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ABSTRACT

Identifying the prognostic genes in cancer is essential not only for the treatment 
of cancer patients, but also for drug discovery. However, it’s still a big challenge to 
select the prognostic genes that can distinguish the risk of cancer patients across 
various data sets because of tumor heterogeneity. In this situation, the selected 
genes whose expression levels are statistically related to prognostic risks may be 
passengers. In this paper, based on gene expression data and prognostic data of 
ovarian cancer patients, we used conditional mutual information to construct gene 
dependency network in which the nodes (genes) with more out-degrees have 
more chances to be the modulators of cancer prognosis. After that, we proposed 
DirGenerank (Generank in direct netowrk) algorithm, which concerns both the gene 
dependency network and genes’ correlations to prognostic risks, to identify the gene 
signature that can predict the prognostic risks of ovarian cancer patients. Using 
ovarian cancer data set from TCGA (The Cancer Genome Atlas) as training data set, 
40 genes with the highest importance were selected as prognostic signature. Survival 
analysis of these patients divided by the prognostic signature in testing data set and 
four independent data sets showed the signature can distinguish the prognostic risks 
of cancer patients significantly. Enrichment analysis of the signature with curated 
cancer genes and the drugs selected by CMAP showed the genes in the signature 
may be drug targets for therapy. In summary, we have proposed a useful pipeline to 
identify prognostic genes of cancer patients.

INTRODUCTION

Ovarian cancer, one of the most common malignant 
cancer [1], is urgently needed to improve outcomes 
through developing new therapy. Identifying the 
prognostic genes in cancer is essential not only for the 
treatment of cancer patients, but also for drug discovery. 
Thus it’s of great interest to select prognostic genes in 
ovarian cancer [2]. Using gene expression data of ovarian 
cancer patients, many studies have succeeded in selecting 
gene signatures with prognostic relevance [3–5]. However, 
most of the signatures which are selected according to the 
genes’ statistical relevance with the prognostic risks of 
cancer patients perform poorly in independent data [6], 
which may be caused by the high heterogeneity of cancer 

[7]. In this situation, the selected genes whose expression 
levels are statistically related to prognostic risks may be 
passengers. Therefore, it is of great importance to identify 
the driver genes in cancer [8], for the purpose of selecting 
prognostic genes with therapeutic value.

Cancer is a complex disease which may result from 
the alterations of multigenes [9]. In addition, the genetic 
alterations do not occur separately, but depend on each 
other [10, 11]. Thus, if we could infer the gene dependency 
relations in the progression process of cancer patients, it 
would be of great help to identify the driver genes. There 
are also some works succeeding in identifying signature 
in ovarian cancer concerning the co-expression relations 
or other undirected relations among lincRNAs and genes 
[12–14]. However, these works can’t reveal the gene 
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regulatory relation behind the phenotypic change of 
cancer patients. In our previous work [15], based on gene 
expression data and clinical data of cancer patients, we 
proposed a new method to construct a gene dependency 
network using conditional mutual information. The 
network has been demonstrated to be able to uncover 
the biological mechanism in the process of phenotypic 
change.

In this work, we apply the above method to infer 
the gene dependency network in the prognosis process of 
ovarian cancer, using gene expression data and clinical 
data of ovarian cancer patients. In this network, an edge 
from Node A to Node B denotes the mutual information 
between expression levels of gene A and the prognostic 
risks of cancer patients is significantly dependent on the 
gene expression levels of gene B. Therefore, the nodes 
(genes) with more out-degrees have more chances to 
be the modulators of cancer prognosis and these nodes 
are more likely to be drivers. Pagerank [16], which 
is invented by GOOGLE, succeeded in ranking the 
important webpages on the Internet through the links 
among these web pages. Generank [17], which is based 
on Pagerank, has been proposed to prioritize genes in an 
undirected biological network. Here, an extended version 
of Generank (DirGenerank), which can be used in a 
direct biological network, is proposed. The DirGenerank 
algorithm concerns both the gene dependency network and 
genes’ correlations to prognostic risks to make sure the 
selected prognostic signature is more likely not only to be 

drivers, but also to be prognostic. In order to validate the 
clinical value of the prognostic genes, we first validated 
the distinguishing capability of the prognostic genes in 
five testing data sets. After that, the independence of the 
prognostic genes’ prognostic value from clinical variables 
was investigated by multivariate Cox regression. And we 
also tested the robustness of our method by investigating 
the stability of the prognostic genes with different 
parameters in the pipeline. Finally, we used enrichment 
analysis of these genes with curated cancer genes to 
validate our method. In addition, based on the prognostic 
genes, we selected drugs using CMAP (The connectivity 
map) [18, 19] to test whether the genes in the signature are 
good candidates for drug targets.

