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ABSTRACT
Growing evidence has raised the important roles of adipocytes as an active player 

in the tumor microenvironment. In many tumors adipocytes are in close contact with 
cancer cells. They secrete various factors that can mediate local and systemic effects. 
The adipocyte-cancer cell crosstalk leads to phenotypical and functional changes of 
both cell types, which can further enhance tumor progression. Moreover, obesity, 
which is associated with an increase in adipose mass and an alteration of adipose 
tissue, has been established as a risk factor for cancer incidence and cancer-related 
mortality. In this review, we summarize the mechanisms of the adipocyte-cancer cell 
crosstalk in both obese and lean conditions as well as its impact on cancer cell growth, 
local invasion, metastatic spread and resistance to treatments. Better characterization 
of cancer-associated adipocytes and the key molecular events in the adipocyte-cancer 
cell crosstalk will provide insights into tumor biology and suggest efficient therapeutic 
opportunities.

INTRODUCTION

Adipose tissue (AT) is one of the main components 
of the human body. Imaging methods, including computed 
tomography, magnetic resonance imaging and ultrasound, 
have allowed the quantification of adipose tissue. The 
latter was estimated to represent 18–25% of the body 
mass in a reference man, 25–31% in a reference woman, 
and higher percentage in overweight people [1]. Based 
on its biological functions, AT can be classified into 
two main types: white adipose tissue (WAT) localized 
subcutaneously, surrounding visceral organs or in the 
breast in females (mammary adipose tissue or MAT) 
[2] and brown adipose tissue (BAT) in paracervical and 
supraclavicular regions [3–5]. While WAT is specialized 
in storing energy and is an important endocrine organ 
involved mainly in the control of weight regulation, 
the BAT is the main tissue regulating thermogenesis in 
response to food intake and cold. A new type of adipocytes 

has been recently described, referred to as the brite, also 
called beige, adipocytes. Beige adipocytes share some 
common features with brown adipocytes, such as the 
expression of mitochondrial uncoupling protein 1 (UCP1) 
despite the fact that they reside in WAT, predominantly 
in subcutaneous WAT [6]. Finally, several « non typical » 
AT have been described such as the one included in the 
bone marrow. Bone marrow adipocytes (BM-Ad) possess 
unique profiles and have been proposed to exhibit features 
of beige or brown-like adipocytes [7–9].

WAT, which is the main focus of this review, 
is highly complex in terms of cellular composition, 
including mature adipocytes, pre-adipocytes, fibroblasts, 
pericytes, endothelial cells, and immune cells. Although 
adipocytes were estimated to account for only 14–24% of 
the adipose tissue cell populations [10, 11], due to their 
large size, adipocytes are still considered as the major 
component of AT. For a long time, adipocytes from WAT 
were viewed as a simple passive energy storage depot. 
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However, since the discovery of leptin in 1994, the role 
of adipocytes has evolved into an active source of various 
paracrine and endocrine factors. These adipocyte-secreted 
factors constitute a group of molecules named adipokines, 
including common growth factors, hormones, cytokines, 
chemokines, and also specific factors such as leptin, 
adiponectin. To date, more than 400 factors have been 
reported to be released by adipocytes, and this number 
is still increasing [12]. These adipocyte-derived factors, 
acting locally or systemically, could play important roles in 
the growth, local invasion, metastatic spread and resistance 
to treatments of different types of cancer. Studying the role 
of adipocytes in cancer occurrence or progression is of 
major clinical interest due to the established link between 
obesity and cancer. Obesity is a pathological condition 
accompanied by an excessive fat deposition and is often 
estimated through the measure of body mass index (BMI) 
(weight in kg / height in m²). It is due to an imbalance 
between dietary energy intake and energy output [13]. The 
excessive energy intake in obese people is stored mainly 
in adipose tissue that increases in mass. The expansion 
of adipose tissue is essentially due to an increase in 
adipocyte volume (hypertrophy) and to a lesser extent to 
an increase in adipocyte cell number (hyperplasia) [14, 15]. 
Importantly, obesity is not only related to an increase in 
adipose quantity, but also an alteration of adipose quality. 
Obese adipose tissue has been characterized as being in 
a chronic inflammation state, with remodeling of local 
adipose tissue and dysregulation of secreted adipokines 
[16]. In addition to cardiovascular disease and type 
2 diabetes mellitus, overweight and obesity are now 
established risk factors for cancer and cancer-related 
mortality. Excess body weight increases incidence of 
several types of cancer including, among the most frequent, 
oesophageal adenocarcinoma, colorectal, endometrial and 
post-menopausal breast cancer. Obesity also portends 
worse cancer-specific outcomes after diagnosis in several 
tumor types including those of the breast (independently 
of menopausal status), oesophagus, colon, prostate and 
others [17, 18]. This relationship has major consequences 
in public health since the prevalence of overweight and 
obesity has been increasing worldwide over the past 
decades and reaches alarming proportions. According 
to the World Health Organization (WHO), worldwide 
obesity has more than doubled since 1980 and in 2014, 
more than 1.9 billion adults were overweight and of these 
over 600 million were obese. It has been estimated that by 
2025, global obesity prevalence will continue to increase, 
reaching 18% in men and more than 21% in women [19].

The precise mechanisms underlying the obesity–
cancer link are not yet well understood. However, it is 
tempting to speculate that, within a context of obesity, 
adipocytes, due to their dysfunctional state, could be more 
prone to contribute to a favorable environment for the 
development of tumor cells. This review will summarize 
the impact of mature adipocytes on the biological 

characteristics of cancer cells. We will focus on adipocytes 
from WAT, referred as adipocytes in this review, since they 
are the most documented. However, the emerging role 
of BM-Ad on cancer will be also highlighted across the 
review. The crosstalk between adipocytes and cancer cells 
will be detailed in both lean and obese conditions, and its 
potential therapeutic implication for cancer treatment will 
be discussed. Due to space limitations, the role of other 
cellular components of AT in cancer progression will not 
be discussed. However, very interesting results have been 
obtained with adipose progenitors whose implication in 
tumor progression has been highlighted for example in a 
recent review on breast cancer [20]. Besides, the impact 
of obesity-related metabolic disorders on cancer, such 
as hyperinsulinemia and insulin resistance, has been 
reviewed elsewhere [17, 21]. Moreover, the modification 
of the immune environment (including the recruitment 
of pro-inflammatory macrophages) arising in AT during 
obesity is also probably very important in terms of cancer 
progression. Readers interested in these aspects could refer 
to recent reviews [22, 23].

