
Oncotarget35492www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/              Oncotarget, 2017, Vol. 8, (No. 22), pp: 35492-35507
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ABSTRACT
Inhibitors of mTOR, including clinically available rapalogs such as rapamycin 

(Sirolimus) and Everolimus, are gerosuppressants, which suppress cellular 
senescence. Rapamycin slows aging and extends life span in a variety of species 
from worm to mammals. Rapalogs can prevent age-related diseases, including 
cancer, atherosclerosis, obesity, neurodegeneration and retinopathy and potentially 
rejuvenate stem cells, immunity and metabolism. Here, I further suggest how 
rapamycin can be combined with metformin, inhibitors of angiotensin II signaling 
(Losartan, Lisinopril), statins (simvastatin, atorvastatin), propranolol, aspirin and a 
PDE5 inhibitor. Rational combinations of these drugs with physical exercise and an 
anti-aging diet (Koschei formula) can maximize their anti-aging effects and decrease 
side effects. 

At first, the discovery of anti-aging properties of 
rapamycin was met with skepticism because it challenged 
the dogma that aging is a decline driven by molecular 
damage caused by free radicals. By now, rapamycin has 
been proven to be an anti-aging drug. In contrast, anti-
oxidants failed in clinical trials [1-9] and the dogma was 
shattered [1, 2, 10-18]. In the last decade, anti-aging effects 
of rapamycin have been confirmed. Anti-aging doses and 
schedules can be extrapolated from animal studies. Well-
tolerated doses with minimal side effects can be deducted 
based on clinical use of rapalogs. So optimal anti-aging 
doses/schedules can be suggested. Given that rapamycin 
consistently extends maximal lifespan in mice, rapamycin 
will likely allow mankind to beat the current record of 
human longevity, which is 122 years. Yet, rapamycin will 
not extend life span as much as we might wish to.

Now is the time for anti-aging drug combinations. 
For example, metformin is currently undergoing re-
purposing as an anti-aging agent. Several other existing 
drugs can be re-purposed. Now we can design an anti-
aging formula, using drugs available for human use. 
However, we must first discuss the link between growth, 
aging and age-related diseases.

MTOR: from growth to aging 

It was theoretically predicted that stimulation of 
mitogenic/growth pathways in arrested or quiescent 

cells must lead to senescence [19]. This conversion from 
quiescence to senescence is called geroconversion [20-
22]. Cellular senescence is a futile growth, a continuation 
of cellular growth when actual growth is restricted [21, 
23, 24]. Growth-stimulation of arrested cells causes their 
hypertrophy and hyperfunctions (for example, hyper-
secretory phenotype or SASP in senescent fibroblasts). 

This can be applied to organismal aging. When 
developmental growth is completed, then mTOR 
(mammalian Target of Rapamycin) and some other 
signaling pathways) drives organismal aging [1, 15, 25, 
26]. These pathways stimulate cellular functions, leading 
to hyperfunctions (for example, hypertension). Secondary, 
hyperfunctions can lead to loss of functions [1, 27]. 
Hyperfunction theory links growth, aging and age-related 
diseases [1]. Suppression of aging prevents or delays age-
related diseases [17, 28-30]. 

Age-related diseases are manifestations of 
advanced aging

Age-related pathologies and conditions include 
atherosclerosis, hypertension, osteoporosis, obesity, 
insulin-resistance and type II diabetes, cancer, macular 
degeneration, Parkinson and Alzheimer’s diseases as 
well as menopause in women, and many changes in the 
appearance that are not called diseases (baldness, for 
example) and presbyopia (a condition that resembles 
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nearsightedness). Stroke, myocardial infarction, heart 
fibrillation, broken hip, renal and other organs failure are 
consequences of age-related pathology [17, 28, 31].

In brief, age-related diseases are both manifestations 
of advanced aging and causes of death. Aging is the 
sum of age-related diseases, syndromes and symptoms 
ranging from wrinkles and presbyopia to stroke and 
cancer metastasis. Of course, age-related diseases can 
occur in young patients with either genetic predisposition 
or due to environmental hazards. However, each of 
these diseases will develop in the aging organism, even 
without any predispositions and hazards, if the organism 
would live long enough. Since aging is not programmed, 
these diseases develop at different speeds. For example, 
menopause (in women) and presbyopia develop fast and 
strike all aging humans. Whereas, Alzheimer disease 
develops slowly and an elderly person can die from cancer 
or stroke before Alzheimer disease takes place [17, 28]. 

