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miR-34: from bench to bedside 
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ABSTRACT:
The mir-34 family was originally cloned and characterized in 2007 as a p53 

target gene. Almost immediately it became clear that its major role is as a master 
regulator of tumor suppression. Indeed, when overexpressed, it directly and indirectly 
represses several oncogenes, resulting in an increase of cancer cell death (including 
cancer stem cells), and in an inhibition of metastasis. Moreover, its expression is 
deregulated in several human cancers. In 2013, a miR-34 mimic has become the first 
microRNA to reach phase 1 clinical trials. Here we review the miR-34 family and their 
role in tumor biology, and discuss the potential therapeutic applications of miR-34a 
mimic.

INTRODUCTION

The battle against cancer has just recruited a new 
potential weapon. Indeed, the first microRNA (miRNA) 
has now reached phase I studies (http://clinicaltrials.
gov/ct2/show/NCT01829971). In April 2013, a study 
was started to evaluate the safety of MRX34 in patients 
with unresectable primary liver cancer and advanced or 
metastatic cancer with liver involvement. The “drug” is 
given intravenously as a single agent, twice per week for 
three weeks and then one week off.

miRNAs form one family of small non-coding 
regulatory RNAs [1]. Several studies have implicated 
miRNAs in a number of biological processes including 
cell proliferation, differentiation and the control of 
developmental timing. They are also involved in 
pathological conditions such as cancer [2-7] and 
neurodegeneration [8-11]. The canonical biogenesis of 
miRNAs involves two fundamental events. The first takes 
place in the nucleus, where the primary transcript (pri-
miRNA), is processed into a precursor (pre-miRNA) by a 
nuclear RNase III enzyme (DROSHA). The second event 
occurs in the cytoplasm. The pre-miRNA is exported by 
exportin V from the nucleus and is cleaved by Dicer into 
a short-lived dsRNA of about 20-25 nucleotides. This 
double strand becomes unwound and one strand (forming 
the mature miR) becomes incorporated into an Argonaut 
(Ago)-protein containing complex called the RNA induced 
silencing complex (RISC). Generally, the mature miRNA 
within the RISC recognises complementary sites in the 3′-

UTR of target genes, resulting in translational inhibition or 
destabilisation of the target mRNAs and downregulation of 
expression of the encoded protein [12]. Recently, however, 
some observations have demonstrated that miRNAs 
can also regulate their targets by binding to the 5′-UTR 
[13, 14]. In contrast to this classical inhibitory pathway, 
miRNAs can also stimulate the expression of target genes. 
This indicates that miRNAs can regulate gene expression 
not only through base pairing with mRNA targets but also 
through a decoy activity that interferes with the function 
of regulatory proteins [15].

The miR-34 family, which consists of miR-34a, 
b and c, has attracted a lot of attention since it plays a 
key role as a tumor suppressor in several cancers [16-
18]. Indeed, it is a direct target of the tumor suppressor 
gene p53 [19-23] and when up-regulated, it induces 
apoptosis [24], cell cycle arrest [25-28] and senescence. 
It also negatively influences the viability of cancer 
stem cells and inhibits metastasis formation [29-32]. 
Moreover, systemic delivery of miR-34 in a mouse model 
of hepatocellular carcinoma resulted in a reduced tumor 
burden and prolonged survival [33]. As a result of these 
and other studies, a miR-34 analogue has become the first 
microRNA to enter the clinic after a surprisingly swift 6 
years passage from the bench to bedside. In addition, since 
a considerable number of oncogenes are direct targets of 
miR-34, and cancer is now considered a multipathway 
disease [34-36], this therapeutic approach would allow 
the use of only one bullet to hit more than one pathway 
deregulated by the loss of miR-34. 
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The miR-34 Family: origin, regulation and 
function

