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ABSTRACT
The high mortality rate of pancreatic cancer makes it one of the most studied 

diseases among all cancer types. Many researches have been conducted to understand 
the mechanism underlying its emergence and pathogenesis of this disease. Here, 
by using minimum-redundancy-maximum-relevance (mRMR) method, we studied a 
set of transcriptome data of pancreatic cancer. As we gradually added features to 
achieve the most accurate classification results of Jackknife, a gene set of 9 genes 
was identified. They were NHS, SCML2, LAMC2, S100P, COL17A1, AMIGO2, PTPRR, 
KPNA7 and KCNN4. Through STRING 2.0 protein-protein interactions (PPIs) analysis, 
40 proteins were identified in the shortest paths between genes in the gene set, 
30 of them passed the permutation test, which indicated they were hubs in the 
background network. Those genes in the protein-protein interaction network were 
enriched to 37 functional modules, such as: negative regulation of transcription from 
RNA polymerase II promoter, negative regulation of ERK1 and ERK2 cascade and 
BMP signaling pathway. Our study indicated new mechanism of pancreatic cancer, 
suggesting potential therapeutic targets for further study.

INTRODUCTION

Pancreatic cancer is one of the most lethal diseases 
among all cancer types, leading to about 79,400 deaths in 
China [1] and 330,400 deaths worldwide [2]. The five-
year survival rate is only 2–7% [3, 4]. This poor outcome 
could be largely due to the late diagnosis. The mechanism 
underlying its progression is still unclear. The expression 
profiles of pancreatic cancer had been widely studied, 
revealing several molecular factors affecting various 
aspects of pancreatic cancer [5]. Terris et al. found four 
genes — caveolin 1, glypican 1, growth arrest-specific 
6 protein, cysteine-rich angiogenic inducer 61 were 
associated with the pathogenesis of pancreatic cancer and 
possible early stage pancreatic cancer indicators [6]. For 
some patients, PCK1, SFRP2 were identified as potential 

metastasis markers in a study comparing the expression 
profiles primary and metastasis pancreatic cancer [7]. 
GSTT1, TOP2A, CASP3 and ABCC2 had been found to 
possess gemcitabine sensitivity predictive properties [8]. 
These studies usually adopted differentially expressed 
genes (DEG) methods. This means the studies considered 
the relevance between expression levels and certain 
phenotype separately, ignoring the relationships between 
the genes. These methods would bring redundancies to 
the findings, mixing the most representative genes into 
the bulk results. 

Feature selection often means the process of 
maximizing the classification accuracy with the combination 
of the selected features integrating into a classification 
model. To that end, people select the features passing certain 
relevance threshold. Relevance is usually characterized 
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in terms of correlation or mutual information. But many 
genes work closely as a functional module. The interactions 
among them may contribute to class distinctions. 
However, combinations of individually good features are 
not necessarily a good gene set representing the whole 
picture underlying the biological processes [9]. Minimum-
redundancy-maximum-relevance (mRMR) had been 
widely used in several biological fields such as predicting 
lysine ubiquitination [10], protein-protein interactions [11] 
and HIV Progression-Related Genes [12]. This method 
considers the associations between the features and the 
target phenotype, together with the inner relationships 
among the features. Comparing with the other methods, 
mRMR showed better classification accuracy [13].

The proteins work together to form functional 
modules. Investigating the disease candidate genes should 
consider these interactions for better understanding how 
the candidates function. Among the interaction databases, 
STRING (Search Tool for the Retrieval of Interacting 
Genes) [14] is most frequently used because of its millions 
interactions and the high quality scoring system. With this 
powerful data source, we can restore the overall functional 
impact of the genes of our interest.

In this study, we performed a Minimum-redundancy-
maximum-relevance (mRMR) based transcriptome study. 

The objective was to find a set of genes which best 
classifying these two types of samples, explaining some 
mechanisms of the pathogenesis of pancreatic cancer. 
Based on graphic analysis [15] on STRING PPIs network 
we further identified pancreatic cancer association genes 
and functional modules worthy for further experimental 
studies.