RESULTS

Pipeline to identify prognostic genes

The prognostic genes are usually obtained by 
calculating the statistical relation of gene expression 
levels and the prognostic risk of cancer patients. However, 
because of tumor heterogeneity, these prognostic genes 
are usually not robust in independent data sets. Based on 
the hypothesis that the biological network can facilitate 
the identification of driver genes in cancer prognosis, we 
proposed a new pipeline to identify prognostic genes, 
which is based on gene expression data and prognostic 
data of cancer patients. The pipeline is shown in Figure 1.

Figure 1: Pipeline to identify prognostic genes.
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First of all, based on gene expression data and 
clinical information of cancer patients (ovarian cancer 
in this work), gene dependency network was constructed 
using conditional mutual information. In this network, a 
high out-degree means the mutual information of many 
genes with the clinical information (prognostic risk in this 
work) is dependent on it. Therefore, the higher the out-
degree of the gene is, the more likely the gene is to be a 
driver.

After that, resample method (Method) was applied 
to calculate the prognostic capability of each gene, which 
would be used as the initial importance of the genes in the 
next stage.

Then, the DirGenerank algorithm (Method), which 
is a modified Pagerank algorithm, was proposed to identify 
the prognostic genes in ovarian cancer. The algorithm 
contains two inputs: a matrix describes the regulatory 
relation among genes (gene dependency relation in this 
work), and a vector describes the initial importance of 
the genes in the network. The output of the algorithm is 
the importance of the genes after n iterations. It is worth 
noting that the importance of the genes is dependent on 
the initial importance and the gene dependency network. 
The former is the statistical correlation between gene and 
phenotype (prognostic risk), and the latter is the gene 
dependency relations among all the genes. In addition, the 
two parts are weighted by a constant d. In this work, we 
set d as 0.7, which is the same as a previous work did [20].

By the above pipeline, the prognostic genes, which 
may be more likely to be driver genes, may be identified.

The prognosis related gene dependency network

In our previous work [15], we demonstrated that 
gene dependency network based on breast cancer data set 
is able to uncover the gene dependency relation in cancer 
prognosis. Here, we applied it in ovarian cancer data set to 
construct the gene dependency network in ovarian cancer 
using TCGA (Methods), in which nodes are genes and 
a direct edge from node A to node B means the mutual 
information between gene B and prognostic risk of cancer 
patients is significantly dependent on gene A. Therefore, 
the nodes with high out-degrees indicate more possibilities 
to be modulators of cancer prognosis in ovarian cancer. 
The network was shown in Figure 2.

In this network, there are 3995 nodes and 19791 
edges (Supplementary Table 1). The average neighbours 
of the nodes are 9.21. Furthermore, the power-law fit 
of the nodes’ degrees with the number of the nodes 
(with the according degrees) shows both the nodes’ in-
degree and out-degree in the network fit power law 
distribution very well. The correlation and R-square of the 
nodes’ in-degree’s fitting are 0.80 and 0.88 respectively 
(Supplementary Figure 1a), and the correlation and 
R-square of the nodes’ out-degree’s fitting are 0.77 and 
0.87 (Supplementary Figure 1b).

Figure 2: The dependency network in ovarian cancer.
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We also investigated some gene dependency relation 
in the network by literature survey. As we know, BLC2 
(Entrez ID: 4609) and MYC (Entrez ID: 596) are both 
involved in the pathway of apoptosis and thus influence the 
development [21] and prognosis of cancer [22]. It is more 
interesting that MYC and BCL2 may act synergistically 
to promote the generation of cancer cells [23]. In the 
meanwhile, BCL2 is significantly dependent on MYC with 
a p-value of 0.013 and MYC is also dependent on BLC2 
significantly, with a p-value of 0.032 in our network. 
ABAC1 (Entrez ID: 20) mediate the drug- resistance 
in ovarian cancer [24], and BRCA1 is the most famous 
susceptibility gene in ovarian cancer [25]. According to 
our gene dependency network, the mutual information 
of ABAC1 to prognostic risk of ovarian cancer patients 
is dependent on BRCA1 (The p-value of the edge from 
BRCA1 to ABCA1 is 0.045).

In conclusion, topology analysis of our gene 
dependency network and case study of the gene 
dependency network shows our network could be used to 
reveal the gene dependency relation in cancer prognosis 
of ovarian cancer.

The prognostic genes selected in ovarian cancer

Using the pipeline described above, based on the 
gene dependency network and the prognostic capability 
of all the genes (Supplementary Table 2) evaluated by 
resample method, DirGenerank was used to identify 
the prognostic genes in ovarian cancer. According to 
the importance calculated by the algorithm, 1% of 3995 
nodes in the network, that is, 40 genes were obtained as 
prognostic genes (Table 1).

