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EGFR G796D mutation mediates resistance to osimertinib
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ABSTRACT
Osimertinib is an effective third-generation epidermal growth factor receptor 

(EGFR) tyrosine kinase inhibitor (TKI) approved in multiple countries and regions 
for patients with EGFR T790M mutation-positive non-small cell lung cancer (NSCLC). 
Despite impressive initial tumor responses, development of drug resistance ultimately 
limits the benefit of this compound. Mechanisms of resistance to osimertinib are 
just beginning to emerge, such as EGFR C797S and L718Q mutations, BRAF V600E 
and PIK3CA E545K mutations, as well as ERBB2 and MET amplification. However, 
a comprehensive view is still missing. In this study, we presented the first case 
of Chinese NSCLC patient who developed resistance to osimertinib, and discovered 
de novo EGFR G796D mutation as a potential mechanism. Our findings provided 
insights into mechanisms of resistance to osimertinib and highlighted tumor 
heterogeneity and clonal evolution during the development of drug resistance.

INTRODUCTION

Epidermal growth factor receptor (EGFR) activating 
mutations (e.g., L858R and exon 19 deletion) account for 
30–60% of non-small cell lung cancer (NSCLC) cases 
in Asia [1–3]. NSCLC patients with EGFR activating 
mutations respond to first- and second-generation EGFR 
tyrosine kinase inhibitors (TKIs) [4–13]. However, drug 
resistance inevitably develops, with ~60% of events 
attributing to a secondary EGFR T790M gatekeeper 
mutation [14–16]. Osimertinib is an oral, irreversible, 
mutant-selective third-generation EGFR-TKI developed 
against NSCLC bearing EGFR activating mutation and 
T790M [17–19]. In the AURA and AURA3 studies, 
osimertinib was highly active in lung cancer patients with 
T790M mutation who had progressed during prior therapy 
with EGFR-TKIs [20, 21]. Among T790M-positive 
NSCLC patients, the median progression-free survival 
(PFS) was significantly longer with osimertinib than with 

platinum therapy plus pemetrexed (10.1 vs. 4.4 months; 
hazard ratio, 0.30; P < 0.001), and the objective response 
rate (ORR) was significantly better with osimertinib than 
with platinum therapy plus pemetrexed (71% vs. 31%; 
odds ratio, 5.39; P < 0.001) [21]. 

So far, only a few studies have been performed 
to understand potential mechanisms of resistance 
to osimertinib. EGFR C797S mutation has been 
demonstrated as a principle mechanism of acquired 
resistance [22, 23], presumable through abolishing 
the covalent binding between osimertinib and C797 
residue. In addition, there are a limited number of case 
reports detailing the identification of EGFR L718Q, 
BRAF V600E and PIK3CA E545K mutations, as well as 
ERBB2 and MET amplification [23–26]. Little is known 
about alternative resistance mechanisms, the prevalence 
of each type of mechanisms, and the ethnic differences 
in resistance profiles. In this study, we present a case 
report on the first Chinese osimertinib NSCLC patient. 
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We closely monitored the disease course of the patient, 
prospectively collected pretreatment and post-disease 
progression plasma specimens, and identified a standalone 
EGFR G796D mutation as a new resistance mechanism to 
osimertinib. 

RESULTS 

Medical history of patient246 

Patient246 was a 56 year-old female diagnosed 
as stage IV lung adenocarcinoma (T4N2M1b), with 
multiple distant metastasis lesions including brain and 
bone (Figure 1, Supplementary Figure 1). She had 
received multiple lines of chemotherapy including 4 cycles 
of gemcitabine/cisplatin and 2 cycles of pemetrexed/
carboplatin for 2 years and 5 months in total. After disease 
progression, she switched to gefitinib and showed a 
partial response within 1 month of treatment. At 13-month 
post-gefitinib, she relapsed and EGFR T790M mutation 
was detected from biopsy of progressed primary lesion 
(Figure 1). Through special approval of “named patient use” 
due to unavailability of osimertinib in Chinese market at 
the time, she became the first patient to receive osimertinib 
in China. After 6 weeks of treatment, scans demonstrated 

a partial response. However, she developed systemic 
progressive disease (PD) at ~6.5-month post-osimertinib 
and switched to radiotherapy subsequently (Figure 1).

