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ABSTRACT
ESCC (Esophageal squamous cell carcinoma) is a heterogeneous cancer with 

diverse prognosis. Here, to explore the biological diversity of ESCC, we employed 
gene expression profiles from 360 ESCC tumors from East Asians to establish a 
comprehensive molecular classification and characterization of ESCC. Using the 
specific 185-gene signature generated by unsupervised consensus clustering of gene 
expression data, we defined four subtypes associated with distinct clinical metrics: 
tumors with high metastasis associated with EMT (epithelial to mesenchymal transition) 
and active MAP4K4/JNK signaling pathway; tumors with high chromosomal instability 
with up regulated MYC targes; well differentiated tumors with less aggressive and 
moderated tumors. The clinical relevance of these subtypes was stated by significant 
differences in prognosis. Importantly, 24% of all ESCCs (n = 360) were classified into 
the high metastasis subtype associated with poorly differentiation and unfavorable 
prognosis. We provided evidence that this subtype relates to tumor microenvironment. 
Collectively, these results might contribute to more precise personalized therapeutic 
strategies for each subtype of ESCC patients in the near future.

INTRODUCTION

Esophageal cancer is caused by the malignancy of 
cells found in the esophagus. ESCC is the sixth most lethal 
cancer detected worldwide and approximately 70% of the 
ESCC occurs in China [1]. Besides, Shanxi Province in 
north China has the highest incidence rate of ESCCs in 
the world. In spite of recent advances in diagnosis and 
treatment methods, the overall five-year survival rate 
(19%) has not changed significantly [2]. Early detection 
and treatment is considered to be the recommended 
strategy wherein patients diagnosed with Stage   ESCC 

without the presence of lymph node or an instance of 
distant metastasis (T1N0M0) have 90% chances of 
survival post therapy for five years [3]. However, most 
ESCCs are diagnosed at advanced stages, and thus the 
outcome of chemoradiotherapy on these patients is 
relatively poor and heterogeneous. Therefore, clinical 
signatures such as TNM Stage and tumor location cannot 
be considered as a significant prognosis factor, thus a more 
accurate and an individualized therapy is needed during 
treatment of ESCC.

Several studies in recent years have applied 
microarray or RNA-seq technology to explore gene 
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expression profiles in ESCC [4–6] by focusing on 
differentially expressed genes, miRNAs and non-coding 
RNAs. But the vast majority of these studies are poor 
reproducibility, which may be a consequence of distinct 
molecular signatures that exist in ESCC. The Cancer 
Genome Atlas (TCGA) has proposed an integrative 
clustering of ESCC based on multiple molecular platforms 
[7]. They revealed distinct DNA features of tumors from 
different populations. The ESCCs from Vietnamese were 
enriched in NFE2L2 mutations and SOX2 amplification 
and East Asians showed the higher rates of mutations of 
NOTCH1, ALDH2, ADH1B and CDK6. All ESCC patients 
from USA and Canada had mutations in SMARCA4. 
However, the respective molecular classification of each 
population and difference in gene expression has not been 
elucidated.

Recently, three subtypes were identified based on 
the mRNA expression data from 59 ESCC individuals in 
Malawi, of which classification could be distinguished by 
their expression of cell cycle and neutral transcripts [8]. 
Besides they also observed related genomic alterations in 
the specific subtypes, in addition to the previous studies, 
Yang et al., re-analyzed previously published mRNA 
and lncRNA data from 119 ESCC patients in China, 
and identified two subtypes with significantly different 
prognosis, and also demonstrated key nodes on mRNA-
lncRNA networks in subtype-specific ESCC [9]. Both of 
these two studies provided valuable insights into ESCC.

Here, we explored 360 ESCC tumors from East 
Asians to establish a robust molecular classification based 
on unsupervised consensus clustering of mRNA expression 
profiles. Subsequently, the association with every subtype 
based on the clinical data, pathological data, chromosomal 
alterations and tumor microenvironment were assessed. 
The tumor microenvironment has been demonstrated to be 
associated with various tumor gene signatures and useful 
for prognosis across many cancers [10, 11].