From this table, we can see that the prognostic genes 
obtained by using our method not only contain the genes 
whose expression levels are significantly correlated with 
prognostic risks, but also contain genes whose expression 
levels are not directly related to the prognostic risks in 
statistics. The latter ones can be identified by our method 
because they may modulate many genes (with high out-
degrees) to influence the prognosis of cancer patients, 
and thus they could be prioritized by DirGenerank. For 
example, PIK3R3 (Entrez ID: 8503) is correlated with 
the prognostic risks of cancer patients in none of the 400 
resamples, but it is identified by our method. In addition, 
it has been reported that mutation of PIK3R3 is related to 
ovarian cancer [26] and PIK3R3 is a potential therapeutic 
target for ovarian cancer [27].

We also investigated the intersection between our 
prognostic genes and the curated cancer gene (Sanger and 
COSMIC). Hypergeometric test shows the intersection is 
significant, with a p-value of 0.0025. In the meanwhile, the 
most significant genes (40 genes) calculated by resample 
method were set as control signature (Supplementary Table 
3) to validate our method. Overlap of the genes in control 
signature and the cancer genes was also investigated, 

but the p-value of hypergeometric test is 0.4111. This 
result indicates the prognostic genes identified by the 
new pipeline may be more likely to be real cancer genes, 
compared with the traditional method.

Functional annotation of the prognostic genes

Enrichment analysis of the prognostic genes with 
the KEGG pathway was done by GSEA [28]. The KEGG 
pathways in which the prognostic genes were significantly 
involved were listed in Table 2.

From this table, it is clear that 16 pathways are 
significant (FRD < 0.05). It needs to mention that 
‘Pathway in Cancer’ is the most significant one, with FDR 
of 1.79e-03. What is more interesting is that several sub-
pathways in ‘Pathway in cancer’ were also significantly 
enriched, such as ‘Cytokine-cytokine receptor interaction’, 
‘Jak-STAT signaling pathway’ and ‘Apoptosis’. In 
addition, 5 out of the other pathways are pathways in 
specific cancers (endometrial cancer, colorectal cancer, 
renal cell carcinoma, melanoma, small cell lung cancer). 
‘Chemokine signaling pathway’ and ‘VEGF signaling 
pathway’ are also significant, and it was also reported that 
Chemokine signaling system may be an important therapy 
target for ovarian cancer [29]. In addition, VEGF signaling 
pathway has also been validated to be a therapeutic target 
for cancer treatment [30]. In a word, most of the pathways 
in which our prognostic genes are involved are either 
cancer-related pathways or targets for cancer therapy.

Survival analysis of the ovarian cancer patients 
using the prognostic genes

As reported before, most of the prognostic genes 
derived from gene expression data are confronted with 
poor generalization [31]. In order to validate the prognosis 
capability of our prognostic genes, we constructed 
prognosis model and tested it in five ovarian cancer data 
sets, with a number of more than 2,000 samples.

First of all, the death-risk score of each cancer 
patient was calculated using the 40 prognostic genes. After 
that, the patients in each data set were divided into two 
groups based on their risk scores (Method). Then survival 
analysis was used to test whether there are significant 
differences in the true death risks between the two groups 
of patients. In the training data set (300 patients in TCGA), 
survival analysis shows the hazard ratio (HR) of the two 
groups is 3.96 (95% confidence interval: 2.80 – 5.61) and 
the p-value of the log-rank test is 1.11e-16 (Supplementary 
Figure 2). In the testing data set (267 patients in TCGA), 
the HR of the two groups divided by our method is 1.46 
and p-value is 0.012 (Figure 3a).

Furthermore, we validated our method in three 
independent data sets, which are GSE32062, GSE17260 
and GSE26712. The results of our method in the three 
data sets are with HR (p-value) of 1.35 (0.045), 1.75 
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Table 1: The prognostic genes identified by our pipeline

Gene Id Cox coefficient Stability Gene symbol Description

3174 -0.611 397 HNF4G hepatocyte nuclear factor 4, gamma

2250 -0.542 400 FGF5 fibroblast growth factor 5

4802 -0.517 375 NFYC nuclear transcription factor Y, gamma

27329 -0.465 400 ANGPTL3 angiopoietin-like 3

22955 -0.460 399 SCMH1 sex comb on midleg homolog 1 (Drosophila)

3026 -0.430 393 HABP2 hyaluronan binding protein 2

1453 -0.422 358 CSNK1D casein kinase 1, delta

3607 -0.413 392 FOXK2 forkhead box K2

3207 -0.332 400 HOXA11 homeobox A11

2113 -0.281 240 ETS1 v-ets erythroblastosis virus E26 oncogene homolog 
1 (avian)

636 -0.264 386 BICD1 bicaudal D homolog 1 (Drosophila)

362 -0.235 281 AQP5 aquaporin 5

8706 -0.204 314 B3GALNT1 beta-1, 3-N-acetylgalactosaminyltransferase 1 
(globoside blood group)