The miR-34 gene was first identified in C. elegans 
where it encodes a single miR that is evolutionarily 
conserved in several invertebrates [37, 38]. In mammals, 
the miR-34 family consists of three homologous 
transcripts miR-34a, miR-34b and miR-34c. In man, 
the miR-34a gene maps to chromosome 1p36.22 and 
is located within the second exon of its non-coding 
host gene. It is significant that 1p36 region deletions 
are frequently observed in a variety of human cancers 
including neuroblastoma, glioma, breast cancer, non-
small cell lung cancer, small cell lung cancer, colorectal 
cancer and melanoma [39]. However, the genes coding for 
both miR-34b and miR-34c map to chromosome 11q23.1 
and are located within intron 1 and exon 2 respectively, 
of the same primary transcript. Deletion of this region 
has been detected in breast, lung, cervical and prostate 
cancers [40]. Moreover, the 11q23 region is frequently 
rearranged (translocated, inserted and inverted) in 
hematological malignancies.[41] In the mouse, miR-34a 
is located on chromosome 4, while miR-34b/c are located 
on chromosome 9.

Analysis of miR-34a tissue distribution in the 
mouse shows that it is ubiquitously expressed but with 
the highest levels of expression in the brain, while miR-
34b/c are mainly expressed in the lung [23], although, in 
general, the basal expression of miR-34a is higher than 
that of miR-34b/c. In man, also, miR-34a is ubiquitously 
expressed with high levels in the ovary, prostate and testes. 
Intermediate levels are found in brain, lung, thymus and 

kidney, while liver and heart show low levels of miR-34a. 
In contrast, miR-34b/c are mainly expressed in the ovary, 
testes, trachea and lung (http://mirnamap.mbc.nctu.edu.
tw). 

Although, as mentioned above, the miR-34 family is 
regulated by p53, it would be more correct to say the p53 
family [42]. Retinoic acid induces the expression of miR-
34a [43] and we have shown that, at least in the context of 
terminal differentiation of neuroblastoma cells, is driven 
by the p53 family member TAp73 [44]. TAp73 is a direct 
transcriptional activator of miR-34a, since it binds to p53 
consensus elements in the miR-34a promoter, but TAp73 
does not activate miR-34b and c. This role of the TAp73/
miR-34a axis in neuronal differentiation is consistent with 
the predominantly neuronal phenotype of TAp73 null 
mice [45-49]. However, unlike p53, TAp73 activation of 
miR-34a does not lead to apopotosis – and more work is 
clearly needed to understand how two members of the p53 
family can activate the same miR but with very different 
biological effects. 

Ectopic expression of the members of the miR-34 
family can recapitulate some biological functions of p53 
such as apoptosis [20, 50] and cell cycle arrest [51, 52], 
at least in some cell types, although other studies have 
failed to demonstrate an apoptotic effect of overexpressed 
miR-34 [44, 53].  Thus, the direct effect on apoptosis by 
miR-34a, and possibly the absolute requirement for miR-
34a for p53-mediated apoptosis, is cell context-dependent. 
Figure 1 summarizes regulators and functions of the miR-
34 family.

Oncogene-induced senescence is another stimulus, 
which increases expression of miR-34a. Specifically, after 

Figure 1: The miR-34 family regulators and their functions. In the last few years, the miR-34a family has emerged as a 
pleiotropic microRNA. It was originally identified as a p53 target after DNA damage. The outcome of this upregulation is the induction of 
apoptosis, cell cycle arrest and senescence. Lately, p53 independent regulation has been observed. For instance, TAp73 is able to drive the 
expression of miR-34a and in turn, it regulates neuronal differentiation. miR-34a is also regulated by phorbol ester during megakaryocytic 
differentiation but the detailed molecular mechanisms have not been defined (?).



Oncotarget874www.impactjournals.com/oncotarget

constitutive activation of B-RAF in TIG3 fibroblasts, 
the upregulation of miR-34a is mediated by the 
transcription factor ELK1 [54]. Thus, like other miRs, 
the transcriptional regulation of miR-34a expression is 
promiscuous.