Adipocytes and cancer cells: close neighbours 

Regarding the role of AT in cancer progression, 
local tissue-specific effects must be viewed with particular 
attention. Due to the distribution of AT in different organs, 
adipocytes are in close contact with cancer cells in many 
solid tumors during tumor growth, local invasion or bone 
metastasis as well as in hematological malignancies. The 
most prominent example of this proximity is in breast. 
Structurally, a normal breast is composed of an epithelial 
compartment (mammary gland) embedded in a stroma 
referred to as the mammary fat pad. Unlike murine 
mammary fat pad which is mainly composed of adipocytes, 
the human mammary fat pad is also enriched in connective 
tissue [24]. Therefore, while murine mammary epithelium 
is directly adjacent to adipocytes, human mammary 
epithelium is separated from adipocytes by a fibrous layer. 
However, in certain situations such as mammary involution 
or tumor invasion, the mammary extracellular matrix is 
remodeled, resulting in a direct contact between epithelial 
cells and adipocytes [25]. Similarly, the vicinity between 
adipocytes and cancer cells has also been observed in 
invasive melanoma, prostate, colon and ovarian cancers 
[26–28]. Furthermore, it is worth noting that the bone 
marrow is a niche for hematological malignancies and 
a metastatic site of many cancers, such as breast and 
prostate. Adipocytes constitute a major component of the 
bone marrow stroma [8, 9] and importantly, the adipose 
mass is increased with obesity and aging which could have 
an impact on cancer development in obese and/or elderly 
patients [29, 30].

As a consequence of the close localization between 
adipocytes and invasive cancer cells, adipocytes in the 
vicinity of cancer cells display profound phenotypic and 
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functional alterations. Histological images of solid tumors 
consistently showed a decrease in both cell number and cell 
size of adipocytes located at the invasive front compared 
to adipocytes distant from the tumor [28, 31]. Moreover, 
at the tumor center, there is an increase in the ratio of 
fibroblast-like cells [32], suggesting a “dedifferentiation” 
of adipocytes induced by cancer cells. We have shown 
that these phenotypical changes can be reproduced  
in vitro using a co-culture system where the two populations 
are separated by an insert. Co-culture of adipocytes with 
cancer cells for 3 to 5 days lead to adipocyte delipidation 
and decreased expression of adipocyte markers such as Ap2 
(FABP4), adiponectin, and hormone-sensitive lipase [31]. 
Additionally, co-cultured adipocytes displayed modifications 
of their secretome, notably an upregulation of osteopontin, 
matrix metalloproteinase 11 and inflammatory cytokines 
such as TNFa, IL-6 and IL-1β [31, 33]. Such an activated 
phenotype has been confirmed in vivo at the invasive front 
of human breast tumors [31, 34] (Figure 1). Together, 
these in vitro and in vivo data indicate that adipocytes are 
modified by cancer cells to acquire characteristics different 
from those of naive adipocytes. We named them cancer-
associated adipocytes (CAAs) [35]. Moreover, upon 
prolonged exposure to tumor cells, mature adipocytes 
completely lose their lipid content and exhibit fibroblast-
like morphology highlighting that they contribute to the 
cancer-associated fibroblast population [36], which are 
known to further enhance tumor progression and metastasis 
[37]. In fact, in all tumors growing in an adipose tissue-
dominated microenvironment (gastric, breast, colon, renal, 
prostate and ovarian cancers and melanoma), it is now 
admitted that when the tumor invades the surrounding AT, 
adipocytes disappear, fibroblast-like cells accumulate, and 
a desmoplastic stroma ensues (for review see [38]). Similar 

lipid loss has been observed in vitro when BM-Ad (obtained 
from ex vivo differentiation of bone marrow mesenchymal 
stem cells) are cocultured with prostate cancer cells [39], 
suggesting that CAAs might also occurs at bone metastatic 
sites. The origin of these phenotypic and functional 
alterations in adipocytes is only partially characterized. In 
breast cancer, we have demonstrated that occurrence of the 
CAA phenotype depends on the reactivation of the Wnt/b-
catenin pathway in response to Wnt3a secreted by tumor 
cells [36]. Thus, this crosstalk should be taken in account 
when considering the paracrine role of AT, since consistent 
results show that adipocytes are not inert actors in regards 
to their surrounding within the tumor. Since most of the 
experimental studies performed emphasize the paracrine role 
of adipocytes, we will focus on this aspect of the adipocyte/
cancer cell crosstalk. Nevertheless, AT also constitutes an 
active endocrine organ that can have far-reaching effects on 
the physiology of other tissues. To understand the endocrine 
effect of adipose tissue on cancer the reader is referred to 
reviews on that topic [40–42].

Role of mature adipocytes in cancer progression: 
effect on tumor growth, local invasion and 
metastasis

Adipocytes support tumor growth
Several studies have demonstrated the role of 

adipocytes and AT in the support and the promotion 
of tumor growth. Elliott et al. showed that murine 
mammary carcinoma cells grew better when injected in 
the mesenteric and ovarian fat pad or in the mammary 
gland than in subcutis or the peritoneal cavity. Moreover, 
co-transplantation of these cancer cells with mammary 
or ovarian fat fragments into the subcutis increased the 

Figure 1: In breast cancers, adipocytes localized at the tumor invasive front undergo decrease in size and lipid content, 
a process that can be recapitulated in vitro, in co-culture assays. (A) Histological examination of an invasive breast tumor after 
H&E staining (original magnification ×100). AD, adipose tissue; IF, invasive front (indicated by a dashed line); (C) tumor center. Note that 
at the invasive front, the size of adipocytes is reduced. (B) Mature adipocytes cocultivated in the presence (C) or absence (NC) of breast 
cancer cells were stained with oil Red O. The cocultivated adipocytes exhibit a decrease in the number and size of lipid droplets.
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tumor growth [43]. Manabe and colleagues showed that 
mature rat adipocytes, but not rat pre-adipocytes, increased 
tumor growth of estrogen receptor-positive (ER+) breast 
carcinoma cell lines [44]. More recently, Nieman et al. 
showed that co-culture of human adipocytes with ovarian 
cancer cells promoted cancer cell growth both in vitro and 
in vivo [28]. A similar effect of promoting tumor growth 
by adipocytes has been observed in prostate cancer, colon 
cancer and melanoma in vitro [45–48]. Emerging studies 
suggest that the growth promoting-effect of adipocytes is 
also observed at bone metastatic sites with an increase in 
bone tumor burden after intratibial injection of prostate 
cancer and melanoma cells in high fat diet-induced obese 
mice [39, 49]. Despite the evidence that adipocytes could 
promote tumor growth, the relationship between tumor 
growth and adipocytes might be more complex than that 
initially thought. For example, we have shown that some 
breast tumor cell lines co-cultivated with adipocytes 
exhibit increased proliferation, but this was not a general 
effect in contrast to the effect on invasion [31]. Similar 
results were obtained with prostate and melanoma cell lines 
([50], Muller et al., unpublished results). Interestingly, a 
recent work performed in vivo in a large number of breast 
tumors (around 1000) showed that estrogen receptor-
negative breast tumors at the close proximity of adipose 
tissue exhibited significantly lower mitotic index when 
compared with that of the tumor cells on the gland side 
[51]. In association to our in vitro results, these compelling 
results emphasize that the effect of adipocytes on tumor 
cell proliferation might be more complex than initially 
thought and depend on the tumor model used. This aspect 
will clearly need additional studies. Nevertheless, since 
a growth-promoting effect has been largely reported 
in several models, the mechanisms involved in this 
phenomenon will be described in the following paragraph.