3918 -0.203 399 LAMC2 laminin, gamma 2

3570 -0.193 299 IL6R interleukin 6 receptor

6361 -0.185 346 CCL17 chemokine (C-C motif) ligand 17

1381 -0.132 399 CRABP1 cellular retinoic acid binding protein 1

10753 -0.130 381 CAPN9 calpain 9

8856 -0.0935 0 NR1I2 nuclear receptor subfamily 1, group I, member 2

10563 -0.0762 31 CXCL13 chemokine (C-X-C motif) ligand 13

8503 -0.0669 0 PIK3R3 phosphoinositide-3-kinase, regulatory subunit 3 
(gamma)

554 0.0142 0 AVPR2 arginine vasopressin receptor 2

8877 0.0616 0 SPHK1 sphingosine kinase 1

646 0.10637585 391 BNC1 basonuclin 1

1746 0.161 97 DLX2 distal-less homeobox 2

10894 0.190 395 LYVE1 lymphatic vessel endothelial hyaluronan receptor 1

2173 0.193 319 FABP7 fatty acid binding protein 7, brain

6622 0.209 391 SNCA synuclein, alpha (non A4 component of amyloid 
precursor)

5733 0.236 399 PTGER3 prostaglandin E receptor 3 (subtype EP3)

27129 0.253 398 HSPB7 heat shock 27kDa protein family, member 7 
(cardiovascular)

56914 0.262 320 OTOR otoraplin

344 0.296 399 APOC2 apolipoprotein C-II

11027 0.310 396 LILRA2 leukocyte immunoglobulin-like receptor, subfamily 
A (with TM domain), member 2

(Continued )
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(0.0091) and 1.69 (0.0018) respectively (Figure 3b-3d). In 
a previous work [32], 1287 ovarian cancer samples were 
collected to validate survival-associated biomarkers. In 
this work, we also used the merged data set to test the 
prognostic capability of our prognostic genes. As a result, 
survival analysis shows the hazard ratio (HR) of the two 
groups stratified by our method is 1.51 (95% confidence 
interval: 1.30 – 1.76) and the p-value of the log-rank test is 
3.73e-08 (Figure 4). Therefore, a conclusion can be drawn 
that our prognostic genes can not only discriminate the 
prognostic risk of cancer patients in training data set, but 
also stratify the patients in independent data sets.

For comparison, the control signature, which 
contained the most significant genes (40 genes) calculated 
by the resample method, was also applied to stratify the 
patients in the six data sets. The results of the control 
signature in these data sets were shown in Supplementary 
Table 4. In the training data set and the testing data set 
which are from TCGA, it is reasonable that the control 
signature achieved better results because the genes in the 
control signature are the most significant genes obtained 
in TCGA. However, in the other four data sets which are 
independent from TCGA, our prognostic genes outperform 
the control signature. What is more, the control signature 

Gene Id Cox coefficient Stability Gene symbol Description

3036 0.350 378 HAS1 hyaluronan synthase 1

8904 0.367 396 CPNE1 copine I

324 0.406 385 APC adenomatous polyposis coli

7082 0.456 400 TJP1 tight junction protein 1 (zona occludens 1)

2022 0.4778 356 ENG endoglin

1176 0.510 397 AP3S1 adaptor-related protein complex 3, sigma 1 subunit

3562 0.887 329 IL3 interleukin 3 (colony-stimulating factor, multiple)

For each gene, cox coefficient is the average coefficient of 400 cox proportional hazards regressions in the 400 resampling 
data sets. The stability of a gene is set as the times when it’s significant in 400 cox proportional hazards regressions.

Table 2: Function annotation of the prognostic genes

Pathways p-value FDR q-value

Pathways in cancer 9.63E-06 1.79E-03

Cytokine-cytokine receptor interaction 8.64E-05 8.03E-03

Jak-STAT signaling pathway 3.39E-04 2.10E-02

Chemokine signaling pathway 6.14E-04 2.86E-02

Regulation of actin cytoskeleton 8.90E-04 2.95E-02

Endometrial cancer 9.53E-04 2.95E-02

Colorectal cancer 1.35E-03 3.50E-02

Renal cell carcinoma 1.72E-03 3.50E-02

Melanoma 1.77E-03 3.50E-02

VEGF signaling pathway 2.02E-03 3.50E-02

Fc epsilon RI signaling pathway 2.18E-03 3.50E-02

Small cell lung cancer 2.46E-03 3.50E-02

Apoptosis 2.70E-03 3.50E-02

Hematopoietic cell lineage 2.70E-03 3.50E-02

Gap junction 2.82E-03 3.50E-02

Fc gamma R-mediated phagocytosis 3.26E-03 3.79E-02
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can’t distinguish the prognostic risks of cancer patients in 
two of them (GSE32062 and GSE17260). As we know, 
the only difference between our prognostic genes and 
the control signature is that our method concerning the 
gene dependency relation among genes and DirGenerank 
algorithm was applied to identify the driver genes in the 
network. The good performance of our prognostic genes 
validated that our pipeline can indeed identify the key 
genes in cancer prognosis.