The miR-34 family acts on apoptosis and cell cycle 
through the repression of many proteins involved in the 
regulation of these two biological processes. In particular, 
the miR-34 family binds to the 3′-UTRs of genes such as 
CDK4 and CDK6 [55]  (cell cycle) [19], Bcl-2 [24, 56] 
(apoptosis), SNAIL [29, 32]  (epithelial mesenchymal 
transition) [57] and CD44 (migration and metastasis) [58], 
and the miR-34 family thus represses their expression. A 

detailed list of miR-34 family targets is provided in Table 
1.

The absolute requirement for p53 to drive miR-
34 family expression, and for miR-34 family members 
to mediate the p53 phenotype has, however, recently 
been questioned. Thus, while, miR-34 expression is 
reduced in some tissues in p53 null mice, in others it 
remains unaffected, confirming the promiscuity and 
cell context dependency referred to above. In particular, 
miR-34a expression remains high in the brains of p53-
/- animals. Moreover, miR-34 knockout mice are born 
with the normal Mendelian ratio, are fertile, and are not, 
as might be expected, a phenocopy of the p53 knockout. 
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In particular, miR-34 null mice do not show increased 
spontaneous or irradiation-induced tumorigenesis, and 
show only small and subtle differences from wild-type 
mice in other p53-dependent functions such as replicative 
senescence and the DNA damage response [59, 60].

miR34 expression in human cancer

Despite the lack of spontaneous tumours in miR-34 
knockout mice, there is evidence, at least in some cancers, 
for miR-34 dysregulation. Thus, as mentioned above, the 
miR-34a locus on 1p36 is frequently lost in cancer [61]. 
Moreover, miR-34a has been found to be downregulated 
in neuroblastoma [43] and glioblastoma [62, 63],  and 
its expression is frequently reduced in pancreatic cancer 
cell lines [20, 64]. CpG promoter methylation with miR-
34a silencing has also been reported in several cancers 
including prostate, pancreatic, colorectal, ovarian cancer 
and melanoma [65, 66]. Mir-34b/c is also downregulated 
in colorectal cancer (CRC). This down-regulation is 
associated with hypermethylation of the neighboring 
CpG island; and DAC (5-aza-2’-deoxycytidine) treatment 
rapidly restores miR-34b/c expression. Methylation of the 
miR-34b/c CpG island was frequently observed in CRC 
cell lines and in primary CRC tumors (101 of 111, 90%), 
but not in normal colonic mucosa [67, 68].

There is also some evidence for the involvement 
of the miR-34 family, again particularly miR-34a, in 
cancer stem cells (CSCs). CSCs are self-renewing cells 
within a tumor that have the capacity to regenerate the 
phenotypic diversity of the original tumor [69-72]. 
Nalls et al reported the first experimental evidence 
implicating miR-34a in CSCs [64]. First, they found that 
the expression of miR-34a was reduced in pancreatic 
CSCs and in pancreatic tumor cells independently of their 

p53 status when compared to normal pancreatic ductal 
epithelial cells. Importantly, the expression of miR-34a 
was restored by treatment with chromatin modifier agents 
such as the histone deacetylase inhibitor, Verinostat, in a 
p53 independent manner. The treatment also inhibited cell 
growth and induced apoptosis. At the molecular level, the 
well-known targets of miR-34a (such as SIRT-1 [73-75], 
Cyclin D1, Bcl-2, VEGF and CDK6) were downregulated 
and these effects were rescued by miR-34a inhibition 
(Figure 2a).

