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PAFc, a Key Player in MLL-rearranged Leukemogenesis
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AbstrAct:
Recent studies identified an interaction between the Polymerase Associated 
Factor complex (PAFc) and Mixed Lineage Leukemia (MLL), including MLL-
rearranged oncoproteins. This interaction is critical for MLL transcriptional activity 
and MLL-rearranged leukemogenesis. Here, we discuss the potential molecular 
role of the PAFc in transcriptional dysregulation of MLL target genes and the 
interplay between PAFc and MLL-rearranged oncoproteins in leukemogenesis.

INtrODUctION

The mixed lineage leukemia gene MLL, the human 
homolog of the Drosophila trithorax gene, encodes 
a histone H3 lysine 4 (H3K4) methyltransferase that 
positively regulates multiple homeobox transcription 
factors, including Hoxa9 and MEIS1, which are pivotal 
for leukemogenesis [1]. MLL rearrangements that 
generate MLL-rearranged oncoproteins are associated 
with a variety of acute lymphoid and myeloid leukemias 
that have a dismal prognosis [2]. To date, more than 
50 different translocation fusion partners have been 
identified, among which the most common are nuclear 
proteins with transcriptional activating activity [2]. In 
acute lymphoblastic leukemias (ALL), the most common 
translocations are t(11;19) and t(4;11), resulting in the 
fusion proteins MLL-ENL and MLL-AF4, respectively. In 
contrast, the t(9;11) translocation, resulting in the MLL-
AF9 fusion protein, is more frequently found in acute 
myeloid leukemias (AML). In addition to the nuclear 
translocation partners, another class of MLL fusion 
partners consists of cytoplasmic proteins that contain 
dimerization domains, such as AF6. Dimerization of 
these MLL fusion proteins leads to potent transcriptional 
activation and is essential for their leukemogenic 
capacity; however, the detailed leukemogenic mechanism 
remains elusive [3, 4]. MLL-related translocations are also 
commonly observed in secondary acute leukemias after 
topoisomerase inhibitor treatment [5]. In addition, around 
8% of AML patients with normal cytogenetics harbor 
internal tandem duplications of partial MLL N-terminal 
sequence, known as MLL-PTD (Fig. 1). Overall, genetic 
lesions in the MLL gene are associated with more than 

80% infant leukemias and approximately 10% adult 
leukemias [2]. 

MLL is a ubiquitously expressed multi-domain 
protein required that has been shown to be essential for 
the survival of hematopoietic stem and progenitor cell 
populations [2]. Although multiple featured domains are 
present throughout the wild-type MLL protein, only the 
N-terminus containing the Menin interaction domain, 
AT-hooks and CxxC-RD2 domain (up to the break point 
region) is invariably retained in all MLL-rearranged Figure 1
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Figure 1: schematic of wild-type MLL and MLL-
rearranged oncoproteins. Major functional domains and the 
proteolytic cleavage site of wild-type MLL are indicated. MLL 
fusion proteins consist of the N-terminus of wild-type MLL (up 
to the breakpoint region) fused in frame with a translocation 
partner (either a nuclear protein, such as ENL, AF4 and AF9, or 
a cytoplasmic protein, such as AF6). MLL-PTD is generated by 
exon duplication of the sequences encoding the N-terminus of 
wild-type MLL at the breakpoint region [32]. 
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oncoproteins, whereas the Plant Homeodomain (PHD) 
and the SET domain, which is required for the histone 
methyltransferase activity, are consistently deleted 
(Fig. 1) [6]. Menin, a tumor suppressor encoded by the 
MEN1 gene, has been shown to directly interact with 
the extreme N-terminus of MLL, and this interaction is 
essential for MLL-rearranged leukemogenesis [6, 7]. A 
previous study has demonstrated that this interaction also 
involves a chromatin-associated protein, LEDGF (lens 
epithelium-derived growth factor) [8]. The CxxC domain 
selectively binds unmethylated CpG DNA sequence and 
aids in the localization of MLL fusion proteins to the 
target loci, protecting the corresponding regions against 
DNA methylation [9]. However, the role of the CxxC-
RD2 region, particularly the RD2 region immediately N 
terminal to the breakpoint region, in the cellular activities 
of wild-type MLL or MLL fusion proteins remains 
elusive. The importance of this region is highlighted by 
recent work by Bach et al. who clearly demonstrated that 
the DNA-binding affinity alone does not fully account for 
the indispensible role of this region in leukemogenesis, 
indicating the presence of uncharacterized activities/
interactions critical for MLL-rearranged leukemogenesis 
[10]. 