Evaluating the independence of prognostic 
value of the prognostic genes with other clinical 
variables

In order to evaluate the independence of our selected 
genes’ prognostic value, we selected all the samples 
which have the clinical variables of age, grade and stage 

in TCGA. As a result, 553 samples were obtained. First 
of all, we performed multivariate Cox regression using 
risk scores of our prognostic genes, age, stage and grade 
as co-variables with the death risks in the training data 
set, testing data set and the entire data set of TCGA. As 
a result, risk score, age and stage were significant with 
the death risks of cancer patients in all the three data 
sets (Supplementary Table 5). In addition, p-values of 
risk score in the three data sets were 3.76e-21, 0.004 and 
2.02e-18 respectively, which outperform the other clinical 
variables.

Because two clinical variables (age and stage) were 
also significantly correlated with death risks of cancer 
patients, we performed data stratification analysis based 
on age and stage in the entire data set of TCGA (We didn’t 
perform this analysis in the training data set and testing 
data set because the stratified data sets are too small for 

Figure 3: Survival analysis of the patients divided by the prognostic genes in four data sets.
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survival analysis. For example, the high-stage group in 
testing data set only contained 38 samples). Using the 
median of the patients’ age (59) as threshold, the data 
set was divided into a younger group (288 patients) and 
an elder group (265 patients). The survival analysis was 
performed in each of the two groups and the results 
(Figure 5) show our prognostic genes could discriminate 
the prognostic risks of cancer patients in both the data sets. 
The hazard ratio of the patients divided by our prognostic 
genes in the younger group is 2.26 and p-value is 1.67e-
06 (Figure 5a). In the meanwhile, hazard ratio is 2.27 and 
p-value is 3.40e-07 (Figure 5b) in the elder group.

Furthermore, as the number of patients with stage 
I and stage II is very small, we used stage III as cutoff 
(stage IV vs. others) to stratify the patients into two data 
sets, the high-stage group (81 patients) and the low-stage 
group (472 patients). The prognostic genes were also 
applied to divide the patients in each data set into two 
groups according to the risk score. As a result, in the low-
stage group, the overall survival time of patients in the low 
risk group is significantly higher than that of the high risk 
group, with a hazard ratio of 2.37 and p-value of 2.87e-11 
(Figure 5c). In addition, hazard ratio is 2.49 and p-value is 
0.0017 (Figure 5d) in the high-stage group.

All these results indicate that the prognostic value 
of our prognostic genes is independent from other clinical 
variables.

Evaluating the stability of the prognostic genes

The prognostic genes identified by our pipeline may 
be influenced by the selection of different data sets or 
parameters. For example, the selection of different Human 
PPI data sets for inferring gene dependency network, 
ovarian cancer data sets for training and the constant d in 
DirGenerank. Therefore, we used different data sets and 
parameters to select the prognostic genes and test whether 
our 40 prognostic genes are stable.

First of all, expect for the PPI data set [33] used 
in this work, we also used the most famous PPI data set 
(STRING [34]) to construct the gene dependency network 
and ranked the prognostic genes based on the new gene 
dependency network. The ranked genes are shown in 
Supplementary Table 6. In order to test whether our 40 
prognostic genes could be selected as important genes 
by the new PPI data set, Kolmogorov-smirnov test was 
applied to test whether our prognostic genes were also on 
the top of the new ranked genes. As a result, the p-value of 
the test is 2.80e-24, which indicates our prognostic genes 
are also important in the new gene list.

In this work, we applied the TCGA to infer gene 
dependency network and calculated initial importance 
of the genes. Here, we also used the merged data set, 
which contains the largest number of samples to run the 
same pipeline. Supplementary Table 7 shows the gene 

Figure 4: Survival analysis of patients divided by the prognostic genes in the merged data set.
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list ranked by using the new ovarian cancer data set. 
Kolmogorov-smirnov test was also applied to test whether 
our prognostic genes were enriched by the top genes in 
the gene list and p-value of the test is 6.52e-04. This result 
may illustrate why our prognostic genes are discriminative 
in the independent data sets.

In the DirGenerank, the constant d describes the 
weight of the gene dependency network. Therefore, 
different parameter d may influence the identification of 
prognostic genes. Recently, although a few works have 
proposed methods to determine the optimal parameter in 
an algorithm [35–38], in this work, for simple, we set d 
as 0.7, which is the same as a previous work did [20]. 
Furthermore, we also checked whether the prognostic 
genes are robust with different d. As a larger d means that 
the ranked genes are more dependent on the biological 
network, compared with the initial importance of the 

genes, we varied the d as 0.50, 0.60, 0.70 and 0.85 
(adopted by GOOGLE) in the algorithm and four gene lists 
were obtained (Supplementary Table 8). The significances 
of the enrichment of our 40 prognostic genes with the 
gene lists of other d were also evaluated by Kolmogorov-
smirnov test. As a result, p-values are all less than 7.20e-
35.