Prostate CSCs with tumor initiating and metastatic 
potential are enriched in the CD44+ subpopulation. In this 
subset of cells, including CD44+ cells from individual 
patients tumours, expression of miR-34a, but not miR-
34b/c, is also reduced and this does correlate with p53 
status [58]. Ectopic expression of miR-34a either in 
prostate cancer cells or in the CD44+ fraction leads to 
inhibition of clonogenic expansion, tumor regeneration, 
and metastasis in vivo. In contrast, all these neoplastic 
phenotypes were promoted when expression of miR-34a 
was inhibited. Moreover, intravenous delivery of miR-
34a inhibited lung metastasis and extended the survival 
of mice bearing human prostate cancer xenografts. At the 
molecular level CD44 has been identified and validated 
as a direct and functional target of miR-34a. Indeed, the 
inhibition of CD44 expression itself phenocopied miR-34a 
overexpression by inhibiting prostate tumor development 
and metastasis (Figure 2b). 

miR-34a expression is also reduced in human 
glioblastoma tissue when compared with normal brain 
[16], although this downregulation of miR-34a was only 
seen in tumours with mutant p53 and not in glioblastomas 
with wild-type p53. Transfection of precursor miR-34a 
in glioblastoma cells, as well as in glioblastoma CSCs, 
induced cell cycle arrest, apoptosis and also inhibited 

Figure 2: miR-34a as a regulator of cancer stem cell biology. Cancer stem cells (CSC) have the capacity to self-renew and 
differentiate as well as the ability to regenerate tumors. miR-34a has been found to be dysregulated in CSC, particularly in pancreatic, 
prostatic cancer and in glioblastoma. a) In pancreatic CSC, miR-34a is able to regulate the proliferation of CSC, targeting Cyclin D1, CDK4 
and CDK6. b) In prostatic CSC, miR-34a inhibits cell migration and invasion through the inhibition of CD44 expression. c) Finally, in 
glioblastoma, miR-34a regulates CSC self-renewal through the inhibition of Notch signaling and SIRT1.
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xenograft growth. The effects of miR-34a on glioma cells 
are partially mediated by the inhibition of c-Met and Notch 
expression, and levels of miR-34a are inversely correlated 
with the levels of c-Met in human gliomas. A role of 
miR-34a has been also shown in colon cancer stem cells 
(CCSCs) [76]. In this cellular context, miR-34a controls 
the decision of CCSCs to perform either symmetric or 
asymmetric division. Mechanistically, high levels of miR-
34a reduce Notch1 signaling and promote asymmetric 
division. In contrast, low miR-34a levels upregulate 
Notch1 signaling and promote symmetric division. 
Promoting cell differentiation is another mechanism by 
which miR-34a exerts its tumor suppressor function in 
CRC (Figure 2c).

miR-34 family survival analysis in cancer

Overall, miR-34a and its family are tumor 
suppressors. Therefore, we would predict that the 
reduction of miR-34 expression is associated with poor 
prognosis and survival. Using MIRUMIR [77, 78] (http://
www.bioprofiling.de/GEO/MIRUMIR/mirumir.html), an 
online tool that provides an analysis of miRs as potential 
biomarkers to predict survival of cancer patients, the 
following picture has emerged. Several datasets (breast, 
prostate and lung cancer, ovarian, hepatocellular and 
nasopharyngeal carcinoma) are currently available 

although statistical significance was only reached in three 
of them. Low expression of miR-34a/b was associated 
with poor outcome in breast cancer (Figure 3A and 
3B) confirming its role as tumor suppressor. Moreover, 
the expression of several miR-34a/b validated targets 
including BCL-2 [79], CCNE2 [56], CCND1 [80], 
E2F3 [24, 43], MET [19], CD44 [58] and YY1 [81, 82] 
correlates with survival across different breast cancer 
datasets. In contrast, low levels of miR-34a are positive 
prognostic factors in human hepatocellular and advanced 
serous ovarian carcinoma (Figure 3C and 3D). Although 
this is at first sight surprising, this correlation analysis 
of the human hepatocellular carcinoma dataset is in 
agreement with a previous report, and may be further 
evidence for the cell context dependency of the biological 
effects of miR-34. Indeed, Pineau et al observed that miR-
34a expression was increased in hepatocellular carcinoma 
and was linked to disease progression from normal liver 
through cirrhosis to full-blown hepatocellular carcinoma 
[83]. In human ovarian cancer (83 samples) miR-34 family 
expression was found to be reduced when compared to 
six (apparently mouse) ovarian surface epithelium cell 
samples. However, there were no significant differences 
when the expression of miR-34a was compared between 
stage III and stage IV distant metastatic disease [84]. 
Clearly, future studies are required in order to have a 
more coherent picture of the miR-34 family regulation in 
cancer and whether this family can be used as a prognostic 