In brief, animals die from age-related diseases, 
which are manifestations of advanced aging (Figure 1). If 
a drug delays ALL age-related diseases, it is a classic anti-
aging drug because it will extend life span by delaying 
causes of death. 

What are (and are not) anti-aging drugs?

Both insulin and metformin are used to treat type 
II diabetes. Insulin can save a patient in a diabetic coma. 
Metformin would not perform such a miracle. However, 
insulin cannot prevent diabetes, whereas metformin 
can. Insulin can also accelerate some diseases, whereas 
metformin decelerates them. (See metformin section 
for references). Insulin can foster cancer and obesity. 
Metformin prevents cancer and decreases obesity. Insulin 
activates the mTOR pathway, a key pathway of aging. 
Metformin indirectly inhibits the mTOR pathway. Insulin 
is a pro-aging drug, whereas metformin is an anti-aging 
drug.

Criteria for potential anti-aging drugs

1. A drug that prolongs life span in model organisms 
preferably in mammals. 

2. A drug that prevents or delays several age-related 
diseases in mammals. 

3. A drug that suppresses cellular geroconversion 
from quiescence to senescence 

These criteria overlap each other. If an intervention 
extends life span, it must delay age-related diseases. 
Animals die from age-related diseases. For example, 
calorie restriction (CR) delays all diseases of aging and 
extends life span. One may say that CR extends life span 
by delaying diseases. One may say that CR delays diseases 
by slowing down aging. Both interpretations are correct. 
By the way, CR deactivates the nutrient-sensing pathway, 

known as TOR (Target of Rapamycin) [32]. According to 
all 3 criteria, rapamycin and other rapalogs are ultimate 
anti-aging drugs.

Rapalogs: Rapamycin (Sirolimus/Rapamune) and 
Everalimus

Rapalogs include rapamycin, known in the clinic 
as Sirolimus or Rapamune, everolimus, temsirolimus (a 
rapamycin prodrug) and deforolimus (Ridaforolimus). 
Rapalogs are prescription drugs taken by organ transplant 
recipients and cancer patients.

1. Rapamycin prolongs life span in mice [33-45] at 
doses that have no noticeable side effects [46-59]. 

2. Rapalogs prevent age-related diseases in mice 
as well as in other mammals including non-human 
primates and humans. As examples: rapamycin prevents 
atherosclerosis [60-64], neurodegeneration and retinopathy 
[65-67] and cardiopathy [68] in rodents. Rapalogs prevent 
cancer in mice and humans [34, 37, 38, 40, 41, 69-86]. 
Rapamycin decreases obesity in mice and humans [87-89]. 
As predicted [1], rapalogs rejuvenate immunity, improve 
immune response in aging mice [90] and humans [30, 91, 
92]. Prevention of all age-related diseases by rapalogs was 
discussed in detail [1, 2, 13, 14, 17, 18, 24, 26, 29, 32 93-
95],

3. Rapalogs suppress cellular geroconversion from 
quiescence to senescence [20-23, 90, 96-110].

4. Rapamycin suppresses aging, age-related 
pathologies in model organisms:the yeast [111, 112], the 
fly [113-118] and the worm [119].

According to all criteria, rapalogs are anti-aging 
drugs. Importantly, rapalogs have minimal side effects, 
which can be reversed [120-122]. In some studies, 
rapamycin improves metabolic parameters [46, 49, 52, 
56, 57, 88,123]. Rapalogs have been used in healthy 
volunteers [124, 125] and even in pregnant women without 
detrimental effects [126, 127]. Recently, rapamycin was 
investigated as an anti-aging drug in humans [128].