RESULTS

Gene probes identified by mRMR-IFS

We retrieved 45 pancreatic cancer and 45 non-tumor 
samples’ gene expression profiles from GEO (GSE28735) 
consisting 28,869 probes. We used mRMR-IFS method to 
do feature selection and used K-nearest-neighbor model 
to do phenotype classification (see Methods). We adopted 
K-nearest-neighbor model and jackknife validation, and 
calculated the classification accuracy of 1 to 500 probes 
(Figure 1). We found a set of 10 probes with the accuracy 
of 0.88, which is close to the highest accuracy of 0.89 
with 80 probes. The 10 gene probes set would be more 
representative than 80 gene probes set, so we choose 
10 gene probes (Table 1). The differential expression of 
LAMC2, S100P, KPNA7, AMIGO2 and KCNN4 had also 

Figure 1: IFS curve to determine the number of features used in prediction. We used an IFS curve to determine the number of 
features finally used in the mRMR feature selection. Prediction accuracy reached its second maximum value at 10 gene probes. The x-axis 
indicates the number of probes used for classification, and the y-axis is the prediction accuracy. 
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been reported in other studies [16–20] (Figure 2). Some 
genes had been reported to be related to PDAC, such 
as LAMC2, S100P and KPNA7 [18, 21, 22]. We also 
identified novel pancreatic cancer genes, such as SCML2, 
COL17A1, AMIGO2, PTPRR, suggesting our method 
might be able to predict novel PDAC-related genes. 

A PPI sub-network of the genes

We further built up an undirected network using 
PPIs from STRING [14]. The protein pairs with PPI 
score greater than 0.8 were used to form high confidence 
network. From the 10 gene probes identified by mRMR-

Table 1: Top 10 of the genes by betweenness in the shortest paths
Probe ID seqname STRAND START STOP Gene Symbol mRMR score

8166266 chrX + 17393543 17754114 NHS 0.26468
8171561 chrX − 18257433 18372847 SCML2 0.262552
7908072 chr1 + 1.83E+08 1.83E+08 LAMC2 0.280165
8093950 chr4 + 6694796 6698897 S100P 0.300541
8017098 chr17 − 56736510 56736657 0.270637
7936144 chr10 − 1.06E+08 1.06E+08 COL17A1 0.28748
7962579 chr12 − 47469490 47473734 AMIGO2 0.270462
7964907 chr12 − 71031853 71314586 PTPRR 0.232587
8141263 chr7 − 98775543 98805089 KPNA7 0.188924
8037408 chr19 − 44270685 44285409 KCNN4 0.817682

Figure 2: Expression differences of LAMC2, S100P, KPNA7, AMIGO2 and KCNN4 between tumors and non-tumors. 
Format: PNG This figure shows the expression differences of LAMC2, S100P, KPNA7 and AMIGO2 between tumors and non-tumors, 
separately. Error bars indicate standard errors. 
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IFS, we found 9 genes corresponding to 27 proteins in 
STRING. 8 proteins were in the high confidence network. 
We computed the shortest path of every pairs of proteins 
using the Dijkstra’s algorithm [15]. The shortest paths 
were integrated into a sub-network (Figure 3), and the 
sub-network contains 51 protein-protein interactions 
involving 40 proteins. We conducted a permutation test 
to evaluate the significance of betweenness of the proteins 
against background network. 30 proteins passing the test 
were selected and ranked according to their betweenesses 
(Supplementary Table 1). Among the betweenesses, 
MAPK1’s had the largest, which was 14, indicating there 
were at least 7 shortest paths going through this gene. 

Functional enrichment analysis of the genes

Using DAVID, we implemented GO functional 
enrichment analysis and KEGG pathway analysis with 
the 10 probes. Results showed that these genes were 

significantly enriched in the cell adhesion in organelle 
(Supplementary Table 2). Only one KEGG pathway was 
significantly enriched (hsa04974: Protein digestion and 
absorption) (p-value = 0.038, Supplementary Table 3).

We also performed KEGG pathway and GO 
functional enrichment with the 30 hub genes on the shortest 
paths. The GO results showed that many genes were 
significantly enriched in the modules of negative regulation 
of transcription from RNA polymerase II promoter 
(Supplementary Table 4). And the KEGG pathway results 
showed that these genes were significantly enriched in the 
TGF-beta signaling pathway (hsa05212: Pancreatic cancer, 
p-value=3.08E-05, Supplementary Table 5).