Figure 3: Survival correlation of miR-34 family in several human cancer datasets. A and B) GEO dataset Title: Global 
microRNA expression profiling of high-risk ER+ breast cancers from patients receiving adjuvant Tamoxifen mono-therapy: a DBCG study. 
C) GEO dataset Title: MicroRNA expression profile in human hepatocellular carcinoma. D) GEO dataset Title: MicroRNA profiling of 
advanced serous ovarian carcinoma.
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biomarker [85, 86]. 

PERSPECTIVES AND CONCLUSIONS

The last 7 years of studies have clearly shown that 
the miR-34 family is a master regulator of tumor biology. 
The family is frequently deregulated in cancer as discussed 
above, and preclinical in vivo studies have highlighted 
its therapeutic potential [87-89]. Overall, miR-34a (or a 
mimic) would seem a perfect candidate to enter clinical 
trials. However, it should be remembered that miR-34 and 
p53 have independent functions. Thus, miR34 null mice 
do not develop spontaneous tumors like p53 knockout 
mice [59]. In addition, the correlation between miR-34 
family expression and patient survival would not always 
support its tumor suppressor role. In conclusion, more 
preclinical research on miR-34 is needed in order to better 
characterize its regulation and its downstream molecular 
pathways.

On the other hand, the phase 1 clinical trail that 
has recently started represents an important step forward 
not only for miR-34 itself, but forms a valuable proof 
of principle study for the rationale of using miRNAs as 
anticancer drugs. Indeed, although the endpoint of this 
clinical trial at this stage is to investigate the safety, 
pharmacokinetics and pharmacodynamics of the miR-34 
mimetic in patients with unresectable primary liver cancer, 
it might shed light on two main challenges for miRNA-
based therapies: i) delivery system and ii) potential off-
target effects.

Tissues-specific delivery and cellular uptake of 
sufficient amounts of synthetic oligonucleotides to achieve 
sustained target inhibition is one of the major issues. 
Indeed, in miRNA-based therapy, two relevant obstacles 
need to be overcome, including the biological instability 
of the oligonucleotides in tissues and the poor cellular 
uptake [90]. MRX34 is a double stranded RNA, which is 
delivered by liposome. Since liposomes accumulate in the 
liver, liver cancer would theoretically be the main target 
organ affected by MRX34. Moreover, tumor uptake should 
be enhanced by the particular chemical composition of the 
liposomes. These liposomes are anionic at normal body 
pH, but in the tumor microenvironment, which has a lower 
pH, they become cationic form. This characteristic should 
therefore provide tumor specificity and prevent uptake by 
normal tissues. 

One of the main advantages of miRNA-based 
therapy is the fact that microRNAs have the ability to 
simultaneously regulate several cellular pathways [91-
94]. This makes them suitable “drugs” for the treatment 
of a multipathway disease such as cancer [95, 96]. In 
contrast, this multi-target property of the microRNA 
could potentially result in off-target side effects. Systemic 
overexpression of miR-34, which is broadly expressed 
and regulates physiological processes, could target 
genes in healthy tissues and cause side effects such as 

cardiovascular disease, although this may be minimised 
by the use of the particular liposome formulation [97]. 

 In conclusion, while we should celebrate the 
entry of miR therapy into the oncologists drug cupboard, 
we should use the opportunity to learn as much about the 
disadvantages and qualifications of this new approach in 
order to optimize its therapeutic application in the future. 
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