In transplant patients, rapalogs prevent cancer [69-
78]. This is a very good “side effect”. In certain strains 
of mice, rapamycin causes symptoms of “hunger” 
pseudo-diabetes described 150 years ago by Claude 
Bernard [129]. “Hunger pseudo-diabetes” is not a 
disease. It is a beneficial condition during full fasting 
[130, 31]. During starvation glucose must be spared 
for the brain, so the body becomes insulin-resistant and 
insulin production decreases. These metabolic changes 
are benevolent and therefore fasting is good for the 
health. In fact, rapamycin prevents complications of 
diabetes (nephropathy), while increasing glucose levels 
in genetically diabetic mice [131]. Prevention of diabetic 
complications with rapamycin has been discussed [31]. 
Unfortunately, basic scientists misinterpreted starvation-
like effects of rapamycin as type 2 diabetes. Based on 
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this misinterpretation, some gerontologists believe that 
this precludes the use of rapalogs in humans. Fortunately, 
rapalogs are already widely used in humans. In transplant 
patients, there is a very slight increase of diabetes 
manifestations in some studies but not in other studies 
[132, 133]. Noteworthy, diabetes is common in transplant 
patients regardless of rapalog treatment, so this group 
of patients is not representative. What about healthy 
individuals? Acute administration of rapamycin reverses 
food-induced insulin resistance [134]. In other words, 
rapamycin increases insulin sensitivity in healthy people.

Of course, it is possible that chronic administration 
of rapamycin may cause beta-cell disfunction and 
diabetes in some genetically-predisposed humans, like it 
was observed in some mice strains [135]. This does not 
preclude the use of rapamycin as an anti-aging. Simply, 
glucose levels should be monitored and rapamycin can be 
discontinued, if glucose levels increase. Unlike transplant 
patients, healthy individuals can discontinue rapamycin 
at any time. And finally, to “mitigate” these worries, 
rapamycin can be combined with metformin.

Metformin 

Metformin is one of the most commonly used drugs 
to treat type II diabetes. Before metformin, its analog – 
phenformin – was used for type II diabetes. Phenformin 
was removed from the market because of the fear of its 
rare side effect: lactic acidosis. The incidence of lactic 
acidosis for metformin is lower than for phenformin. 

Since 1972, Russian scientist, Vladimir Dilman, 
and his co-workers Anisimov, Bernstein and others, 
demonstrated that phenformin and metformin slow 
down aging, decrease obesity, prevent cancer and extend 
lifespan in rodents [136-146]. Furthermore, phenformin 
and metformin were administered to cancer patients [147]. 
For many years, these publications were ignored because 
it was believed that aging is driven by molecular damage 
and cannot be suppressed by anti-diabetic drugs. The anti-
aging effect of metformin and phenformin was explained 
by the hyper-function theory of aging [1]. 

In fact, metformin increases lifespan in mice [143] 
and C. elegans [148, 149]. Metformin prevents cancer and 
some other age-related diseases in humans. [150-161]. 
Furthermore, metformin decreases all-cause mortality in 
diabetic patients [156] and reduces the risk of cognitive 
decline and dementia [157]. Also, metformin is used to 
increase fertility [162,163].

Thus, metformin (a) extends life span in worms 
and rodents and decreases all-cause mortality in humans 
(b) prevents several age-related diseases in rodents and 
humans. Yet, metformin did not increase lifespan in some 
model organisms. It does not increase lifespan in mice 
in some studies. The spectrum of metformin-responsive 
diseases is narrower than those for rapamycin. As a 
monotherapy, the life-extending effect of metformin may 

be modest, but it can be combined with rapamycin and 
other drugs. 

Two agents may even cancel each other’s potential 
side effects. For example, whereas metformin can increase 
lactate production, rapamycin decreases it [164]. This is 
important because phenformin was removed from the 
market because of the fear of lactate acidosis, caused 
by lactate production. On the other hand, metformin is 
expected to reduce manifestation of benevolent glucose-
intolerance, if rapamycin will cause these manifestations, 
in a minority of individuals. A combination of rapamycin 
and metformin is also studied for cancer therapy [165, 
166].