From all these results, a conclusion can be drawn 
that our prognostic genes are stable with the selection of 
different data sets or parameters in the pipeline.

Drug screening using the prognostic genes with 
CMAP

CMAP (The connectivity map) is a famous tool to 
screen drug [18, 19]. It screens drugs by comparing the up-
regulated genes (up signature) and down-regulated genes 

Figure 5: Survival analysis of the patients stratified by age and stage. (a) Survival analysis of the patients in younger 
group. (b) Survival analysis of the patients in elder group. (c) Survival analysis of the patients in low-stage group. (d) Survival 
analysis of the patients in high-stage group.
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(down signature) in a disease with the gene expression 
profiles of tissues stimulated by small molecules. In order 
to test whether our prognostic genes are good candidates 
for therapy target, we used the prognostic genes as up 
signature or down signature to screen drugs using CMAP. 
Of the 40 prognostic genes, 19 genes with positive cox 
coefficient were set as up signature and the other 21 genes 
were set as down signature. As a result, 85 drugs were 
significant with a p-value < 0.05 (Supplementary Table 9). 

Among these drugs, 28 drugs (p-value < 0.01) were listed 
in Table 3.

Among the 28 drugs, 13 drugs are collected in 
DGIdb (Drug-Gene Interaction database) [39], TTD 
(Therapeutic target database) [40] or DrugBank [41, 42]. 
After the investigation of the adaptation diseases of the 13 
drugs, 8 drugs could be used as therapy for cancer. Among 
the drugs in top 10, apart from the ones with unclear 
adaptation disease, the adaptation diseases of all the other 

Table 3: Drugs selected by CMAP using prognostic genes

Rank CMAP name p-value Tag

1 trichostatin A 0 true

2 PHA-00745360 0.00018 unclear

3 mephenytoin 0.00022 true

4 Gly-His-Lys 0.00026 unclear

5 resveratrol 0.0003 true

6 quinpirole 0.00034 unclear

7 etiocholanolone 0.00052 unclear

8 vorinostat 0.00064 true

9 aciclovir 0.00127 unclear

10 0175029-0000 0.00177 unclear

11 GW-8510 0.00223 unclear

12 dantrolene 0.00226 false

13 irinotecan 0.00246 true

14 folic acid 0.00328 true

15 midodrine 0.0033 false

16 lobelanidine 0.00442 unclear

17 alsterpaullone 0.00503 unclear

18 tranylcypromine 0.00611 false

19 isometheptene 0.00629 false

20 Prestwick-857 0.00631 unclear

21 morantel 0.00647 unclear

22 clebopride 0.00712 unclear

23 levomepromazine 0.00722 unclear

24 piribedil 0.00859 false

25 pentamidine 0.00897 true

26 Prestwick-691 0.00937 unclear

27 Prestwick-664 0.00985 unclear

28 vinblastine 0.00988 true

The first column is the rank of the drugs; the second column is the name of the drugs; the third column describes the 
p-value of the Kolmogorov–Smirnov test; in the last column, true denotes adaptation disease of the drug contains cancer, 
and false denotes cancer is not an adaptation disease of the drug.
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drugs contain cancer. Therefore, it may indicate that our 
prognostic genes may be used as targets for drugs.

Furthermore, we investigated whether some drugs’ 
adaptation disease selected by our method was actual 
ovarian cancer. We screened all the drugs in DGIdb 
(Drug-Gene Interaction database) [32], TTD (Therapeutic 
target database) [33] and DrugBank [34, 35] and found 
3 drugs (MK-886, MS-275 and Y-27632), of which 
adaptation disease was ovarian cancer, were contained in 
CMAP. Among the three drugs, MS-275 and Y-27632 are 
significant (p-value were 0.034 and 0.048 respectively). 
Kolmogorov-smirnov test shows the three drugs were 
significantly enriched on the top of the drug list ranked by 
CMAP (p-value = 0.0062). In addition, it is reported that 
trichostatin A, which is the most significant drug (p-value 
= 0), could be used as treatment for ovarian cancer [43]. 
All these results could prove the therapy value of our 
prognostic genes.

DISCUSSION

Identifying the prognostic genes in cancer is 
essential not only for the treatment of cancer patients, 
but also for drug discovery. But it’s still a big challenge 
to select the prognostic genes because the selected 
genes whose expression levels are statistically related 
to prognostic risks may be passengers. In this paper, we 
proposed a new pipeline to identify prognostic genes 
in cancer (ovarian cancer as a case study in this work). 
Our pipeline uses gene expression profiles and clinical 
information (prognostic data) of cancer patients to infer 
gene dependency network, which could reveal the gene 
dependency relation in cancer prognosis. After that, 
resample method was used to evaluate the statistical 
relation of each gene’s expression levels with prognostic 
risks of cancer patients. Finally, DirGenerank, a modified 
Pagerank algorithm, was proposed to prioritize genes 

based on gene dependency network and genes’ statistical 
relation with prognostic risks of cancer patients.