Adipocytes secrete adipokines promoting tumor 
growth

Many tumor cells express receptors for the 
adipokines secreted by adipocytes, which can affect tumor 
growth. These adipocyte-derived factors include mainly 
leptin, adiponectin, estrogen, insulin-like growth factor 1 
(IGF-1) and hepatocyte growth factor (HGF).

Leptin and adiponectin

The role of leptin in tumorigenesis was suggested 
by the high expression of the leptin receptor (ObR) in 
several cancer cells, such as breast, stomach, colon, 
ovarian cancers and leukemia [52–56]. In addition, the 
fact that leptin secretion is clearly up-regulated in obesity 
contributes to generate significant interest around this 
adipokine [57]. In vitro studies using recombinant leptin 
showed its ability to increase cancer cell proliferation 
via the activation of ERK1/2 and c-Jun NH2-terminal 

kinase (JNK) pathways [58]. Amemori et al. showed 
in a three dimensional collagen gel culture system, that 
adipocytes from wild-type mice increased the proliferation 
of colon cancer cells and that this effect was abolished 
in adipocytes from ob/ob mice deficient for leptin [47]. 
These results indicate that leptin enhances tumor cell 
growth in vitro. However, the in vivo role of leptin in 
tumorigenesis remains controversial. While ob/ob mice 
displayed decreased growth of colorectal and mammary 
tumors [59, 60], increased tumor growth was observed 
in prostate tumors [61]. Additionally, Aparicio et al. 
showed that leptin induced growth of colon cancer cells in 
vitro but not in nude mice and in ApcMin/+ mice that were 
susceptible to spontaneous intestinal adenoma formation 
[62]. These apparent contradictory observations of tumor 
growth in vivo could be partly explained by the concurrent 
local and systemic effects of leptin on adjacent tumor cells 
and immune cells, respectively. Indeed, leptin was also 
shown to be important in development and cytotoxicity of 
immune cells [63, 64].

On the other hand, a number of human cancers 
were observed to express high levels of the adiponectin 
receptors (AdipoR1 and AdipoR2) [65–68], an adipokine 
whose secretion is down-regulated in obesity [69]. In 
vitro exposure of cancer cells to adiponectin inhibited 
proliferation and induced apoptosis in different cancer cell 
lines, such as breast, liver, colon, stomach and endometrium 
[65, 70–74]. In vivo, adiponectin reduced tumorigenesis 
of many cancer cells [72, 73, 75, 76], and adiponectin 
deficiency promoted tumor growth [77, 78]. The growth 
inhibition of adiponectin in cancer cells was shown to be 
mediated through activation of AMPK, inhibition of PI3K/
Akt and ERK1/2 pathways, down-regulation of leptin-
induced STAT3 phosphorylation, inhibition of NF-κB and 
Wnt/β-catenin pathways, and decrease of ROS production 
[79]. Thus, adiponectin mediates effects on tumor growth 
opposite to those of leptin.

Since both adipokines are secreted by adipocytes and 
present in the blood, the leptin:adiponectin ratio may be a 
major factor influencing tumor growth. It is worth noting 
that in obese patients, plasma concentration of leptin is 
increased, while that of adiponectin is decreased [57, 69]. 
Clinical studies have indicated a positive correlation 
between a high leptin:adiponectin ratio and an increased 
risk of postmenopausal breast [80, 81], colorectal [82] and 
endometrial cancers [83]. Interestingly, cancer-associated 
adipocytes displayed decreased expression of adiponectin 
[31], suggesting a hijacking of adipocytes by cancer cells 
to promote tumor growth.

Insulin-like growth factor 1

High levels of circulating IGF-1 have been 
correlated with increased risk in many cancers, including 
premenopausal breast, prostate, lung and colorectal 
cancers [84]. Tumor cells were shown to express IGF-1R, 
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and binding of IGF-1R to its ligand promotes cell growth 
and survival through activation of PI3K/Akt and MAPK 
pathways [84, 85]. Adipocytes were shown to secrete IGF-1,  
and obesity is associated with increased levels of IGF-1 
[86]. Interestingly, inhibition of IGF-IR kinase activity 
prevented the growth-promoting effect of adipocytes on 
breast cancer cells [87].

Hepatocyte growth factor

Hepatocyte growth factor (HGF) was shown to be 
secreted by human adipocytes and the production of HGF 
by adipocytes contributed to its elevated serum level 
in obesity [88]. In parallel, the HGF receptor (c-Met) 
was found to be expressed in breast and ovarian cancers 
[89, 90]. Interestingly, it was observed that in breast 
cancer samples, c-Met expression was increased at the 
adipocyte-tumor interface [91]. This expression pattern 
suggests a paracrine interaction between adipocytes and 
tumor cells. Rahimi et al. showed that HGF promoted 
proliferation of murine breast carcinoma SP1 cells [92]. 
Moreover, neutralization of HGF in the conditioned 
medium from murine 3T3-L1 adipocytes suppressed the 
adipocyte-induced proliferation of SP1 cells [92]. In vivo, 
overexpressing HGF in different tissues in mice resulted in 
tumorigenesis of those tissues [93]. Interestingly, a recent 
study by Sundaram in obese mice showed that weight loss 
reversed obesity-induced HGF/c-Met pathway and basal-
like breast cancer progression [94].

Estrogen

Estrogen receptors are expressed by cancer cells in 
breast and ovarian cancers [95]. Estrogen plays a crucial 
role in the promotion of growth in hormone-dependent 
cancers [96]. Although AT is a major source of estrogen, 
adipose stromal cells but not mature adipocytes were 
shown to express aromatase, the key enzyme in estrogen 
production [97, 98]. Interestingly, aromatase expression in 
stromal cells is induced by tumor cells via the secretion 
of PGE2 [99, 100]. Since CAAs were shown to acquire 
fibroblast-like characteristics [36], one might hypothesize 
that these adipocyte-derived fibroblasts could also produce 
estrogen and contribute to tumor growth. Importantly, 
in case of obesity, adipocytes can indirectly induce the 
expression of aromatase in breast cancer cells and AT via 
the recruitment of macrophages. Recent studies by Arendt 
et al. demonstrated that obese adipocytes secrete CCL2 
and IL-1β which lead to the accumulation of macrophages 
surrounding dead adipocytes, forming crown-like 
structures [101]. Exposure of M1 macrophages to saturated 
fatty acids released as a result of obesity-associated 
lipolysis leads to the secretion of proinflammatory 
mediators, including PGE2, TNF-α, IL-1β, and IL-6. These 
molecules upregulate the expression of CYP19, the gene 
encoding estrogen synthase aromatase in adipose tissue 

and breast cancer epithelium, causing estrogen production 
and contributing to obesity-associated breast cancer [102].