Inhibitors of angiotensin II 

 Angiotensin II receptor blockers (ARB) such 
as Valsartan, Telmisartan, Losartan and angiotensin-
converting enzyme (ACE) inhibitors such as Captopril, 
Lisinopril, Enalapril, Ramipril are widely used to treat 
hypertension. Hypertension is a clear-cut disease of 
hyperfunction. Angiotensin II, a hormone, is involved in 
age-related diseases in mammals [167, 168]. Disruption 
of the angiotensin II receptor increases longevity in mice 
[169]. Variations of the angiotensin II receptor gene are 
associated with longevity in humans [170]. Inhibitors of 
angiotensin II double lifespan of hypertensive rats [171, 
172]. This dramatic (100%) increase is in part due to the 
anti-hypertensive effect. Yet, in healthy (those with normal 
blood pressure) rats, long-term treatment with enalapril 
decreases weight and prolongs life span dramatically 
[173]. In humans, inhibitors of angiotensin II prevent 
cardiac hypertrophy and organ fibrosis [168], [174], a 
hallmark of aging. In some studies, long-term use of ARBs 
was associated with a lower incidence of cancer [175]. 
Enalapril and perindopril did not decrease blood pressure 
in patients with normal blood pressure [176]. Importantly, 
angiotensin-converting enzyme inhibitors or angiotensin 
receptor blockers are beneficial in normotensive 
atherosclerotic patients [177]. 

Aspirin 

Aspirin or acetylsalicylic acid, an inhibitor of 
cyclooxygenase (COX), is one of the most widely used 
non-prescription drugs. Aspirin inhibits inflammation. Pro-
inflammation (an example of hyperfunction) is a hallmark 
of aging [178, 179]. Aspirin also inhibits hyper-functional 
platelets, preventing thrombosis and atherosclerosis. 
Inhibition of hyper-active platelets prevents cardiovascular 
diseases and cancer [180].

Aspirin prolongs life span in Drosophila [181], 
C elegans [182, 183] and mice [184]. Aspirin reverses 
glucose intolerance in rats [185]. Anti-aging activities of 
aspirin have been discussed [105, 186,187]. 



Oncotarget35495www.impactjournals.com/oncotarget

Aspirin is used to prevent age-related diseases 
including cardiovascular diseases and cancer in humans. 
Numerous studies have demonstrated benefits, although 
doses and duration of treatment remain uncertain. For 
example, 600 mg aspirin per day for 25 months decreased 
the incidence of cancer in carriers of hereditary colorectal 
cancer [188]. In another study, 300 mg a day for 5 years 
prevented colorectal cancer [189]. Long-term daily use 
of aspirin decreases the incidence of colorectal, prostate, 
and breast cancers [190]. In some studies, regular, long-
term aspirin use reduced the risk of colorectal cancer 
[191], whereas, in other studies, occasional use of aspirin 
prevented vascular diseases and cancer [192]. In one of the 
most comprehensive studies, aspirin at doses between 75 
and 325 mg/day for 5 years significantly decreased cancer 
incidence [192]. It slightly increased chances of gastric 
bleeding [192, 193]. It was estimated that, by preventing 
cancer, aspirin can save more lives than lost lives due to 
potential side effects [192. 193].

 Statins

Statins, such as atorvastatin (Lipitor), simvastatin 
and lovastatin, decrease blood cholesterol levels and thus 
decelerate atherosclerosis, preventing cardiovascular 
diseases [194]. Statins are beneficial in hypertension [195-
197]. Statins can decrease the incidence of some cancers 

[198]. Simvastatin increases mean and maximum lifespan 
of Drosophila [199]. Statins increase life span in progeroid 
mice [200]. Yet, in another study, a statin did not prolong 
life span in mice [36]. Statins prolong lifespan by 2 years 
in humans treated at ages 78 to 85 [194]. Among the very 
old, the extension of life was independent of cholesterol 
levels [201].

Noteworthy, statins can prevent rapamycin-induced 
dyslipidemia [202]. This benevolent dyslipidemia is 
caused by lipolysis and inhibition of lipoproteins uptake 
by the tissues (see Figure 2 in [94]). Dyslipidemia is 
reversible by itself [64]. Yet, it is easier to combine 
rapamycin and statins than to prove that dyslipidemia is 
totally harmless. Statins can “mitigate the fear” of this 
rapamycin-induced “side effect”. Statins have side-effects, 
which are, in rare cases, dangerous. Statins, which are 
prescription drugs, are available in grocery stores without 
prescription as natural products. Lovastatin is a natural 
compound found in oyster mushrooms and red yeast rice, 
a food supplement. Red yeast rice is often combined with 
berberine and policosanol, natural food supplements.