DISCUSSION

In a previous study, Zhang et al. identified 277 genes 
to be differentially expressed with this set of data [23]. 
By our approach, a more compact set of features was 

Figure 3: PPI network of shortest paths among 40 computational method identified proteins. Shortest paths between 
each pair of the 8 proteins (black) which from the 40 computational method selected proteins were identified in the STRING PPI network. 
Proteins in black are the 8 identified genes using the computational method which also present in the STRING PPI network; red ones are 
shortest paths proteins passed the permutation test; blue are not passed ones.
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identified (Supplementary Table 4) with high classification 
accuracy.

Among the more than 20,000 probes in the 
transcriptome data, we selected 10 probes corresponding 
to 9 genes as the most optimized predictors. They are NHS, 
SCML2, LAMC2, S100P, COL17A1, AMIGO2, PTPRR, 
KPNA7 and KCNN4. Some of them had been proved to be 
associated with pancreatic cancer.

LAMC2 (Laminin subunit gamma-2) Laminins 
are extracellular matrix glycoproteins. Studies showed 
that they are involved in many biological processes 
including cell adhesion, differentiation, and metastasis 
[24–26]. The overexpression of LAMC2 had been shown 
to be a predictive marker of pancreatic cancer [21]. 
Another microarray study also found it overexpressed 
in PDAC tumor epithelia. Moreover, its expression level 
negatively correlated with survival [27]. Nerve invasion 
is a prominent feature of pancreatic cancer. In a study 
with cell line, mouse model and patients’ surgical tissues, 
overexpression of LAMC2 was observed to be positively 
associated with nerve invasion distance [28].

S100P (S100 calcium binding protein P) is a 
member of S100 family of proteins. S100 regulates cell 
cycle progression and differentiation [29]. Microarray 
study had shown it specifically expressed in the neoplastic 
epithelium of pancreatic cancer [22]. The expression level 
of S100P is correlated with the rates of cell proliferation, 
survival, migration and invasion, which makes S100P 
protein a major promoting factor in the pathogenesis of 
pancreatic cancer [30]. The abnormal expression might 
be because of hypomethylation [31]. Overexpression of 
S100P is an early marker of pancreatic cancer, which 
down-regulates the levels of cytoskeletal proteins, which 
disrupts the actin cytoskeleton network and changes in the 
phosphorylation status of cofilin. S100P also un-regulates 
expression of two cellular invasion factors S100A6 and 
aspartic protease cathepsin [32].

AMIGO2 (Adhesion Molecule With Ig Like 
Domain 2) also named as DEGA (Differentially expressed 
in gastric adenocarcinomas). As its name DEGA, it 
may induce several deterious alterations including 
aneuploidy and abnormal adhesion in  gastric cancers 
[33, 34]. Antibodies against AMIGO2 had been proved to 
be effective to pancreatic cancer in xenograft models [17].

KPNA7 (karyopherin subunit alpha 7) is a 
member of importin α family. In vitro experiments had 
demonstrated that KPNA7 was up-regulated in pancreatic 
cancer. Silencing KPNA7 could increase the level of p21, 
promote G1 arrest, and increase autophagy [18]. It is an 
important factor promoting the malignant of pancreatic 
cancer.

KCNN4 (potassium calcium-activated channel 
subfamily N member 4) consists  Ca2+ activated voltage-
independent K+ channel [35]. Ca2+-activated K+ channels 
are involved in anion and K+ transport in stimulated 
pancreatic cells [36]. In vitro study had shown that 

blocking the channels could inhibit the growth of 
pancreatic cancer, which suggested the important role of 
them in the proliferation of pancreatic cancer [16].

MATERIALS AND METHODS

Dataset

The microarray gene expression profiling dataset 
was downloaded from NCBI Gene Expression Omnibus 
(accession no.: GSE28735). The dataset contains 45 
tumor and 45 non-tumor patients with pancreatic ductal 
adenocarcinoma (PDAC) [23].

Feature selection

To rank the importance of the features that best 
distinguish pancreatic ductal adenocarcinoma tumor from 
normal adjacent tissues, we applied mRMR method, 
which ranks the features according to their relevance to 
the target phenotypes minus the redundancy between the 
features [37]. In our study, we used R package mRMRe to 
implement mRMR [38]. In mRMRe, both relevance and 
redundancy are quantified by mutual information (MI):

∫ ∫    p(x, y)log p(x, y)
p(x)p(y)

dxdy
 1

Where x and y are two variables to be tested, p(x) and 
p(y) are the marginal probabilistic densities, and p(x, y) is 
their joint probabilistic density, and I(x, y) represents the MI.