Other adipokines

IL-6 has been shown to promote tumor growth 
in different types of cancer [103]. Although IL-6 
could be secreted by a various sources in the tumor 
microenvironment, including tumor cells, tumor-infiltrating 
macrophages, T cells, we and others have shown that IL-6 
is highly secreted in CAA [28, 31]. Recently, Chen et al. 
demonstrated that marrow adipocytes in the vicinity of the 
tumor cells expressed high levels of IL-6, and blockade 
of IL-6 by neutralizing antibody blocked tumor growth 
of melanoma cells [49]. Intriguingly, the antitumor effect 
of anti-IL-6 antibody was only observed in high fat diet-
induced obese mice but not in mice with normal diet [49]. 
This data underlines the importance of a pro-inflammatory 
microenvironment in obese conditions that could enhance 
tumor growth.

Resistin is another adipokine that has been linked to 
promoting tumor growth. Kim et al. showed that resistin 
induced prostate cancer cell proliferation through PI3K/
Akt pathway [104]. In another study, Deshmukh et al. 
showed that resistin promotes growth and aggressiveness 
of breast cancer cells through STAT3 activation [105]. 
Adenylyl cyclase-associated protein 1 (CAP1) was 
identified as a functional receptor for human resistin 
to modulate inflammatory action in monocytes [106]. 
However, the expression of CAP1 or of other resistin 
receptors and their intracellular signaling pathways in 
different cancer cells remains to be determined. Circulating 
levels of resistin are increased in obesity [107], and 
epidemiological studies suggested a link between resistin 
levels and cancer risk [108].

Overall, above is a non-exhausted list of adipokines 
that could impact on tumor growth. It is worth noting 
that although the secretion of these adipokines is inherent 
property of adipocytes, it is strongly modulated along the 
acquisition of fibroblastic-like characteristics of CAA. 
While adipocyte terminal markers such as adiponectin, 
leptin and resistin are decreased in CAA, inflammatory 
cytokines such as IL-6 are increased. Further studies are 
required to better understand their individual contributions 
and their cooperation in tumor progression in the context 
of the tumor microenvironment, as well as the modulation 
of their corresponding receptors during tumor progression 
in different types of cancer. 

Adipocytes promote angiogenesis

Angiogenesis, the process of new blood vessel 
formation, plays a critical role in tumor expansion [109]. 
Blood vessels supply oxygen, nutrients, and growth 
factors from the plasma to tumor cells. In parallel, 
increase of adipose mass, in particular in obesity, is also 
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associated with angiogenesis. This process is tightly 
regulated by tumor cells and stromal cells in the tumor 
microenvironment. It has been shown that adipocytes 
actively participate in angiogenic modulation through the 
secretion of adipokines [110, 111]. Classical angiogenic 
factors, such as vascular endothelial growth factor A 
(VEGFA), are produced by adipocytes in response to 
insulin [112]. Moreover, leptin could directly promote 
proliferation and angiogenic differentiation of endothelial 
cells which express leptin receptor [113]. Importantly, 
leptin was shown to upregulate VEGF in breast cancer 
via HIF-1 and NFκB; thus it could confer an additional 
advantage to tumors under hypoxic conditions [114]. Other 
adipokines, such as resistin, angiopoetin, and HGF also 
promote angiogenesis in vitro and in vivo [111, 115–118]. 
By contrast, the role of adiponectin in angiogenesis is 
debatable. While some studies showed that adiponectin 
may be pro-angiogenesis [77, 115, 116, 119, 120], other 
studies reported an inhibition of angiogenesis both in vitro 
and in vivo [121, 122]. Besides, certain adipocyte-derived 
lipids such as monobutyrin were also shown to induce 
angiogenesis [123]. Recently, Lim et al. showed that 
inoculation in WAT and BAT of different tumor types, 
including breast, melanoma and fibrosarcoma, resulted 
in marked increased of tumor growth rate relative to 
subcutaneous implementation [124]. Tumors implemented 
in WAT or BAT displayed augmented angiogenesis, 
blood perfursion and decreased hypoxia compared to 
subcutaneous tumors [124]. Interestingly, BAT is more 
efficient to induce tumor growth than WAT. The authors 
correlated this difference to the degree of pre-existing 
vascularization in those tissues. However, the impact of the 
adipocyte-cancer cell crosstalk on angiogenesis was not 
clear in this study and requires further investigations [124].

Adipocytes provide energy to fuel tumor growth

The “Warburg effect”, in which oxidative 
phosphorylation is shifted to glycolysis to rapidly provide 
energy for tumor growth, even under normal oxygenic 
conditions, has been described in cancer cells several 
decades ago [125]. In parallel, cancer cells are capable 
of using alternative sources of energy, such as amino 
acids and lactate from the microenvironment [126, 127]. 
In 2009, Lisanti et al. proposed the “reverse Warburg 
effect”: cancer cells induce glycolysis in cancer-associated 
fibroblasts which in turn produce lactate and pyruvate for 
cancer cell metabolism and proliferation [128, 129]. This 
concept could be applied to other cells of the tumor stroma, 
notably adipocytes. These cells have been shown to release 
lactate through the monocarboxylate transporters, in 
particular under hypoxic conditions [130, 131]. However, 
several published studies demonstrated that the source of 
energy provided by adipocytes to cancer cells is lipids. As 
stated before, co-culture of adipocytes with breast cancer 
cells led to adipocyte delipidation [31]. In line with these 

data, we showed that CAAs located at the invasive front 
of breast cancer displayed smaller sizes and less lipid than 
adipocytes far from the tumors [31], an observation that 
has been largely confirmed by several groups in a wide 
range of solid tumors [25, 38, 132]. These phenotypic 
changes were initially associated with adipocyte 
“dedifferentiation” [31] but additional studies from our 
lab and others demonstrated that cancer cells also induce 
lipolysis in adipocytes [28, 133–135]. The free fatty acids 
(FFAs) liberated by adipocytes are then taken up by tumor 
cells and stored as lipid droplets to avoid lipotoxicity, both 
in vitro and in vivo [28, 48, 135]. Among FFAs, palmitic 
acid was shown to be the major FFA transferred from 
adipocytes to melanoma cells [48].