RESULTS 

Identification of four subtypes in ESCC

To explore the heterogeneity of ESCC, we used 
previously developed consensus unsupervised clustering 
technique (Supplementary Figure 3) [12] to cluster two 
published expression data sets GSE38129 (n = 30) and 
GSE45670 (n = 28). These datasets were corrected for 
technical batch effects and merged into a dataset of 58 
cases using DWD method before clustering. The analysis 
defined four clusters with most robust classification 
(Figure 1A, 1B). The consensus matrix showed the 
presence of an overlap between cluster3 and cluster4. 
Examination of the item-consensus plot showed that 
ESCC1 was overlapped with ESCC3 during consensus 
classification, and it also revealed that ESCC2 was the 
most distinct subtype in comparison to other subtypes 

(Supplementary Figure 1A). We used silhouette width to 
select the most representative samples for each cluster, 
of which 53 samples with positive silhouette width were 
retained (Supplementary Figure 1E). In order to build 
a classifier, differentially expressed genes across four 
clusters were identified using the significance analysis of 
microarrays (SAM, false discovery rate (FDR) < 0.01), 
followed by prediction analysis for microarrays (PAM) 
to train the most representative and predictive genes with 
AUC > 0.9. Finally, 185 gene signature classifier that 
reliably divided 58 cases into four groups: ESCC1 (n = 19, 
33%), ESCC2 (n = 11, 19%), ESCC3 (n = 13, 22%), 
ESCC4 (n = 15, 26%) (Figure 1C, Supplementary Table 2) 
with prediction error less than 0.02 was developed. 

Validation of subtypes across different datasets

In this study, we have applied the 185 gene signature 
classifiers into four independent gene expression datasets 
for validation of the subtypes. All the 185 genes were 
projected onto each data set. Following which the R 
package PAMR was used to calculate the posterior 
probability of each sample associated with four subtypes. 
A sample is categorized into one subtype with the maximal 
posterior probability that at least greater than 0.5. The 
classifier was validated in GSE23400, GSE47404 and 
GSE53624 datasets and found that all four subtypes 
were assigned with comparable proportions of samples 
(Supplementary Figure 2A–2D). Moreover, additional 
datasets GSE33426 containing samples from both micro-
dissected tumors were used. Although, all samples of 
these datasets were represented in three of our four 
subtypes, only two samples were classified into ESCC3 
(Supplementary Figure 2C). This result suggested that 
possible intra-tumor heterogeneity dominated by cancer 
cells with characteristics of a particular subtype, but most 
subtypes were still routinely identified. This has been 
suggested in breast cancer earlier as well [13].

Clinical and molecular relevance of ESCC subtypes 

To further characterize these four subtypes, we 
determined the clinical and histopathological features 
like metastasis, tumor differentiation, smoking, loss of 
heterozygosity (LOH) and copy number (CN) gain or 
loss (Figure 1C, Supplementary Table 3). Samples of 
ESCC2 were more frequently metastasized to other parts 
of the body (58.3% [n = 7] vs. 17.3% [n = 8]; P = 7.909 
× 10-3, Fisher exact test, Figure 2A) and entirely deceased 
after neo-adjuvant chemoradiotherapy, indicating that 
this subtype has very high potential to metastasize of 
all the ESCC tumor subtypes and confirms that tumor 
metastasis is a common cause of ESCC mortality [14]. 
The ESCC4 group was indeed associated with genomic 
instability, wherein high frequency genomic instability 
measures (LOH, CN loss, CN gain ≥ 10%) were often 
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observed in this subtype (83.3% [n = 5] vs. 25% [n = 6]; 
P = 1.556 × 10–2, Fisher exact test, Figure 2A). The 
CNA microarray analysis identified frequent DNA copy 
alteration including CN loss on 3p (33%), and CN gain 
on 3q (48%). About 70% of the LOH was found to be 
CNLOH, and has been reported to be highly associated 
with tumor development [15]. Patients classified under 
ESCC1 and ESCC4 subtypes were more frequently found 
to be smoking (60%, 50%, respectively, versus < 20% in 
other groups) and also 75% of these samples were stage Ⅲ 
tumors and thereby suggesting that there is no association 
between clusters and tumor stage. Moreover, we found that 
cancer cell differentiation may be associated with ESCC1 
and ESCC2 in validation sets GSE47404 and GSE53624. 
Observations have also revealed that, in GSE47404, 
52.6% (n = 10) of ESCC1 samples were well differentiated 
with borderline significance (P = 5.837 × 10-2,  
Fisher exact test, Figure 2B), whereas 42.8% (n = 6) 
of the ESCC2 samples were poorly differentiated 
(P = 6.953 × 10-3, Fisher exact test, Figure 2B). And in 
GSE53624, 29.4% (n = 10) of ESCC1 samples were 
well differentiated (P = 6.889 × 10–2, Fisher exact test, 
Figure 2C), whereas 50% (n = 32) of ESCC2 samples 
were poorly differentiated (P = 8.8858 × 10-4, Fisher exact 
test, Figure 2C). These results suggested that ESCC1 
tumors have a low malignancy potential in comparison to 