Our recent study, as well as the work from Milne 
et al., helps to clarify the role of the CxxC-RD2 region 
in MLL-rearranged leukemogenesis. Using mass 
spectrometry, we found that the Polymerase Associated 
Factor complex (PAFc) interacts with this region and that 
this interaction is critical for MLL transcriptional activity 
as well as leukemogenesis [11, 12]. PAFc is a multi-protein 
complex, with the core components of PAF1, LEO1, 
CDC73, CTR9 and WDR61 [13-16]. Increasing evidence 
has revealed that PAFc plays important roles in a wide 
range of biological processes, including the initiation, 
elongation and termination of gene transcription, cell cycle 
regulation, mRNA processing, H2B monoubiquitination, 
H3K4 methylation and H3K79 methylation [17-19]. In 
addition, several components of PAFc are known to play 
important roles in cancer biology. For instance, PAF1 is 
shown to be upregulated or amplified in prostate cancer, 
whereas CDC73 has been associated with multiple types 
of human cancers, such as breast, renal and gastric cancer, 
as well as the hyperparathyroidism-jaw tumor syndrome 
[16, 17]. Previous studies have demonstrated that the yeast 
PAF complex is required for the recruitment of the yeast 
Set1 methyltransferase complex, termed COMPASS, to 
RNA polymerase II; the interaction is also indispensible 
for both COMPASS mediated histone H3K4 and Dot1L 
mediated H3K79 methylation [14, 20]. Given these 
results, it seemed to be likely that the MLL complex, the 
human homolog of COMPASS, is also physiologically 
and functionally associated with PAFc. Indeed, by mass 
spectrum analysis, we demonstrated that PAFc interacts 
with the CxxC-RD2 region of MLL, a region that is always 
retained in MLL-rearranged oncoproteins. Detailed 

mapping revealed two interaction sites flanking the CxxC 
domain with two individual components of PAFc. Most 
importantly, we were able to show that the PAFc-MLL 
interaction enhances the transcriptional activation by 
MLL-AF9 and plays an indispensible role in MLL-AF9 
mediated transformation [11].

Characterization of the PAFc-MLL interaction 
provides valuable insight into the mechanisms of MLL-
rearranged leukemogenesis. The best defined target 
genes of MLL are the clustered homeobox (Hox) 
genes, a transcription factor family important in cell 
fate determination during development. Among these 
targets, Hoxa9 and its cofactor Meis1 have been shown 
to be crucial for MLL-rearranged leukemogenesis. 
Normally, Hoxa9 and Meis1 are only briefly expressed in 
hematopoietic stem cell and progenitor cell populations 
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Figure 2: schematic of a potential mechanism of MLL-
rearranged leukemogenesis. (A) In the absence of PAFc, 
RNA polymerase II (RNAPII) elongation is inhibited by the 
negative elongation factor (NELF) in collaboration with the 
DRB sensitivity-inducing factor DSIF. (B) DSIF recruits PAFc 
that directly interacts with the E1/E2 ubiquitin ligase complex 
BRE1/RAD6, resulting in histone H2B monoubiquitination. 
Recruitment of positive transcription elongation factor b 
(P-TEFb) blocks the negative actions of NELF and DSIF by 
P-TEFb-dependent phosphorylation of RNAP II CTD and 
DSIF, priming the target promoter for transcription elongation 
(C) The interaction between PAFc and the most common MLL-
rearranged oncoproteins (represented by MLL-AF9) recruits the 
ENL-associated proteins (EAPs) that include multiple common 
MLL translocation partners, DOT1L and P-TEFb to the target 
loci, promoting H2B monoubiquitination (  ), H3K4 methylation 
(  ) and H3K79 methylation (  ), resulting in constitutively 
activated transcription. 
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and are then rapidly down regulated during hematopoietic 
differentiation [21-23]. However, in the presence of MLL-
rearranged oncoproteins, both remain expressed at high 
levels, which accounts for their leukemogenic capacity. 
Although many interaction partners of MLL-rearranged 
proteins have been identified and shown to be important 
in leukemogenesis, it remains unclear what are the exact 
molecular mechanisms responsible for the dysregulation 
of the expression of these target genes. 

Aside from our identification of the PAFc-MLL 
interaction, several lines of evidence also indicate the 
direct role of PAFc in Hox gene dysregulation in MLL-
rearranged leukemias. First, increasing evidence suggests 
that a significant mechanism for Hox gene expression is 
mediated through regulating transcriptional elongation 
[24], a process in which PAFc has been known to play 
a key regulatory role [16]. Second, we observed a 
significant dose-dependent transcriptional activation of the 
Hoxa9 promoter induced by MLL-AF9 overexpression, 
whereas wild-type MLL overexpression only delivered 
a somewhat more muted response, suggesting the 
differential roles of PAFc in cellular activities of MLL-
rearranged oncoproteins vs. wild-type MLL. Third, a 
previous study by Chen et al. has demonstrated that the 
susceptibility of hematopoietic progenitors to MLL-AF9-
induced transformation decreases along differentiation 
[25], consistent with the decreasing PAFc expression 
along hematopoietic differentiation shown by our work 
and others [11, 26]. Based on these findings, a potential 
mechanism for MLL-rearranged leukemogenesis is that 
by interacting with PAFc, MLL-rearranged oncoproteins 
are able to stably engage the basic transcription 
elongation machinery at target loci, such as Hoxa9 and 
Meis1, to constitutively activate transcription, leading 
to leukemogenesis. Therefore, PAFc may be a crucial 
component mediating the dysregulation of normal 
transcription elongation of MLL target genes by MLL-
rearranged oncoproteins (Fig. 2). 