Beta-blockers 

Beta-blockers are widely used to treat hypertension 
and heart diseases. Propranolol, a non-selective beta-
adrenergic blocker, prevents cancer [203-206] and 

Figure 1: Schema of aging and its pharmacological suppression.  Aging is an increase in the probability of death. Aging is a 
continuation of developmental growth, when the development is stopped but signaling pathways (such as mTOR) remain active. Chronic 
cellular overactivation increases cellular functions (secretion, synthesis, metabolism, contraction, aggregation, lipid accumulation and so 
on), leading to systemic hyperfuntions such as hypertension and other diseases of aging. Hyperfunction, manifested as age-related diseases, 
causes organ damage and loss of functions. Aging consists from subclinical hyperfunction, diseases and loss of function/organ failure.  
Anti-aging drugs inhibit signaling pathways, decreasing hyperfunction, slowing down aging and delaying diseases and death. The most 
important drugs are shown in larger fonts.
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hepatic steatosis [207]. Propranolol is used out-of-label 
to decrease anxiety. Metoprolol and nebivolol increase 
the mean and median life span of male mice, by 10% and 
6.4% and extend Drosophila life span [208].

PDE5 inhibitors

Phosphodiesterase 5 (PDE5) degrades cGMP. 
PDE5 inhibitors, including sildenafil (Viagra), tadalafil 
(Cialis), vardenafil (Levitra), and avanafil (Stendra), 
are widely known for treatment of erectile dysfunction 
(ED). While sexual stimulation causes cGMP synthesis, 
PDE5 inhibitors cause its accumulation, relaxing corpus 
cavernosum and penile arteries. In addition, cGMP relaxes 
the tone of prostate muscle cells and decreases prostate 
inflammation. Tadalafil is effective and well-tolerated 
therapy for benign prostate hyperplasia (BPH) [209]. 
PDE5 inhibitors, such as long-acting tadalafil, can be 
added to anti-aging drug mixture because ED and BPH 
are most prevalent age-related conditions in aging men. 
Also, there is a fundamental reason to consider PDE5 
inhibitors as anti-aging medicines (in both men and 
women). The key word is “relax”. Senescent cells are 
tense and stressed. Cellular senescence is manifested by 
hyper-function. On the organism levels hyper-function is 
translated in hypertension, hyperplasia, hyperlipidemia 
and so on. By ‘relaxing the tension’, PDE5 inhibitors may 
slow senescent-associated pathology. PFE5 inhibitors 
cause anti-vasoconstriction, anti-proliferative and anti-
inflammatory effects. Not co-incidentally, PDE5 inhibitors 
are already approved or investigated for therapy of 
diverse age-related diseases and conditions. Sildenafil and 
tadalafil are approved for pulmonary arterial hypertension 
[210]. PDE5 inhibitors are under investigation for 
heart hypertrophy, myocardial infarction, cancer, 
neurodegenerative diseases, cystic fibrosis, diabetes, 
obesity and metabolic syndrome [210-213]. Inhibition 
of PDE5 increases levels of cGMP and hydrogen sulfate. 
These signaling molecules increase life span in C elegans 
[214, 215].

PDE5 inhibitors are remarkably safe for everyday 
use for a long term. In most studies, 5 mg tadalafil once 
a day had minimal side effect and improved BPH and ED 
[216]. Furthermore, even 40 mg of tadalafil is used in 
the treatment of pulmonary arterial hypertension without 
serious side effects [217]. PDE5 inhibition improves beta-
cell function in metabolic syndrome [218, 219]. This may 
mitigate potential side effect of rapamycin on beta-cells.

Doxocycline

Doxocycline, broad-spectrum antibiotics of the 
tetracycline class, extends life span in C elegans [220] and 
Drosophila [221, 222]. Doxycycline suppresses tumor 

growth and metastasis in mice [223, 224]. Importantly, 
doxycycline is a component of an anti-metastatic 
combination, which includes doxycyclin, aspirin, lisin and 
mifepristone [225]. 

Melatonin

Melatonin, a hormone, which is sold as a non-
prescription sleeping pill, increases life span and decreases 
cancer incidence in animals in some studies [226]-229]. 
Yet, other studies were inconclusive. 