What is the fate of FFAs in cancer cells? In ovarian 
cancers, co-culture with adipocytes was associated with 
an up-regulation of the rate of fatty acid β-oxydation 
(FAO), a metabolic pathway that yields a large quantity 
of ATP [28]. At physiological levels, FAO is carried out in 
energy-demanding tissues (such as the heart and skeletal 
muscle) and recent works also brought to light a role for 
this metabolic pathway in cancer that seems to be highly 
responsive to environmental changes [136]. However, the 
involvement of this increased FAO in ATP production 
and growth-promoting effect of adipocytes has not been 
directly demonstrated in the ovarian cancer model [28]. 
In breast cancer, our most recent results demonstrated that 
increased FAO is dissociated from ATP production, this 
uncoupled FAO promoting an increase in invasion, but not 
proliferation, of cancer cells both in vitro and in vivo [135]. 
Therefore, although the lipid transfer between tumor-
surrounding adipocytes and cancer cells appears to be a 
general phenomenon, the fate of these transferred FFAs 
might be dependent on the model studied. Similar lipid 
transfer between tumor cells and BM-Ad has been shown 
in vitro [39]. In opposition to the increase in FAO observed 
at primary sites, a recent study proposed  that the crosstalk  
between prostate tumor cells and bone marrow adipocytes 
led to decreased mitochondrial oxidative phosphorylation 
in tumor cells associated to increased expression of 
glycolytic enzymes and increased lactate production via 
oxygen-independent mechanism of HIF-1α activation 
[133]. These differences suggest that the metabolic 
phenotype of tumor cells could also be dependent on the 
type of adipocytes surrounding the tumors.

What are the molecular actors that allow this 
transfer of FFAs between adipocytes and cancer cells? 
Fatty acid-binding protein 4 (FABP4) was identified as a 
key mediator in this process. In fact, FABP4 expression 
is increased in tumor cells cocultivated with adipocytes 
in vitro and in human tumors that invade AT [28]. Similar 
up-regulation of FABP4 was observed in tumor cells 
cocultivated with BM-Ad and in murine models of bone 
metastasis of prostate cancer [39]. Inhibition of FABP4 
by small molecules reduced lipid accumulation in cancer 
cells in co-culture experiments with adipocytes, and 
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Fabp4−/− mice presented significantly reduced ovarian 
tumor growth [28]. However, the factors that induce the 
first step of the crosstalk which is the initiation of lipolysis 
in adipocytes remain poorly described. Besides, it has been 
reported that exosomes derived from pancreatic cancer 
cells induce lipolysis in subcutaneous adipose tissue, 
exosomal adrenomedullin being a candidate mediator 
of this effect [137]. It remains to be determined whether 
this pathway might be operational in other tumor types. 
Besides, it is worth noting that induced lipolysis of adipose 
tissue contributes to cancer-associated cachexia [138], a 
syndrome characterized by the loss of adipose and muscle 
mass and frequently observed in untreated cancer patients 
[139]. Inflammatory cytokines made by host and/or tumor 
cells, such as TNF-α, IL-1, IL-6 and IFN-γ, have been 
reported to induce cancer cachexia in animal models 
[139]. In our hands, blocking TNFα or IL-6 was unable to 
prevent the delipidation of adipocytes induced by tumor 
cells in our co-culture system, suggesting that they are not 
involved and/or sufficient to explain this paracrine and 
“acute” delipidation [36]. Recently, Kir and al. identified 
parathyroid hormone-related protein (PTHrP), a tumor-
derived small polypeptide, as an inducer of thermogenic 
gene expression and wasting in adipocytes [140, 141]. 
Neutralization of PTHrP by a specific antibody in tumor-
bearing mice attenuated weight loss and mice lacking 
PTHrP receptor in adipose tissues are resistant to tumor-
driven cachexia [140, 141]. Thus, PTHrP might represent 
an interesting candidate. Taken together, these data indicate 
that there is a metabolic crosstalk between adipocytes and 
cancer cells. Further studies are required to identify the 
key molecular actors in this process, the fate of transferred 
FFAs and its potential as a target in cancer therapy.

Adipocytes promote tumor invasion and 
metastasis

Metastasis is a major cause of cancer-related 
death. Several clinical studies have shown a positive 
correlation between AT infiltration of different types of 
cancer and poor prognosis [86]. As we will see, during 
the invasion and metastatic processes, adipocytes can play 
important roles either by increasing cancer cell migration 
and invasion, remodeling of the extracellular matrix, or 
promoting tumor homing.

Adipocytes increase cancer cell migration and 
invasion

Experiments showing the impact of adipocytes on 
cancer cell aggressiveness were mostly performed in vitro 
using co-culture system. We and others have shown that 
co-cultures of adipocytes with breast cancer cells increased 
cancer cell migration and invasion [31, 32, 36]. Moreover, 
co-cultured breast cancer cells displayed a downregulation 
of the epithelial marker E-cadherin and a reorganization of 

β-catenin without a simultaneous increase in mesenchymal 
markers [31]. These data suggest an incomplete induction 
of epithelial mesenchymal transition (EMT) by adipocytes. 
The invasion-promoting effect of adipocytes seems to 
not be dependent on cell-cell contact but mediated by 
soluble factors secreted by these cells. Interestingly, 
only the conditioned medium from CAAs, but not from 
“naive” adipocytes which had never been co-cultured 
with tumor cells, increased the invasive capacity of 
breast cancer cells [31]. Increased migratory and invasive 
abilities of tumor cells cocultivated with adipocytes have 
been observed with other models such as prostate cancer 
[46, 50]. Similar findings were obtained with prostate 
cancer cells cocultivated with BM-Ad [29]. This data 
strongly illustrates the cancer-adipocyte crosstalk and its 
importance in the modulation of tumor progression.

Several factors have been identified to be secreted 
by adipocytes and be involved in the invasion-promoting 
effect. In breast cancer, IL-6 was shown to be secreted by 
adipocytes, notably at high levels by CAAs [31]. Moreover, 
IL-6 promotes tumor migration and invasion, and its 
inhibition by blocking antibodies significantly reduces 
these effects [31]. Such an inflammatory state in the 
tumor-surrounding adipose tissue has also been described 
for prostate cancer. High levels of IL-6 were found in the 
peri-prostatic adipose tissue of tumor-bearing patients and 
the levels of IL-6 correlated with the aggressiveness of 
the tumors, highlighting the importance of this cytokine 
in the adipocyte/cancer cells crosstalk [27]. Another 
adipocyte-secreted factor, leptin, was shown to promote 
breast cancer cell migration and invasion via IL-18  
expression and secretion [142]. Additionally, fatty acid 
transfer from marrow adipocytes could stimulate invasion 
of prostate cancer cells, which is decreased upon inhibition 
of FABP4 [143, 39]. Furthermore, we have recently 
uncovered that exosomes secreted by adipocytes promoted 
melanoma migration and invasion in vitro and in vivo, this 
effect being enhanced in case of obesity [144]. Exosomes 
are nanovesicles secreted by most cell types, which 
allow the transfer of lipids, proteins and nucleic acids 
between cells. A proteomic study further demonstrated 
that these vesicles carry proteins implicated in FAO, a 
feature highly specific to adipocyte exosomes. Transfer 
of these proteins from adipocytes to tumor cells is likely 
to promote the observed increase in tumor migration. In 
fact, in the presence of adipocyte-derived exosomes, FAO 
was increased in melanoma cells and pharmacological 
inhibition of this metabolic pathway completely abrogated 
the exosome-mediated increase in migration [144].