Identification of EGFR G796D mutation from 
plasma samples

To understand the mechanisms underlying resistance 
to osimertinib in patient246, we collected and profiled her 
plasma samples from three time points – pre-gefitinib, 
gefitinib PD and osimertinib PD (Figure 1). Using 
next-generation panel sequencing, we identified EGFR 
L858R mutation with mutant allele frequency (MAF) 
of 4.28% in the pre-gefitinib plasma sample (Figure 2). 
Interestingly, low MAF (0.61%) of EGFR G796D was 
also detected at this point. After gefitinib PD, T790M 
emerged to MAF of 1.85%, consistent with tissue testing 
results. Upon osimertinib PD, both L858R and T790M 
became undetectable, however, G796D increased to 
MAF of 1.91% (Figure 2). As control, none of the three 
types of mutations were detected in whole blood. These 
data suggested that G796D was a de novo mutation 
likely involved in resistance to osimertinib. The different 
dynamics of L858R, T790M and G796D during treatment 
journey also implicated that G796D might be a standalone 
mutation independent of L858R and T790M.

Figure 1: Medical history of patient246. The patient first underwent multiple lines of chemotherapy and gefitinib treatment. After 
the resistance biopsy was diagnosed as T790M-positive, she received osimertinib through “named patient use”. Abbreviations: GP, 
gemcitabine/cisplatin; AC, pemetrexed/carboplatin; Tx, treatment; PR, partial response; PD, progressive disease. The three time points of 
plasma sample collection are underlined and bolded.
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EGFR G796D mutation as the resistance 
mechanism to osimertinib

G796 is located adjacent to C797 residue, where 
osimertinib forms covalent bond with EGFR. Thus 
we hypothesized that G796D could drive resistance 
to osimertinib by interfering with osimertinib-EGFR 
interaction. Indeed, structural modeling of EGFR kinase 
domain in complex with osimertinib showed that the 
side chain of mutated D796 residue would clash into 
the molecular surface of osimertinib, lead to a steric 
and energetic repulsion, and result in the loss of binding 
affinity (Figure 3). 

To confirm that G796D could induce resistance 
to osimertinib, we generated stable lines of Ba/F3 cells 
carrying various EGFR mutants (Supplementary Figure 2). 
IL3-independent growth assay suggested that G796D 
was likely a mild oncogenic driver comparing to L858R 
and L858R/T790M mutations (Supplementary Figure 3). 
Osimertinib inhibited the growth of L858R or L858R/
T790M lines with GI50 of 30–40 nM, but GI50 increased to 
1.5–2 µM in G796D mutant line, with about 50-fold shift 
(Figure 4A). Moreover, p-EGFR level of G796D mutant 
line, and its downstream p-AKT and p-ERK1/2 levels were 
not modulated by osimertinib up to 1 µM concentration 
(Figure 4B). These cellular functional results suggested 
that G796D mutation rendered the resistance to osimertinib.

DISCUSSION 

Plasma cell-free DNA (cfDNA) samples have been 
shown to contain tumor-specific genomic alterations 
and utilized to dynamically monitor tumor response and 
relapse [27, 28]. Comparing with tissue testing, plasma 
testing is often associated with lower sensitivity but on 
the other hand, can circumvent the challenges in obtaining 
re-biopsy specimens and “false-negatives” resulted from 
tumor heterogeneity. The abundances of mutations in 
cfDNA are correlated with tumor burden, stage and 
metastasis status [29, 30]. And several studies have 
demonstrated that quantitative measurement of mutation 
abundances in cfDNA could be used to accurately reflect 
clinical response and emerge of resistance [31–33]. In 
this study, we used cfDNA to understand the resistance 
mechanisms of osimertinib.