Analysis of gene dependency network in ovarian 
cancer shows the network could reveal gene dependency 
relation in the biological process of cancer. After that, 40 
genes were obtained by our pipeline. Functional analysis 
shows these genes are involved in pathways in cancer, and 
these genes are also significantly enriched with cancer 
genes. In addition, the prognostic genes can discriminate 
the prognostic risks of cancer patients in five data sets, 
which contain more than 2,000 samples. Furthermore, the 
prognostic genes are proved to be robust with the selection 
of different data sets or parameters in the pipeline. And the 
prognostic values based on these genes are independent 
from other clinical variables. At last, drug screening using 
the prognostic genes with CMAP shows the genes in the 
signature may be drug targets for therapy.

In conclusion, we have proposed a useful pipeline 
to identify prognostic genes. It needs to be mention that 
our pipeline could be used not only in the identification of 
prognostic genes in any disease, but also in the selection 
of key genes in other biological processes, as long as there 
are expression profiles of enough samples and phenotype 
information of these samples.

MATERIALS AND METHODS

Data sets and pre-processing

Five ovarian cancer data sets, each of which 
contains gene expression profiles and clinical information 
(time to death and status of death) of more than one 
hundred patients, were collected in this work. Among 
these data sets, one is from TCGA (The Cancer Genome 
Atlas) [44], and three are from NCBI (National Center for 
Biotechnology Information Gene Expression Omnibus) 
with accession numbers of GSE32062 [45], GSE17260 

Table 4: Ovarian cancer data sets used in this work

Data set Number of samples Usage Site

TCGA 300 Training https://portal.gdc.cancer.gov/

TCGA 267 Test https://portal.gdc.cancer.gov/

GSE32062 260 Independent test https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE32062

GSE17260 110 Independent test https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE17260

GSE26712 185 Independent test https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE26712

Merged set 1287 Independent test http://kmplot.com/analysis/index.
php?p=download

It should be mention that the TCGA data set was downloaded from http://tcga-data.nci.nih.gov/tcga/. And the source now is 
on https://portal.gdc.cancer.gov/.
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[46] and GSE26712 [47] respectively. Apart from that, 
we also used a merged data set containing more than 
1000 patients, which was collected from a previous work 
[32], to validate our method. The gene expression data 
of the first three data sets were performed with Agilent 
gene-chips and the other two data sets were performed 
with Affymetrix gene-chips. The platform of TCGA data 
set is Agilent G4502A and the platform of the other two 
Agilent gene-chips is Agilent-014850 Whole Human 
Genome Microarray 4x44K G4112F. In the meanwhile, 
the platform of two Affymetrix gene-chips is Human 
Genome U133A. We mapped the probes to Entrez Gene 
ID, and the expression levels of the probes for each gene 
were averaged.

When the data sets were used for survival analysis, 
the TCGA data set was divided into two parts randomly 
(used as training data set and testing data set respectively), 
and the other four data sets were set as independent test 
sets. The detailed information of these data sets is shown 
in Table 4. In addition, the prognostic information (days to 
death, status of death), age, tumor stage and tumor grade 
of all the patients in TCGA is shown in Supplementary 
Table 10.

When we constructed the gene dependency 
network, the prognostic information and the gene 
expression in TCGA was discretized. The prognostic 
information used in this work is the overall survival time 
and survival status of each patient. If the death of a patient 
occurred within 1200 days, we set the phenotype as 1; if a 
patient had an overall survival time of no less than 1200 
days, then the phenotype of it was set as 0; otherwise, it 
was abandoned. For each gene’s expression level, if it is 
higher than the median of the gene’s expression levels 
across all the samples, it was set as 1; otherwise, it was 
set as 0.

The human PPI (protein-protein interaction data) 
was downloaded from a previous work [33]. In order to 
test whether our method is dependent on the selection of 
PPI, we also downloaded another Human PPI database: 
STRING [34]. In STRING, the pairs with score of no 
less than 400 were retained for the next analysis. The 
cancer genes were obtained from the database Sanger and 
COSMIC [48]. The drug target information was derived 
from DGIdb (Drug-Gene Interaction database) [39], TTD 
(Therapeutic target database) [40] and DrugBank [41, 42].

Inference of gene dependency network

Based on the hypothesis that the correlation between 
one gene and the prognostic risks of cancer patients may 
be dependent on another gene, we proposed a frame to 
infer gene dependency network [15]. These days, many 
similarity calculation methods have been widely used 
in bioinformatcs. For example, in the area of drug-drug 
similarity [49, 50] or correlation of gene expression data 
between gene pairs [51]. As the information-theoretic 

approaches have succeeded in inferring biological 
networks [51], we used conditional mutual information to 
infer gene dependency network based on gene expression 
data and clinical information (days to death and status of 
death) of ovarian cancer patients (TCGA). The procedure 
of establishing the gene dependency network is described 
as follows:

Firstly, the gene expression level of each gene 
and the clinical information of ovarian cancer patients 
in TCGA was discretized (Section ‘Data Sets and pre-
processing’).