Experimental gerosuppressants

Like rapalogs, pan-mTOR inhibitors suppress 
geroconversion [107-109, 110, 230]. They suppress 
geroconversion at concentrations lower than anti-cancer 
doses [230]. Low doses of pan-mTOR inhibitors have 
not been yet tested in mice to determine the effect of life 
span. Since these drugs are not yet approved for human 
use, we will not discuss them here. MDM-2 inhibitors 
[96, 231] MEK inhibitors [232] and S6K inhibitors 
[233] also suppress geroconversion in cell type-specific 
manner. Gerosuppression and tumor-suppression are two 
sides of one coin, so not surprisingly, they were intended 
as anticancer drugs [234-236]. At anti-cancer doses, 
gerosuppressants inhibit cell proliferation. Therefore, 
anti-aging doses should be lower than standard anti-
cancer doses. Alternatively, gerosuppressants should be 
used intermittently: high therapeutic doses followed by 
treatment-free periods. 

Polypill 

Polypill is a fixed-dose combination of antiplatelet 
(aspirin), anti-hypertensive drugs (lisinopril and beta-
blocker), and a statin [237-239]. Polypill also may include 
additional anti-hypertensive drugs [240] as well as folic 
acid [237]. Polypill showed life-extending activity in high-
risk elderly individuals [241, 242]. It was calculated that 
polypill may reduce strokes and ischemic heart disease by 
over 80% in individuals at risk for cardiovascular diseases 
[242]. Polypill may prevent cardiovascular disease and 
strokes [243, 244]. Polypill includes 4 ‘anti-aging’ drugs 
(statin, aspirin, beta-blocker, angiotensin II inhibitor such 
as lisinopril). Yet, this combination was created to prevent 
cardiovascular diseases, not to slow aging. Therefore, 
Polypill does not include two main anti-aging components: 
a rapalog and metformin. Nevertheless, Polypill is used 
in ‘healthy’ aging humans in order to extend life span 
by preventing diseases. It needs to be combined with 
rapamycin and metformin, to maximize lifespan extension.
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Anti-aging combinations

Rapamycin (or another rapalog) should be a 
cornerstone of anti-aging combinations (Figure 1), given 
its universal anti-aging effect and the ability to delay 
almost all diseases of aging.

Rapamycin and metformin: Both drugs extend 
lifespan in animals and have non- overlapping effects. In 
addition, they may, in theory, cancel possible metabolic 
side-effects of each other. As we discussed here (see 
rapamycin section) as well as in [ 31, 130], rapamycin in 
different settings may either increase or decrease insulin 
sensitivity. Similarly, calorie restriction increases insulin 
sensitivity, whereas severe calorie restriction (starvation) 
decreases it [129, 245]. In any case, rapamycin prolongs 
life span, indicating that insulin resistance is benevolent 
[130]. Unfortunately, the fear of this benevolent ‘side 
effect’ is delaying applications of rapamycin for prevention 
of age-related diseases. The simplest approach is to 
monitor glucose levels in individuals taking rapamycin. 
In addition, metformin, an anti-diabetic drug that reverses 
insulin resistance, could be combined with rapamycin.

And vice verse, metformin may potentially increase 
blood lactate levels. Rapamycin decreases lactate 
production [164]. Each drug prolongs lifespan in mice, 
prevents cancer, atherosclerosis, and other diseases of 
aging. 

Rapamycin and statins: Rapamycin promotes 
lipolysis increasing blood levels of fatty acids. This, in 
turn, increases levels of lipoproteins produced by the 
liver. Rapamycin-induced hyperlipidemia is benevolent 
and reversible. Still, statins are already used to prevent 
rapamycin-induced hyperlipidemia [202, 246, 247]

Rapamycin and physical exercise: Similarly, 
physical exercise may be useful to prevent rapamycin-
induced hyperlipidemia because fatty acids are used by 
the muscle during physical exercise.
Rapamycin and low-calorie diet or intermittent fasting:

a. During fasting, the organism depends on lipolysis 
and ketogenesis. Rapamycin stimulates these processes. 
Fatty acids and ketone bodies will be used by the muscle 
and the brain, respectively. 

b. Fasting decreases glucose, potentially mitigating 
possible rapamycin-induced hyperglycemia

The effects of rapamycin and calorie-restriction 
are not identical and may be additive [248, 249]. Calorie 
restriction and intermittent fasting extend life span. A 
low-calorie diet can be supplemented with vitamins 
(poly-vitamins plus, B3, B12 and D3), minerals and 
even essential amino and fatty acids, if needed, to avoid 
malnutrition. 