Our dynamic genomic analysis of serial cfDNA 
samples from patient246 at time points of pre-gefitinib, 
gefitinib PD and osimertinib PD discovered EGFR G796D 
mutation as a new resistance mechanism to osimertinib. 
The MAF of G796D in cfDNA samples increased from 
0.61% at pre-gefitinib to 1.91% upon osimeritinib PD. 
Meanwhile, the acquired T790M mutation following 
gefitinib PD was cleared to the undetectable level by 
osimeritinib, which is consistent with the reported data 
in some patients receiving second-line treatment of 

Figure 2: Dynamics of EGFR L858R, T790M and G796D mutations. IGV view of variant calls covering EGFR L858, T790 
and G796 residues from panel sequencing of plasma samples at indicated time points. G796D mutation increased from 0.61% of reads at 
pre-gefitinib to 1.91% upon osimertinib PD, while T790M acquired at gefitinib resistance was cleared by osimertinib.
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Figure 4: EGFR G796D confers resistance to osimertinib. (A) Upper: Ba/F3 cells harboring various EGFR mutants were treated 
with osimertinib or gefitinib at indicated concentrations. Viable cells were measured after 72 h of treatment and cell proliferation was 
calculated as % Net Growth = (Gday3, inh - G0)/(Gday3, ctl - G0) × 100%. Experiments were repeated twice, with mean ± S.D. plotted at each 
concentration. The curves were fitted using a nonlinear regression model with a sigmoidal dose response. Lower: GI50 (μM) of the two 
independent runs. (B) Ba/F3 cells expressing various EGFR mutants were pre-incubated with 1 μM gefitinib or osimertinib for 2 h followed 
by stimulation of EGF for 10 min in serum-free medium. Cell extracts were immunoblotted to detect phosphorylated or total EGFR, AKT 
and ERK1/2 levels. 

Figure 3: Structural modeling of EGFR G796D in complex with osimertinib. G796D mutation is expected to sterically 
interfere with binding of osimertinib. The hydrophilic side chain CH2COOH of mutated D796 residue will bump into the greasy core of 
osimertinib, which would either push the inhibitor out of the current binding mode, or distort the loop and affect the hinge binding. Either 
case could lower the binding affinity of osimertinib. The orange disks indicate the clashes between the side chain of the mutated reside and 
the core of osimertinib.
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osimertinib or rociletinib, another third-generation EGFR-
TKI [22, 23, 26, 34, 35]. This dynamic switch between 
G796D and T790M mutations suggested a clonal evolution 
event which featured diminishment of T790M-positive 
clones and outgrowth of pre-existing G796D-positive 
clones under selection pressure of osimertinib (Figure 5).

Previously, G796C/D/R were demonstrated to 
render resistance to erlotinib and CI-1033 in Ba/F3 cell 
system through a random mutagenesis screening approach 
[36]. The impact was more dramatic on CI-1033, a pan-
ErbB inhibitor that forms a covalent bond with EGFR 
C797 residue [37]. The GI50 increased 10- and 100-fold 
for erlotinib and CI-1033, respectively, in G796R mutant 
line compared with Ba/F3 cells expressing wildtype 
EGFR [36]. G796D could induce resistance to osimertinib 
by interfering with osimertinib-EGFR interaction due 
to steric hindrance around C797 residue, the covalent 
binding site for the inhibitor. We noted that G796D is 
resistant to gefitinib as well as erlotinib (Supplementary 
Figure 4), albeit to a less extent. However, G796D-
positive cells remained as minority of population upon 
gefitinib PD. We reasoned that it was probably because 
G796D is a milder mutation comparing to L858R/T790M. 
Therefore, L858R/T790M-positive population presented 
as the dominant force of tumor growth at gefitinib 
resistance, and G796D-positve cells only emerged as 
majority after L858R/T790M-positive clones were 
diminished by osimertinib (Figure 5).

To our knowledge, all the EGFR mutations previously 
reported to drive resistance to osimertinib or rociletinib, 
such as L718Q, C797S and L798I, were identified with 
T790M concurrently [22–24, 34], while G796D is found 
in the absence of T790M context. Hence this is the sole 
case by far of EGFR mutation-dependent mechanism 
causing intrinsic resistance to osimertinib. G796A/D/S 
mutations were reported in TKI-naive lung adenocarcinoma 
patients, either alone or in combination with exon 19 
deletion [38–40], supporting that it can exist as a de novo 
oncogenic mutation. Consistently, in our case, G796D was 

identified together with L858R at pre-gefitinib, as a minor, 
independent clone. It remains to be seen whether G796D 
can also present as an acquired resistance mutation. 