the ESCC2 tumors which are highly aggressive and tend 
to grow and spread more quickly, which is in agreement 
with ESCC2 being metastasis-associated with discovery 
dataset. 

Moreover, we performed Kaplan-Meier survival 
analysis to investigate the prognostic value of the four 
subtypes. The prognosis of each subtype in discovery 
set (n = 58) is not significant due to insufficient survival 
information. Nevertheless, we found significant differences 
in overall survival of the four subtypes in validation set 
GSE53624 (n = 119, Figure 2D), and confirmed a poor 
prognosis of patients with ESCC2 and ESCC4 tumors. 
These results are consistent with our classification that 
well-differentiated subtypes (ESCC1) have better survival 
than those of metastasis and poor-differentiated (ESCC2). 
Cumulatively, our classification system might provide 
useful information for risk stratification and treatment.

Signaling pathways associated with ESCC Subtypes

To investigate the biological properties that were 
associated with ESCC subtypes, gene set enrichment 
analysis (GSEA) was applied to determine gene sets 
which were more abundant in specific subtypes. During 
the investigation, our focus was on ESCC2 and ESCC4 
subtypes associated with clinical signatures. The ESCC2 

Figure 1: Unsupervised classification identified four subtypes (A) Consensus clustering matrix shows the optimal four clusters. (B) The 
Item-consensus plot shows the relationship between each cluster. (C) Up heatmap shows the four subtypes according to the PAM classifier. 
Bottom barplots show the clinical information associated with each sample.
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subtype was significantly enriched in gene sets namely, 
GCM_MAP4K4, ACTIN_BINDING and ACTIN_
FILAMENT (Figure 3A, Supplementary Table 4). Of 
these, MAP4K4 encodes a protein that is member of 
the mammalian serine/threonine protein kinase family. 
Previous studies have suggested that this gene was 
necessary for the migration of different cancer cells 
in various tumors such as hepatocellular, bladder and 
ovarian carcinoma [16]. The influence of MAP4K4 on 
tumor proliferation, migration and invasion was associated 
with the activation of the c-jun N-terminal kinase (JNK) 
pathway [17]. Further, Knockdown of MAP4K4 may 
also help in treating ESCC2 tumors. Likewise, actin is an 
important protein in mammalian cells, which can promote 
cells to move, polarise, divide and maintain organization. 
Actin-binding and actin filament proteins can reorganize 

the actin cytoskeleton, and drive cancer cell migration and 
invasion [18]. Components of the actin system may serve 
as significant potential targets for this subtype. In order to 
investigate the association between ESCC2 subtype and 
epithelial-mesenchymal transition (EMT), we used a 130 
EMT-core regulated gene list from a pan-cancer study [19] 
as gene set. Of which 89 genes were identified from the list 
that were expressed in our discovery set (Supplementary 
Table 5). As a consequence, 17 genes of the EMT-core 
upregulated genes were significantly upregulated in 
ESCC2 subtype, including well-known EMT makers 
such as ZEB1 and VIM (Figure 3B), while 22 genes of 
the EMT-core downregulated genes were significantly 
downregulated in ESCC2 subtype, including reported 
downregulated epithelial cell makers such as EPCAM, 
KRT17, PKP2 and PPL and some tumor suppressors 

Figure 2: (A–C) Barpolts show the comparation on the clinical features in discover set and validation sets. (D) Kaplan-Meier graphs 
depicting disease-free survival (DFS) within GSE53624 (n = 119) stratified by the classification.
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such as KLK10 and SERPINB1 (Figure 3B). These results 
indicated ESCC2 subtype is associated with EMT. The 
results obtained during the analyses have confirmed that 
ESCC2 tumors metastasize more frequently than other 
subtypes and also upregulate genes driving tumor cells 
towards metastasis. 

