

2
( ) ( ) ( )( )

( )
( )
( ) ( )+ +











, - ,
,

,:, :,
λ B B .

 (17)

Similar to the prior information matrix H 1( ) , 

Hi j
K G

, ,2 0 1
2( ) ×∈{ }
( )

 is also a prior knowledge matrix, which 
can indicate drug-pathway association matrix B 2( ). λ1 and 
λ2 are two regulable parameters which are used to control 
the sparsity of the paired drug-pathway association matrix 
B 2( ).

For the part of B 2( ) being indicated by H 2( ) , the 
problem is written as follows:

 min
B

Y XB B
2

2 2 2

2
2

2

2

( )

( ) ( ) ( )−
F

+λ , (18)

where we omit the symbol of the objective function. The 
objective function can be converted into the following 
equation:

 
J

Tr

1 B Y XB B

Y XB Y XB

2 2 2 2

2
2

2

2

2 2 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) −

−( ) −( )
= +

=

F

T

λ






+ ( )( )( ) ( )λ2

2 2Tr ,B IB
T

 (19)

where I is a unit matrix with the size of K K× , and J1 ⋅( ) 
J1 B 2( )( ) is an auxiliary function. Then we compute the 
derivative of J1 B 2( )( ) and set its result to zero,

 
∂ ( )
∂

− ( )
=

( )

( )
( ) ( )

J

.

1 B

B
X Y X X I B

0

2

2
2

2
22 2= + +T T λ  (20)

Hence, we can obtain:

 B X X I X Y2
2

1 2( ) ( )( )= +T Tλ
-

. (21)

For the part of B 2( ) being indicated by 1 2− ( )H , we will 
provide a novel and available method to obtain the 
interesting drug-pathway association matrix B 2( ). The 
optimization problem can be described as follows:

 
min

min

B

B

Y XB B B

Y XD D

2

2

2 2 2

1
2

1 2
2

2 1

2 1 2 1 2

( )
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( )
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−

F
+ +
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λ λ
,

BB B DB B D D B2 2

1
2 2

2
2 1 2 1 2 2( ) ( ) ( ) ( ) ( )( )





( )
F

T T
+    +λ λTr Tr

~





,
 (22)

where D is a diagonal matrix with the i-th diagonal 

element as dii
i

= ( )( )1 2 2

2
B , and D

~
 is also a diagonal 

matrix with the i-th diagonal element as dii i j

~

,
= ( )( )1 2 2B .

In order to simplify the optimization problem (22), 
we set X XD1

1 2= -  and B D B1
1 2 2= ( ). Then, the problem (22) 

can be equivalent to the following minimization problem:
 min

B
Y X B B D DD B B B

1

2
1 1

2

1 1
1 2 1 2

1 2 1 1
( ) − ( )





( )
F

T T+ +- -λ λTr Tr
~


 .

 (23)

The objective function is equal to the following equation:

J Tr Tr2

~
B Y X B B D DD B B1

2
1 1

2

1 1
1 2 1 2

1 2 1( ) = − ( )





( )( )
F

T T+   +- -λ λ BB1




 .  (24)

And then we compute the derivative of J2 B1( ), then set its 
result to zero, we have:

 
∂ ( )
∂

( ) +



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− ( ) ( )J

.

2
~B

B
X X I D DD B X Y1

1
1 1 2 1

1 2 1 2
1 1

22 2

0

= +

=

- -T Tλ λ  (25)

So, we can obtain:

 B X X I D DD X Y1 1 1 2 1
1 2 1 2

1

1
2= + - -T Tλ λ+














( )~ -

. (26)

Therefore, we finally compute B 2( ) by optimizing B1, that 
is, B D B2 1 2

1
( ) −= . We sum up the L L1 2 1, -iPaD method as the 

Algorithm 1. Besides, in this paper, we also use the soft-
impute algorithm to deal with the missing values problems 
in solving X. The detailed steps can be found from the 
iPaD [8] and L2 1, -iPaD methods [12].
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Algorithm 1: The alternating updating algorithm for 
the L L1 2 1, -iPaD method

Data Input: Y Y H1 2 1( ) ( ) ( ), ,  
Parameter: λ λ1 2,  
Output: B 2( )

Initialization: set B H1 1( ) ( )=  and set B 2 0( ) = .
Optimization:
(1). Optimize X:

X Y XB

X
X

= −

≤ ∀ =∑
arg

. . , , , ,,

min
F

i j
i

s t j K

2

2 1 1

where Y Y Y= 1 2( ) ( )



,  and B B B= 1 2( ) ( )



, .

(2). Optimize B 1( ):

B Y XB

B H
B

1 1 1 2

1 1

1

0 0

( ) ( ) ( )

( ) ( )

( )
−

= ∀( ) =

=

 

arg

. . , , :, ,

min
F

i j i js t i j ..

(3). Optimize B 2( ):

B Y XB B B
B

2 2 2 2

1
2

1 2
2

2 12

( ) ( ) ( ) ( ) ( )= − +
( )

argmin
F

+λ λ
,

.

(4). Repeat step (1), (2) and (3) until convergence.

Parameter selection and significance test

Compared with the iPaD and L2 1, -iPaD methods, our 
new L L1 2 1, -iPaD method has two adjustable parameters  
(λ1 and λ2), which can control the sparsity of the drug-
pathway association matrix B 2( ). In this paper, We perform 
five-fold cross-validation to find the suitable parameters. 
In the five-fold cross-validation, we divide the matrix Y 2( ) 
into 5 folds. At each round of the cross-validation, we 
make each of the 5 folds as missing values, and the rest 
of 4 folds as training data. It is obvious that it is difficult 
to find the optimal parameters λ1 and λ2, simultaneously. 
Therefore, we solve the L L1 2 1, -iPaD problem to produce a 
λ1 sequence by fixing λ2, and then we use five-fold cross-
validation to find an optimal parameter λ1. We treat the 
minimum residual sum of squares (RSS) corresponding 
to the λ1 value as the optimal value. Similarly, we find 
an optimal parameter λ2 by fixing λ1. Since our method 
is a sparse optimization algorithm, there are many zero 
coefficients in the matrix B 2( ). We usually treat those 
nonzero coefficients as the identified core drug-pathway 
association pairs. After searching for the optimal 
parameters, we perform permutation test [27] to assess 
the significance of the coefficients. We first obtain the 
estimated value of the matrix B 2( ), and then compute 
the P-value of the coefficient for the matrix B 2( ), the 
computational formula is as follows:

 P
Ti j i j

t

i jt

T
,

~

, , ,= ≥










( )( ) ∧ ( )

=∑1 2 2

1
B B  (27)

where B
~

,i j

t2( )( )
 denotes the t-th permutation estimated 

values of the matrix B 2( ), and T  is the total number of 

permutations, B
∧ ( )
i j,

2

 is the estimated values of the matrix 
B 2( ) in the original data.
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