Adipocytes remodel the extracellular matrix

Adipocytes secrete various constituents of the 
extracellular matrix, such as different types of collagen 
[145]. During tumorigenesis, cancer cells have been shown 
to upregulate the secretion of collagen VI by adipocytes 
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[146]. Collagen VI was shown to promote tumor growth 
and survival via signaling through the NG2/chondroitin 
sulfate proteoglycan receptor expressed on tumor cells 
[147]. In the case of induced expression of the mouse 
mammary tumor virus/polyoma virus middle T oncogene, 
mice lacking collagen VI exhibited reduced rates of 
hyperplasia and primary tumor growth. Particularly, 
adipocytes from collagen-deficient mice were less potent in 
stimulating tumor growth [147]. Furthermore, endotrophin, 
a cleaved fragment of the collagen VI α3 chain, promoted 
the EMT process and metastatic spread of mammary 
epithelial cancer cells [148].

Adipocytes also secrete a number of matrix 
metalloproteinases (MMP) which allow the remodeling 
of the extracellular matrix [149]. Many MMPs have been 
shown to be involved in the promotion of tumor invasion 
[150]. Importantly, cancer cells were shown to induce the 
expression of MMP-11 in adipocytes as tumor invaded the 
surrounding adipose tissue [34]. Although the substrates of 
MMP-11 remain unknown [151], some studies suggested 
that MMP-11 can cleave collagen VI [152]. In vivo, 
MMP-11 was shown to promote cancer progression by 
remodeling the extracellular matrix and downregulation 
of MMP-11 by siRNA attenuated cancer metastasis 
[153–155]. Additionally, high levels of MMP-11  
expression were correlated with increased invasion and 
bad prognosis in breast carcinoma [156], pancreatic 
cancer [157] and colon cancer [158]. In parallel, MMP-11  
can directly act on adipocytes and negatively regulate 
adipogenesis by inhibiting adipocyte differentiation and 
by enhancing dedifferentiation, leading to accumulation 
of fibroblast-like cells in the tumor microenvironment 
[152]. Furthermore, adipokines such as leptin or HGF can 
induce the secretion of various MMPs by cancer cells, thus 
indirectly promoting tumor invasion [159–161].

Adipocytes promote tumor homing and seeding 
at distant organs

Adipose tissues are preferential metastatic sites 
of several cancers. Nieman et al. showed that omentum 
adipocytes favored tumor homing via secretion of 
cytokines and chemokines [28]. The most abundantly 
adipocyte-secreted cytokines included IL-6, IL-8, MCP-1,  
and tissue inhibitor of metalloproteinase-1 (TIMP-1). 
Antibody-mediated inhibition of these factors reduced 
ovarian cancer cell homing toward adipocytes in vitro [28]. 
Neutralization of IL-6R and particularly IL-8R (CXCR1) 
reduced in vivo homing of ovarian cancer cells to the mouse 
omentum [28]. Notably, the expression of IL-8R was 
strongly upregulated in ovarian cancer cells in co-culture 
with adipocytes. In another study, Pramanik et al. showed 
that acute lymphoblastic leukemia (ALL) cells migrated 
into adipose tissues in vivo and exhibited chemotaxis 
towards adipocytes in vitro [162]. CXCL12/SDF-1 
was identified as an adipocyte-derived chemoattractant 

responsible for leukemia cell migration. Inhibition of the 
SDF-1 receptor, CXCR4, in ALL cells abrogated their 
migration toward adipocytes. In prostate cancer (PCa), we 
uncovered that periprostatic adipose tissue (PPAT) was able 
to support the directed migration of tumor cells, therefore 
favoring the dissemination of the cancer outside of the 
prostate gland [163]. The secretion, by mature adipocytes 
of the periprostatic fat, of the chemokine MCP-3/CCL7 
supports this process and within the context of obesity this 
secretion is increased. The receptor for this chemokine, 
CCR3, has been identified in PCa cells. Blocking the 
CCL7/CCR3 axis inhibited PCa local invasion in vitro 
and in vivo with a striking effect in obese animals. More 
importantly, expression of this receptor was associated 
with aggressiveness in PCa patients and was correlated 
with extra-prostatic dissemination and surgical treatment 
failure [163]. Finally, it has been suggested using human 
bone tissue fragments that breast cancer cells exhibit in 
vitro directed migration towards BM-Ad that correlated 
with leptin and IL1ß levels of expression [164], a process 
that needs to be confirmed in vivo. 

Altogether, these data illustrate that mature 
adipocytes can act at each key step of the metastatic 
process, the main findings being summarized in Figure 2. 
These effects are mediated through the release of soluble 
factors (including pro-inflammatory cytokines and 
chemokines), ECM components as well as through the 
active release of exosomes. The relative contribution of 
these different mechanisms remains unknown. Increase 
in invasive capacities is a very important aspect of the 
adipocyte/cancer crosstalk. These results should be further 
considered in light of the clinical studies that show an 
increase in local and distant dissemination of both prostate 
and breast cancers in obese patients [165].

Adipocytes increase cancer cell survival and 
resistance to therapies

Several studies have shown that stromal cells such 
as fibroblasts could promote survival and drug resistance 
in cancer [166]. However, little is known about the impact 
of adipocytes in the efficiency of anti-cancer therapies. 
The first evidence of the protective role of adipocytes on 
cancer cells came from the observation by Iyengar et al., 
who showed that 3T3-L1 adipocytes supported survival of 
transformed ductal epithelial cells in vitro under limiting 
serum conditions [146]. Other epidemiological and 
experimental studies, including ours, have demonstrated 
the involvement of adipocytes in the evasion of cell death 
and promotion of cancer resistance to therapies.