The ESCC4 subtype showed more abundant 
expression of genes involved in hallmark MYC targets 
V1 and V2 (Figure 3A, Supplementary Table 4). MYC 
has been implicated as a driver gene in ESCC and it 
plays a crucial role in cell cycle progression, apoptosis 
and cellular transformation by deregulating hundreds 
of direct target genes [20, 21]. MYC mediates genomic 
instability by promoting chromosome tetraploidy and 
aneuploidy. Leading edge analysis was performed to 
select overlapping genes from the two gene sets which 
were of interest. ESCC4 tumors were enriched in cell 
markers CDK4, MCM4, DDX18, PHB, PA2G4, HSPD1 
and HSPE1. This result represented the well characterized 
group of chromosomal instability (CIN) tumors for ESCC4 
subtype. Based on the clinical features and signaling 
pathway proposed above, the four subtypes were identified 
as: ESCC1, “well-differentiated”; ESCC2, “metastasis-
associated”; ESCC3, “moderated”; ESCC4, “CIN+”. 

Tumor microenvironment of ESCC subtypes

Intratumor heterogeneity is associated with the 
tumor microenvironment which comprising a variety of 

tumor-associated stromas and leukocytes. To explore the 
performances of the microenvironment in different ESCC 
subtypes, ESTIMATE [10] was applied to infer tumor 
purity and stroma or immune cell fraction for each sample 
in discovery set and validation sets. We found that the 
average tumor purity of ESCC2 tumors was significantly 
lower than tumors from other subtypes in discovery set 
and non-microdissected validation sets (GSE23400 and 
GSE53624, Figure 4). This indicated that infiltrating 
stroma and immune cells may contribute to ESCC2 
subtype (metastasis, EMT, poorly differentiation), which 
is consistent with previous studies in colorectal cancer 
[22]. However, we could identify ESCC2 group in both 
microdissected datasets (GSE33426 and GSE47404, 
Figure 4), suggesting that ESCC2 signature genes might 
not be expressed by stroma cells and immune cells. 
Moreover, we observed that immune cells were retained 
in the microdissected dataset in each subtype which 
reflected the infiltrating immune cells intermix in tumors 
(Supplementary Figure 4). Then, we utilized CIBERSORT 
(a machine learning approach) [23] to identify diverse 
immune cell fractions. We used expression profiles of 
discovery set (n = 58) and GSE53624 (n = 119) that are 
in non-log space respectively, as input to evaluate 22 
distinct immune cell types based on 547 signature genes. 
It was observed that all the ESCCs were commonly found 
to contain plasma cells and macrophages. (Figure 4A, 
Supplementary Figure 5A,Supplementary Table 6). We 
evaluated lower fractions of the regulatory T cells (Tregs) 

Figure 3: (A) Gene set enrichment analysis for ESCC2 and ESCC4. Heatmap shows ESCC2 and ESCC4 enriched on the selected gene 
sets. (B) Heatmaps showing the core gene sets for EMT was significantly dysregulated in ESCC2 subtype. 
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in ESCC4 tumors in both discovery set and GSE53624 
(Figure 5C). Tregs is generally shown to facilitate immune 
escape by suppressing activity of effector T cells. Future 
studies are needed to illuminate the reason for lack 
of Tregs in ESCC4 tumors. Significant differences in 
relative frequencies of some immune cell composition 
across four subtypes could only be observed in discovery 
set (Supplementary Figure 6B). This may be due to some 
samples being pretreated in discovery set.