Let X = {x1,.....,xn} denote the set of gene probes 
(input features), and let y denote the phenotype (input 
target). Given the feature with highest MI between the 
phenotype xi, the set of ranked features S is initialized 
with xi. Next, the best balance between maximal relevance 
and minimum redundancy in the remaining feature xj  
is added to S. It is selected by maximizing the score q 
according to the following equation:

q = I (x y) -
S

I(x , x )j, Xk S j k
1
| |

∑ ∈

 2

The selection step is repeated until a desirable 
number of ranked features N, which was 500 in our study. 

To determine an appropriate subset of the ranked 
feature list, we chose incremental feature selection (IFS) 
to determine the most suitable number of the genes in the 
feature subset si [39]:

S f , f ,..., f i N)1 2 ii = ≤ ≤{ }(1  3

For example, N is 500, then the first feature subset is 
s1 = {f1}, the second feature subset is s2 = {f1, f2}, and the 
last feature subset is SN = {f1, f1,...f500}. The feature subset 
with the best prediction accuracy is selected.
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Prediction engine

We used k-nearest neighbor method to predict the 
phenotype of each individual. In our study, the distance 
between two individuals was defined according to Chou 
and coworkers [40, 41]:

D(i , i ) =1- e - e
| e | . | e |1 2

1 2

1 2  4

Where i1 and i2 represent two individuals, D refers 
to the distance between the two individuals, and e1 and e1  
are vectors of selected feature sets (expression levels of 
selected genes) of the two individuals.

Validation method

Independent dataset test, subsampling test, and 
jackknife test are three validation methods that are often 
used in statistical model validation. Comparing to other 
two validation methods jackknife test is better at avoiding 
the arbitrariness that exists in the independent dataset and 
subsampling test [40, 42, 43]. In jackknife test, both the 
training dataset and testing dataset are open. Each sample 
will be in turn moved between the training dataset and 
testing dataset.

The prediction accuracy was formulated as:

Accuracy = TP +TN
TP +TN +Fp + FN  5

Where TP represents the number of true positives, 
TN represents the number of true negatives, FP represents 
the number of false positives, and FN represents the 
number of false negatives.

Graphics approach and shortest paths tracing

The initial weighted PPIs network was retrieved 
from STRING(version 10) [14], and  used to constructed a 
graph G(V,E) . The database contains known and predicted 
protein interactions, which provides intuitive insights and 
overall structure properties to study complex biological 
systems. Based on the PPIs network, we used Dijkstra’s 
algorithm [15] to identify the shortest path between any 
pair of proteins that were identified by mRMR-IFS. The 
visualization of subnetwork with the shortest paths was 
done by Cytoscape [44].

Permutation test

To test whether the 40 shortest path genes were hubs 
in the background network, we conducted a permutation 
test. Occurrences of the 40 proteins were counted up in 
the shortest paths between randomly selected 8 proteins 
when they had higher betweenness than that of shortest 

path genes. This process was repeated 1000 times. The 
p-value was calculated as the proportion of the occurrence 
times of the 40 proteins in 1000 permutations. Shortest 
path genes with a p-value below 0.05 were considered as 
significant pancreatic cancer related in this study.

Pathway enrichment analysis

We used the functional annotation tool DAVID 
[45] for KEGG pathway enrichment and GO functional 
enrichment analysis. Significant functional modules were 
selected with a corrected p-value < 0.05.

CONCLUSIONS

In this study, we implemented a minimum-redundancy-
maximum-relevance (mRMR) based transcriptional profile 
study to present a comprehensive view of the features in 
pancreatic cancer. We identified NHS, SCML2, LAMC2, 
S100P, COL17A1, AMIGO2, PTPRR, KPNA7 and KCNN4 
as closely related genes to the disease. Some of them had 
been validated in vitro and/or in vivo. From the functional 
analysis of PPIs network, RNA polymerase II and growth 
factor function showed importance to this disease. In 
conclusion, our method provided solid and novel insights to 
this mortal disease, suggesting several genes and functions 
that worth further investigations.
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