Epidemiological evidence linking obesity and 
tumor resistance to therapies

As stated before, obesity has been clearly associated 
with higher mortality in obese cancer patients compared to 
lean cancer patients [167]. This could be partly due to the 
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presence of more advanced diseases in obese patients at 
the time of diagnosis [17]. Moreover, the under-dosing of 
therapy regimens by clinicians due to the fear of toxicity 
could also contribute to the decrease in treatment efficacy 
[168]. Accordingly, recent recommendations highlighted 
that full weight–based chemotherapy doses need be used 
in the treatment of obese patients with cancer, especially 
when the goal of treatment is cure [168]. In addition, 
it has also been proposed that obesity can alter the 
pharmacokinetics of drugs used in chemotherapy [142, 
143]. However, independently of these parameters, clinical 
data have shown that obesity could have an independent 
effect in cancer resistance to therapies [165].

Concerning the impact of AT on sensitivity to 
radiotherapy, the results remain controversial since some 
studies have shown an adverse effect of obesity on clinical 
outcome of prostate cancer patients [171–173], while other 
reports have indicated no difference in efficacy between 
obese and lean patients in prostate and esophageal 
cancers [174–176]. By contrast, the link between obesity 
and resistance seems to be more firmly established for 
chemotherapy and endocrine therapy. In a study by Ewertz 
and colleagues on 53,816 women with early-stage breast 
cancer treated with different regimens of chemotherapy or 
endocrine therapy (tamoxifen or aromatase inhibitors), the 
authors observed an increased risk of developing distant 
metastases in obese patients compared to lean patients 
[177]. In addition, both chemotherapy and endocrine 
therapy were found to be less effective in obese patients 
after 10 or more years of follow-up [177]. This finding 
of a negative impact of obesity in breast cancer was 

supported by another retrospective study by Jiralerspong 
on 6,342 patients with breast cancer [178]. In regards to 
targeted therapy, the impact of obesity on outcome has 
been investigated in only a few studies. In colorectal 
cancer, three retrospective trials have been conducted with 
conflicting conclusions. While Simkens et al. found that 
an increase in BMI was associated with a better overall 
survival in patients treated with chemotherapy, but not 
in patients treated with chemotherapy and bevacizumab, 
an anti-VEGF antibody [179]. Conversely, Guiu et al. 
showed that high BMI values and large visceral fat 
content were associated with poorer response, shorter 
time-to-progression and shorter overall survival in 
patients treated with bevacizumab and chemotherapy, but 
there was no significant association in patients treated 
with chemotherapy alone [180]. The negative impact 
of adiposity was supported by a study by Patel et al., 
in which the authors concluded that overweight BMI 
represented an independent, poor prognostic indicator for 
survival in patients undergoing chemotherapy with and 
without targeted therapy [181]. Besides, in breast cancer, 
Crozier et al. reported that adjuvant trastuzumab, an anti-
HER2 antibody, improved the clinical outcome in a cohort 
of 3,017 patients regardless of their BMI [182].

Overall, further epidemiological studies are 
required to better understand the impact of high body 
adiposity on cancer survival, whether this was the case 
before or after diagnosis. Interestingly, several studies 
suggested that weight gain after diagnosis appeared 
to be associated with greater disease mortality [165]. 
However, whether weight loss after diagnosis may 

Figure 2: Adipocytes promote tumor invasion and metastasis. Secretion of cytokines and chemokines by mature adipocytes 
favor the homing of tumor cells to surrounding adipose tissue. Once the adipose tissue is invaded, a crosstalk is established between cancer 
cells and mature adipocytes that undergo phenotypical changes towards a Cancer Associated Adipocytes (CAAs) phenotype. Their ability 
to secrete soluble factors, exosomes and extra-cellular matrix components stimulate invasive properties of tumor cells. These invasive cells 
can enter the blood stream and colonize distant organs including bone which is also an adipocyte-rich organ.
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improve prognosis remains unclear and requires further 
investigations [165].

Adipocytes protect cancer cells via ECM

One of the aspects of the environmental protection 
of cancer cells is the increase of cell adhesion to the 
extracellular matrix [183, 184]. These interactions lead 
to the reorganization of cell cytoskeleton and activation 
of multiple transduction pathways, resulting in increased 
cell survival and resistance to chemotherapeutic 
agents. As previously mentioned, adipocytes are an 
abundant source of extracellular matrix components. 
Particularly, adipocytes which are in close contact with 
cancer cells secrete high levels of collagen VI [147]. In 
vitro exposure of tumor cells to collagen VI conferred 
resistance of ovarian cancer cells to cisplatin [185], 
possibly via the upregulation of metallothioneins which 
are known to play critical role in cisplatin resistance 
[186, 187]. Park et al. further showed that endotrophin, 
a cleavage product of collagen VI alpha 3 chain, 
enhanced EMT and caused resistance to cisplatin [188]. 
Interestingly, the same group showed that adipocyte-
derived endotrophin could also induce adipose tissue 
fibrosis and inflammation [189], indicating mutual 
effects between tumor cells and CAAs. 

Adipocytes protect cancer cells via secretion of 
adipokines, metabolites or exosomes

As previously discussed, adipocytes are source of 
various paracrine factors and many of them have been 
shown to be responsible for cancer resistance to therapies.

The main mechanisms involved in adipocytes-
induced resistance have been the modulation of cell death 
pathways. Behan et al. showed that adipocytes protected 
acute lymphoblastic leukemia cells from cytotoxic agents, 
including vincristine, dexamethasone, daunorubicin, and 
nilotinib in vitro [190]. This protection was independent 
of cell-cell contact and was associated with increased 
expression of pro-survival signals Bcl-2 and Pim-2 in 
cancer cells [190]. In another study, Chi et al. showed 
that adipocyte-secreted leptin contributed to resistance of 
melanoma cells to various therapeutic agents, including 
cisplatin, docetaxel, and the histone deacetylase inhibitor 
SAHA [191]. This was associated with increased 
activation of survival pathways PI3K/Akt and MEK/
ERK. Enhancement of prosurvival pathways by leptin 
has also been shown to counteract the cytotoxic effect 
of 5-fluorouracil, a common therapeutic agent for colon 
cancer [192]. In the same line of findings, we previously 
reported that mature adipocytes could protect breast 
cancer cells from ionizing radiation-inducing post-mitotic 
cell death. This effect was due to the secretion of IL-6 by 
tumor cells, secretion that was upregulated in the presence 
of adipocytes [193]. In another study, we showed that 

adipocytes could protect HER2-positive breast cancer cells 
from trastuzumab-mediated cellular cytotoxicity in vitro 
and from antitumor effect of trastuzumab in vivo [194]. 
Interestingly, this protective effect was enhanced under 
hypoxic conditions [194], underlying the importance of 
adipocytes in the tumor microenvironment and/or obesity. 
Adipocyte-secreted factors rapidly activated Akt survival 
pathway in cancer cells and upregulated the expression 
of several genes involved in cell survival [194]. More 
importantly, the protection of tumor cells by adipocytes 
seems not to be limited to monoclonal antibodies such as 
trastuzumab or the drug-antibody conjugate T-DM1, but 
also to kinase inhibitors (data not shown). Furthermore, 
in a recent study, it has been demonstrated that adipocytes 
could protect cancer cells by downregulating APAF1, a 
key protein involved in the formation of apoptosomes 
[195]. APAF1 was shown to be a direct target of miR21, 
which is abundantly present in exosomes isolated from 
CAAs and CAFs [195]. The authors showed that miR21 
was transferred by exosomes from CAAs or CAFs to 
cancer cells, where it suppressed ovarian cancer apoptosis 
and conferred chemoresistance to paclitaxel by binding to 
its direct target, APAF1 [195].