To investigate the association of leukocytes with 
ESCC2 subtype, SAM was used to detect differentially 
expressed genes in ESCC2 tumors. This study especially 
focuses focused on genes related to metastasis and 
discovered that 20 up-regulated genes associated with 
immune cells in discovery set and GSE53624 which 
could promote every steps of the metastatic cascade 
(Figure 4B, Supplementary Figure 5B and Supplementary 
Figure 6A) [24]. Chemokines and cytokines including 
CCL2, CXCL12, CSF1, CCL5, CCL22, IL6 and TGFB3 
are secreted by primary tumor cells to recruit immune cells 
to escape from anti-tumor immune responses [25–27]. 
Regulatory B cells (Bregs) which express PTPRC may 
also promote metastasis through immune suppression [28]. 
Moreover, recent studies have indicated that TAMs and 
tumor-associated neutrophils (TANs) can also contribute 
to tumor cell egress and survival via NCOA1, CCL18, 
VCAM1, ICAM1 etc [29–31]. In addition, immature 
myeloid cells are the major component of pre-metastatic 

niche and metastatic-associated macrophages (MAMs) 
which interacts with the emigrated cancer cells to 
facilitate persistent growth of metastatic. These results 
may contribute to immunotherapy for metastatic ESCCs 
by targeting these immune cells. 

DISCUSSION

In summary, we have built a molecular classifier 
for ESCC based on analysis of gene expression profiles, 
and identified four distinct subtypes (ESCC1, ESCC2, 
ESCC3, and ESCC4) that are associated with different 
clinical and molecular characteristics. These four distinct 
subtypes were validated in four primary data sets, even in 
microdissected tumors. The ESCC2 tumors were mostly 
metastatic that are associated with poor differentiation, 
EMT and poor prognosis. This subtype has been previously 
reported on colon cancer [22], our analyses suggested 
that this subtype is also existed in ESCC. Furthermore, 
the ESCC4 subtype is associated with CIN, comparable 
poor prognosis and revealed overexpression of MYC target 
genes in the subset. Most of the ESCC4 tumors were also 
identified with high frequency of loss of heterozygosity 
(LOH). In particular observations revealed that, ESCC1 
tumors were mostly well differentiated compare to ESCC2 
tumors in the validation sets GSE47404 and GSE53624 
and have better survival than other subtypes. Notably, 
the ESCC3 subtype is much less well characterized and 

Figure 4: Box plots display reduced tumor purity in ESCC2 tumors. 
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needs further investigation. Only two of 59 tumors were 
classified in ESCC3 (GSE33426), which might due to 
tumor microenvironmental contaminations. Nevertheless, 
GSE47404 has similar percentage of ESCC3, suggesting 
that there might be other factors leading to the 
imbalanced percentage of ESCC3 in GSE33426 instead 
of microenvironmental contaminations. Relatively small 
sample sizes were used in our analysis (less than 100) and 
inter-patient tumor heterogeneity is large, which is more 
likely to be the cause.

In this analyses showed that ESCC2 samples have 
a significantly higher stoma and immune content. This is 
consistent with previous study in colorectal cancer [22] and 
ovarian carcinoma [32] that high stromal or immune scores 
reflect the the presence of EMT subtypes. We have also 
identified that ESCC2 signature genes are not expressed 
by stroma cells and leukocytes. This abundant stroma 
and immune cells may be considered a feature of ESCC2 
subtype. Further study in ESCC PDXs and cell lines may 
be needed to more quantitatively investigate the extent of 
tumor microenvironmental contribution to this subtype. By 
applying CIBERSORT, we observed relationships between 

ESCC subtypes and immune cell signatures. In depth 
observations have shown that, ESCC4 subtype correlates 
with the absence of Tregs. Also, the ESCC2 subset was 
influenced by various cell types which were regulated 
by distinct chemoattractants, especially TAMs acting in 
every step of the metastatic cascade. Current therapies are 
limited to targeting only macrophages and hence a more 
detailed study of interactions between each immune cell 
and associated with ESCC2 is needed to devise a more 
precise immunotherapy for metastasis.

Our analysis was limited by lack of ESCC 
microarray data, clinical tracking information and 
molecular characteristics. Further study with large 
ESCC cohorts is needed to confirm the significance 
and robustness of the classifier. On the hindsight, it 
would motivate investigations into associations between 
clinicopathological signatures and these subtypes [33]. 
Recognition of these classifications clearly reflects the 
intra-heterogeneity of ESCC and provides a basis for 
detecting potential biomarkers or therapeutic approaches 
for specific subtypes in preclinical trials which would 
finally contribute to personalized treatment [34].