Secondly, for each gene pair in human PPI, we used 
CMI (conditional mutual information) to calculate the 
gene dependency relation of one gene (denoted as A) to 
the other (denoted as B). That is, in the context of gene B, 
the mutual information of gene A’s expression level and 
the clinical information P (CMI (A,P|B)).

Thirdly, to evaluate the significance of the gene 
dependency relationship of gene A to gene B, permutation 
test was used. For each gene pair (A, B), we calculated its 
real CMI value using the tool mRMR [52], as described in 
our previous work [15]. Then the expression levels of gene 
B across all the patients were randomly permuted, and a 
new CMI value was calculated. After that, the permutation 
procedure was repeated 1000 times and the 1000 CMI 
values were regarded as the null hypothesis distribution. 
At last, based on the null hypothesis distribution, p-value 
of gene dependency relationship of gene A to gene B was 
calculated.

Finally, all the significant gene dependency pairs 
(p-value <= 0.05) were used to construct the gene 
dependency network. In the network, nodes are genes, 
and the directed edge (B→A) represents the mutual 
information of gene A and clinical information is 
significantly dependent on gene B.

Using resample method to calculate the 
prognostic capability of each gene

We used a resampling method to evaluate the 
prognostic capability of each gene, which would be used 
as an input of the DirGenerank algorithm. The resampling 
method is shown as follow:

Firstly, the gene expression data and prognostic 
information of 300 patients was randomly selected from 
TCGA, which is used as training data set.

Secondly, 90% of all the 300 samples were randomly 
chosen. For each gene, we used Cox proportional hazards 
regression to calculate the relation between the gene 
expression levels and the death risk (death time and death 
status) across the selected patients.

Thirdly, step 2 was repeated 400 times, and the times 
of each gene whose Cox p-value was less than 0.05 can 
describe the stability of the gene’s prognostic capability. 
The stability of each gene was used to characterize the 
prognostic capability of it. In addition, the Cox coefficients 
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of each gene in the 400 runs were averaged as the final 
Cox coefficient of the gene.

Using DirGenerank to select essential genes

Pagerank [16] was invented to rank the important 
web pages on the internet through the links among these 
web pages. In a previous work, the Generank algorithm 
[17], a modified Pagerank algorithm, succeeded in 
selecting genes from biological network. The Generank 
was proposed for undirected network. We extended it 
to direct network, which is called DirGenerank. The 
algorithm is described as the following equation:

r d imp d
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Where, rj
n is the importance of gene j after n iterations 

and ri
n−1 the importance of gene i after n-1 iterations; imp j  

is the initial importance of gene j, and in our work, we 
set imp j  as the prognostic capability calculated by the 
resample method; wij describes the gene dependency 
relation between gene i and gene j, that is, if gene i is 
significantly dependent on gene j, then wij = 1, otherwise, 
wij= 0; degi  is the out-degree of gene i, in another word, 
how many genes are significantly dependent on gene i; 
N is the number of genes in gene dependency network; 
d (0 ≤ d < 1) is a constant, which describes the weight 
of the gene dependency network. If d is zero, it means 
the importance of the gene equals the initial importance, 
while d is close to 1, it means the importance of the gene 
almost completely dependent on the gene dependency 
network. In this work, we set it as 0.70. The iteration of 
the algorithm stops until ε < 0.00001, while ε = − −| |r rj

n
j
n 1  

and |.| is one-norm. The code of the algorithm is submitted 
in supplementary file.

Calculation of the prognostic risk

After obtaining the prognostic signature, we applied 
a method similar with GGI [53] to calculate the prognostic 
risk of each patient:

Risk Score xi x j= −∑ ∑ .

Where xi  is the expression level of gene whose Cox 
coefficient is positive, while x j  is the expression level 
of gene whose Cox coefficient is negative. After that, the 
patients in each data set were divided into two groups: the 
patients with the risk score not higher than a threshold, 
which is equal to the median of the risk scores of all 
the patients in the data set, were set as low risk group; 
otherwise, the patients were set as high risk group. At last, 
the log rank test was performed to test whether there is 
significant difference of the death risk between the two 
groups divided by our method.

Enrichment analysis

GSEA [54] was used to investigate the functions 
(KEGG pathway) of the prognostic signature. We applied 
hypergeometric test to test whether the intersection of 
cancer genes with the prognostic genes is significant, 
which was calculated as follow:
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Where x is the size of the intersection set, K is the number 
of our prognostic genes, N is the number of the cancer 
genes and M is the size of universal set.

Network topology and visualization

We used Cytoscape 3.2.0 to visualize the gene 
dependency network and the Network Analyzer plug-in 
for Cytoscape [55] was applied to analyze the topology 
of the network.
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