Resistance to drugs induced by adipocytes is not 
limited to modulation of apoptosis. Pramanik et al. also 
demonstrated that both subcutaneous and visceral fat pads 
from obese and control mice protected acute lymphoblastic 
leukemia (ALL) cells from chemotherapy [162]. This 
protection was mediated via ALL-induced oxidative 
stress response in adipocytes and secretion of soluble 
factors by adipocytes [196]. However, the adipocyte-
derived factors mediating resistance to chemotherapeutic 
agents were not clearly identified in these studies. 
Resistance to vincristine was also observed in vivo [190] 
and additional studies demonstrated that obesity altered  
vincristine pharmacokinetics in blood and tissues of 
mice, highlighting again that resistance to drugs induced 
by obesity is probably multifactorial [169]. Besides, a 
recent study by Liu et al. demonstrated that bone marrow 
adipocytes protected myeloma cells against chemotherapy 
through autophagy activation [197]. Leptin and adipsin 
were identified to be secreted by adipocytes and to be 
responsible for this mechanism of resistance [197]. 

In parallel, adipocytes could directly counteract 
the effects of chemotherapeutic agents by acting as 
source of metabolites, by modulating drug transport or 
intra-cellular metabolism. L-asparaginase is a first-line 
therapy for acute lymphoblastic leukemia (ALL) that 
breaks down asparagine and glutamine, two amino acids 
important in the metabolism of ALL. Ehsanipour et al. 
showed that adipocytes caused leukemic cell resistance 
to L-asparaginase via the release of glutamine [198]. 
Interestingly, these protective effects were observed with 
bone marrow-derived adipocytes in obesity, notably after 
the induction of chemotherapy. Another study showed 
that adipocyte-conditioned medium decreased tumor 
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Table 1: Adipocytes increase cancer resistance to therapies
Mechanism Tumor 

model Adipocyte model Therapeutic agents Observation Reference

Enhanced 
EMT process

Mammary 
tumors Murine adipose tissue Cisplatin

COL6-/- mice or 
thiazolidinediones or 
endotrophin neutralizing 
antibody sensitize tumors 
to cisplatin treatment  
in vivo

[188]

Upregulation 
of survival 
gene 
expression 
and pro-
survival 
pathways

Human 
and murine 
leukemia cell 
lines

3T3-L1 murine cell 
line, OP-9 murine bone 
marrow-derived cell 
line Vincristine, 

dexamethasone, 
daunorubicin and 
nilotinib

Obesity impairs the effect 
of vincristine in mice.

[190]

Diet-induced obese 
mice

Co-culture with 
adipocytes decreases 
chemotherapy-induced 
cytotoxicity on leukemia 
cells in vitro

Human breast 
cancer cell 
lines

3T3F442A murine cell 
line Ionizing radiation

Adipocytes lower 
ionizing radiation-
induced cell death in vitro

[193]

hMAD human cell line

Trastuzumab

Adipocyte-conditioned 
medium reduces 
trastuzumab-induced 
antibody-dependent 
cellular cytotoxicity on 
tumor cells in vitro [194]

Human adipose tissue

Adipose tissue reduces 
trastuzumab-induced 
cytotoxicity on tumor 
 in vivo

Melanoma 
cell line Human adipocytes

Cisplatin, docetaxel, 
and the histone 
deacetylase 
inhibitor SAHA

Adipocyte-conditioned 
media reduces sensitivity 
to treatment-induced 
apoptosis of melanoma 
cells in vitro

[191]

Human 
colorectal 
tumor stem 
cells

5-fluorouracil
Leptin counteracts 
cytotoxic effects of 
5-fluorouracil in vitro

[192]

Human 
ovarian 
cancer cell 
lines

Adipocytes isolated 
from omental tissues of 
patients

Paclitaxel

Downregulation of 
APAF1 by adipocyte-
derived exosomal 
microRNA21 enhances 
chemoresistance in vitro 
and in vivo

[195]

Increase of 
oxidative 
stress 
response

Human 
and murine 
leukemia cell 
lines

Subcutaneous and 
visceral fat pads from 
obese and control mice Daunorubicin

Co-culture with 
adipocytes decreases 
chemotherapy-induced 
cytotoxicity on leukemia 
cells

[162, 196]
Murine 3T3L1 and 
human Chub-S7 
adipocyte cell lines
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cell response to gemcitabine in vitro. This increase 
in resistance seems to be due to modification of the 
expressions of genes involved in gemcitabine transport 
and metabolism in tumors [199].

Altogether, these data indicate that adipocytes could 
enhance cancer resistance to different types of therapies, 
through a variety of mechanisms (Table 1). They also 
suggest that the local microenvironment as well as 
metabolic factors need to be taken into account not only 
in assessing cancer risk, but also in the design of clinical 
trials in oncology.

CONCLUSIONS

Over the two past decades, with the increasing rates 
of obesity and metabolic disorders, as well as their link to 
cancer, adipocytes have increasingly received attention 
of researchers and clinicians. Growing evidence has 
transformed adipocytes from a passive, neutral cell type into 
an active actor playing important roles in both metabolic 
homeostasis and shaping of the microenvironment. Given 
the large volume of adipose cells and their proximity with 
cancer cells, adipocytes need to be considered as a major 
component in the microenvironment in many solid cancers, 
including breast, colon, prostate, ovarian cancers, as well as 
in hematological malignancies. It is important to underline 
the crosstalk between adipocytes and cancer cells, 
which leads to a profound modification of the adipocyte 
phenotype as well as the adipocyte secretome. These 

CAAs could strongly support cancer progression through 
different axes: 1) they constitute a source of metabolites 
and adipokines to fuel tumor growth; 2) they promote 
invasive properties of tumor cells both at the primary 
tumor site and distant metastases; 3) they protect cancer 
cells against various therapies. Since obesity has become a 
global epidemic and it is commonly associated with poor 
prognosis in many cancers, it is of fundamental and clinical 
interest to further study the relationship between adipose 
tissue and cancer cells. Better characterization of CAAs 
and the key molecular events in the adipocyte-cancer cell 
crosstalk will provide insights into tumor biology and 
suggest efficient therapeutic opportunities.
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