Figure 5: Immune cell composition inferred from ESCC microarray profiles. (A) Evaluated mRNA fraction of 22 leukocytes 
across 58 ESCC tumors. (B) Heatmap shows the 14 up-regulated genes associated with metastasis in ESCC2. (C) Comparison of immune 
cell fraction of Tregs across 4 subtypes in discovery set and GSE53624.
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MATERIALS AND METHODS

Sample collection 

In this study, six independent ESCC microarray 
datasets from GEO Datasets comprising a total of 360 
unique samples with stage I–III primary ESCC from East 
Asians were used. The discovery dataset contains 58 cases 
with stag II to III ESCCs from two datasets, GSE38129 
(n = 30) [6] and GSE45670 (n = 28) [35], whereas the 
validation datasets include GSE23400 (n = 53) [36], 
GSE33426 (n = 59) [37] and GSE47404 (n = 71) [38] and 
GSE53624 (n = 119) [39]. Detail information about each 
dataset was illustrated in Supplementary Table 1.

Gene expression analysis and data processing

Initially, the CEL files from GEO datasets 
were downloaded and the two datasets (GSE38129 
and GSE45670) were normalized using fRMA [40] 
independently. Nevertheless, Barcode algorithm [41] 
was also employed to distinguish between expressed or 
unexpressed genes. Subsequently, genes expressed in at 
least one sample of the two datasets were retained. Also, the 
probe sets were selected with MAD greater than 0.5 and the 
median centered. Later, the two datasets were merged using 
Java-based distance-weighted discrimination method [42]. 
Finally, the rows were median centered and 3118 probe sets 
were retained with MAD > 0.5 (Supplementary Figure 3).

Consensus cluster and generation of classifier

Consensus clustering [43] was implemented in the 
R package ConsensusClusterPlus, with 1000 iteration and 
0.98 subsampling ration to determine a robust clustering. 
A significant increase in clustering stability was observed 
from k = 2–4, but not for k > 4 (Figure. 1B). Cluster 
robustness analysis was performed using the gap statistic 
[44] for top 3000 differential expressed probe sets, and 
a peak was consistently found at k = 4 (Supplementary 
Figure 1C). We collapsed the expression profiles from the 
probe sets to unique genes using collapseRows (R package 
WGCNA) [45]. The probe sets were selected on the basis 
of the highest mean expression of each gene. Also, the 
most representative genes were identified using SAM 
(R package siggenes) [46] with FDR < 0.01 and 206 
genes were retained with AUC > 0.9 (R package ROCR). 
Finally, PAM [47] was used to determine 185 subtype-
specific signature genes. 

Validation in additional data sets

Initially, fRMA was used to process GSE23400 and 
GSE33426 data set. In case of GSE47404 and GSE53624 
dataset (Agilent Microarry), quantile normalized microarray 
data was directly downloaded from GEO Datasets. For 
each preprocessed data set obtained, expression profiles 

from probe sets were collapsed to unique genes using 
collapseRows. The signature genes that were not included 
in the validation data sets were replaced by the most 
correlating gene which was expressed in validation sets. 
Finally, the PAM classifier was used for each preprocessed 
data sets for classification of gene expression data.

Gene Set Enrichment Analysis (GSEA)

GSEA [48] was performed using Java GSEA 
Desktop Application. Molecular Signatures Database 
(MSigDB) was used as gene set for analysis and further 
P values were estimated by 1,000 permutations. Also, un-
filtered GSE38129 data set was used for analysis. 

Estimation of tumor purity, stroma and immune 
cell mixture 

The proportion of stromal and infiltrating immune 
cells were measured with ESTIMATE [10], a gene 
expression signature-based method that estimate tumor 
purity from the gene expression data.

Inferring immune cells composition

The data subsets GSE38129, GSE45670 and 
GSE53624 were evaluated by applying CIBERSORT 
[49] with the LM22 gene signature to identify 22 immune 
cell types. For this analysis, microarray probes were 
replaced with HUGO gene symbols. Genes with multiple 
probe were collapsed to the one with the highest mean 
expression. Expression profiles were normalized using 
fRMA and then by antilog of 2x. Analyses were done with 
100 permutations with default parameters and results were 
filtered by a maximum p-value of 0.05.
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