It is commonly suggested that certain food is 
beneficial because it is rich in some ‘useful’ ingredients: 
anti-oxidants, vitamins, minerals, essential fatty acids. 
Yet, food is also rich in calories. Using supplements, there 

is no need to eat food because it is “rich in something” 
(vitamin C, D or promega-3). Eating food for any essential 
component will bring calories along with the essential 
component. Food rich in vitamins could be substituted 
with vitamins alone. 

Rapamycin and PDE5 inhibitors

Cialis is approved for treatment of BPH and 
rapamycin treat BPH in preclinical studies. Rapamycin 
can decrease beta-cell function, whereas PDE5 inhibitors 
can increase it.

Rapamycin-based mixtures: 

A. Rapamycin plus metformin (especially in insulin-
resistant and obese people, metformin is indicated).

B. Rapamycin plus Lisinopril (or other angiotensin 
II-inhibitor) plus propranolol. Like in Polypill, these 
prescription drugs may be used at ½ doses in normotensive 
individuals. Hypertensive patients may require full doses. 

C. Rapamycin plus Statin (such as lovastatin, 
simvastatin and atorvastatin)

D. Rapamycin plus Statin plus metformin. This 
combination with rapamycin may be the most attractive 
for people with metabolic alterations: hyperlipidemia, 
obesity, insulin resistance.

E. Rapamycin plus polypill-like combination 
(Lisinopril, propranolol, aspirin, statin). This is especially 
attractive in people with atherosclerosis given that 
rapamycin prevents atherosclerosis too.

F. Rapamycin plus Lisinopril (or other Angiotensin 
II-inhibitor) + propranolol + aspirin + statin + metformin 
+ PDE5inhibitor. This is a comprehensive 7-drug 
combination. 

Doses and schedules

In the 7-drug anti-aging combination, rapamycin, 
metformin, lisinopril (or its equivalent), a statin, a 
PDE5 inhibitor and propranolol are prescription drugs 
(in the USA). So I will not discuss doses and schedules 
here. They should be determined for each individual 
individually. Polypill composition provides the hint on 
doses of 4 drugs in healthy individuals. The doses of 
rapamycin are beyond the scope of this article. Mixtures 
of anti-aging drugs should be further complemented with 
physical exercise and low-calorie diet or intermittent diet. 
Additional drugs such as melatonin may be considered. 
The 7-drug combination can be tested in mice, especially 
in mice on high fat diet and in cancer-prone mice. If started 
late in life, the experiments will take just several months to 
evaluate the effect on lifespan and cancer incidence as well 
as weight, blood pressure, glucose, insulin, triglycerides 
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and leptin. In humans, the treatment program can be 
initiated regardless of any pre-clinical studies, because all 
7 drugs are approved for human use and some of them 
such as aspirin and statin are widely used for disease 
prevention anyway. The only what is needed is to watch 
for side effects. Especially, heart rate, blood pressure and 
glucose levels should be monitored.

From past to the future

As stated in 2006, “… rapamycin, is already 
approved for clinical use, available and can be used 
immediately … to slow down senescence and to prevent 
diseases.”[1]. It was suggested that in intermittent 
schedules, rapamycin will be effective, yet lack side 
effects. Pulse-treatment was suggested to improve wound 
healing and rejuvenate stem cells and immunity [1, 27]. 
After 10 years, this suggestion remains unchanged. The 
implementation of anti-aging drugs to live longer and to 
delay age-related diseases was discussed in detail [94, 250, 
251]. 

 Now, the time is for the anti-aging formula, which 
combines around 7 drugs with diet and physical exercise. 
The anti-aging formula is ready for human use. If one will 
wait until the life-extending effect will be shown in others, 
this individual will not be alive by the time of the result. 
Human clinical trials are needed to optimize the doses and 
schedules. However, unless we participate in clinical trials 
ourselves, we will not know how long participants will 
live because they are expected to outlive non-participants. 
If we want to live longer we should be participants in 
clinical trials. In the best scenario, this might allow us 
to live long enough to benefit from future discoveries of 
anti-aging remedies. Experimental anti-aging drugs such 
as pan-mTOR inhibitors might be approved for future 
anti-aging formulas. Finally, if mTOR-driven aging will 
be abolished, anti-oxidants may become useful to treat 
post-aging syndrome [245]. And step-by-step, humanity 
will extend life span.
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