Under normal conditions, Hoxa9 is expressed in 
primitive hematopoietic cells, playing a significant role 
in early hematopoiesis [27, 28]. During hematopoietic 
differentiation, Hoxa9 expression is rapidly silenced, 
likely by pausing transcription elongation, an important 
mechanism regulating hox gene expression in Drosophila 
[24, 29]. In this case, although RNA polymerase II (RNAP 
II) still localizes at the promoter region, its C-terminal 
domain (CTD) is unphosphorylated, and transcription 
elongation is inhibited by the negative elongation factor 
(NELF) in collaboration with the DRB sensitivity-inducing 
factor (DSIF) (Fig. 2A). DSIF recruits PAFc that directly 
interacts with the E1/E2 ubiquitin ligase complex BRE1/
RAD6, resulting in histone H2B monoubiquitination. 
Meanwhile, the recruitment of positive transcription 
elongation factor b (P-TEFb) reverts the negative actions 
of NELF and DSIF by P-TEFb-dependent phosphorylation 
of RNAP II CTD and DSIF [16]. Thus, in the presence 

of PAFc, the target gene promoter region can progress to 
the active elongation stage (Fig. 2B). It is worth noting 
that this status is probably a temporary transition stage, 
dynamically regulated by cell-specific mechanisms, 
such as the abundance of PAFc, the binding affinity of 
other transcription elongation machinery components 
determined by the phosphorylation level of RNAP II CTD, 
the recruitment of histone methyltransferases, such as 
wild-type MLL and DOT1L, exerting H3K4 and H3K79 
methylation, respectively, and the regulation of their 
enzymatic activities. For instance, in hematopoietic stem 
cells and early-stage progenitor cells, PAFc is expressed 
at a high level; therefore, this temporary transition status 
is more likely to progress into a fully active elongation 
stage, which in turn leads to the Hox gene expression. In 
contrast, in the differentiated cells, PAFc downregulation 
may revert this transition status back to the inactive 
transcription stage, silencing the Hox gene expression. 
The dynamics of the multiple regulatory mechanisms is 
likely to be disrupted by MLL-rearranged oncoproteins, 
such as MLL-AF9. 

The most common MLL-rearranged oncoproteins, 
including MLL-AF9, MLL-ENL and MLL-AF4, are 
known to interact with a protein complex termed ENL-
associated proteins (EAP) or a closely related complex 
called AEP for AF4 family/ENL family/P-TEFb complex 
[11]. By interacting with PAFc, these MLL-rearranged 
oncoproteins recruits EAP that includes DOT1L, P-TEFb 
and multiple common MLL translocation partners to 
the target loci, promoting H3K79 methylation, resulting 
in dysregulated constitutively active gene expression 
(Fig. 2C). In addition, wild-type MLL has recently 
been shown to synergize with MLL-AF9, which 
furthering increases the H3K4 methylation level, and 
presumably contributing to target gene transcription 
[30]. Notably, in the study by Chen et al., the authors 
showed that LSK (Lin-Sca1+C-kit+) stem cells, but not 
the more differentiated committed granulocyte-monocyte 
progenitors (GMPs), can be transformed by MLL-
AF9 under endogenous regulatory control, suggesting 
that under physiological conditions, additional linage-
specific transcription factor(s) or coactivators(s), other 
than the MLL-rearranged oncoproteins are critical for 
leukemogenesis [25]. Given the downregulation of PAFc 
during hematopoietic differentiation, it is possible that 
PAFc at least partially accounts for the susceptibility of 
different progenitor populations to MLL fusion protein 
induced leukemogenesis. 

A number of questions remain regarding the 
mechanism of the PAFc-MLL interaction in MLL-
rearranged leukemogenesis. First, apart from the most 
common MLL translocations resulting in MLL fusion 
proteins with a nuclear translocation partner, MLL fusion 
proteins with cytoplasmic partners and MLL-PTD have 
not been extensively studied. Therefore, the leukemogenic 
mechanisms of MLL-PTD and MLL-rearranged 
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oncoproteins with a cytoplasmic partner, both of which 
in effect involve duplication of the N-terminus of MLL 
(up to the breakpoint region) by either intramolecular 
partial tandem duplication or intermolecular dimerization, 
are unknown [31]. Given the pivotal role of PAFc in 
MLL-rearranged leukemogenesis, it will be important to 
determine if either of these two types of MLL-rearranged 
oncoproteins involves enhanced physical or functional 
interaction with PAFc. Second, it is still unclear how, 
and to what extent, PAFc plays differential roles in the 
cellular activities of MLL-rearranged oncoproteins vs. 
wild-type MLL. It will be important to determine if 
such a therapeutic window exists for targeting PAFc, for 
example, through targeting MLL-PAFc interaction with 
small molecule inhibitors, which could be used as a new 
therapy for MLL-rearranged leukemias. 
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