In conclusion, we have identified a case of Chinese 
NSCLC patient with intrinsic EGFR G796D mutation 
that led to resistance to osimertinib. The loss of T790M-
positive clones and selection of pre-existing G796D-
positive clones suggest that genomic heterogeneity 
contributes to clonal evolution which ultimately results in 
the emergence of drug resistance during treatment journey. 
Our findings highlight the needs for development of new 
targeted therapies and combination strategies dynamically 
adjusted based on real-time monitored genomic analysis 
throughout the entirety of disease course.

MATERIALS AND METHODS

Patient information

Patient246 was diagnosed with advanced NSCLC 
at Shanghai Pulmonary Hospital in June 2011. The study 
was approved by the hospital research ethics committee 
and the patient had signed the informed consent form. 
Serial plasma samples were collected at time points of pre-
gefitinib, gefitinib PD and osimertinib PD. Whole blood 
were obtained at osimertinib PD. Tumor responses were 
assessed according to Response Evaluation Criteria In 
Solid Tumors Version 1.1 (RECIST 1.1).

Extraction of genomic DNA and plasma cell-free 
DNA (cfDNA)

Genomic DNA from whole blood was extracted 
using QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) 
according to the manufacturer’s instructions. Plasma samples 
were prepared and stored as described previously [33]. 
cfDNA was extracted with QIAamp Circulating Nucleic Acid 
Kit (Qiagen) according to the manufacturer’s protocol. 

Figure 5: Tumor heterogeneity and clonal evolution. A conceptual model showing that the tumor was genomically heterogeneous, 
comprising of both L858R-positive and G796D-positive populations, with the former as the major clone. Upon gefitinib resistance, L858R-
positive cells acquired the secondary T790M mutation and became the dominant driver of tumor growth. These L858R/T790M-positive 
tumor cells were then inhibited by osimertinib, whereas pre-existing G796D-positive clones, which are resistant to osimertinib, gradually 
made up the majority of the population.
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Next-generation panel sequencing

Indexed Illumina NGS libraries were prepared 
from plasma cfDNA and fragmented genomic DNA 
using KAPA Hyper Prep Kit (Kapa Biosystems, Woburn, 
MA, USA) according to the manufacturer’s protocol. 
Ligation was performed at 4°C overnight using adapters 
from SeqCap Adapter Kit (Roche NimbleGen, Madison, 
WI, USA). The indexed libraries were captured using 
a customized SeqCap EZ Choice Library (Roche 
NimbleGen) covering 403 genes (Supplementary Table 1). 
Hybrid selection, washing, recovery, amplification and 
purification of captured multiplex DNA samples were 
performed using SeqCap EZ system (Roche NimbleGen). 
The amplified products were then purified with QIAquick 
PCR Purification Kit (Qiagen), and multiplexed libraries 
sequenced on the Illumina HiSeq X10 platform with 
150-bp paired-end reads according to the manufacturer’s 
protocol. The raw average sequence depth was >7000× for 
plasma cfDNA samples and ~2800× for the genomic DNA 
from whole blood.

Bioinformatics data analysis

BWA [41] was employed for mapping the pair-
end reads to human reference genome hg19, samblaster 
[42] for marking duplicate reads, and VarDict [43] for 
detection of single nucleotide variants (SNVs) and small 
insertions and deletions (indels). SNVs and small indels 
were called with the criteria of allele frequency ≥ 0.5% 
and at least two supporting reads after deduplication. 
Variant calls of interest were manually inspected in IGV 
[44, 45].

Structural modeling

G796 was mutated to aspartic acid based on the 
optimal trajectory for the side chain using the EGFR-
osimertinib co-crystal structure (PDB code: 4ZAU) and 
“Mutate Residue” method in Maestro (Schrodinger LLC., 
New York, NY, USA).

Cell proliferation assay

Generation of Ba/F3 stable lines expressing various 
EGFR mutants was described in Supplementary Materials 
and Methods. For MTS assay, Ba/F3 cells were prepared 
in RPMI1640 with 10% FBS and 10 ng/ml EGF, seeded 
in 96-well plates at 30,000 cells per well, and incubated 
overnight. The next day, compounds at different 
concentrations were added to the assay plates, and 
cells were incubated for additional 72 hours. Following 
compound treatment, 20 μl/well of CellTiter 96® AQueous 
One Solution Reagent (Promega, Madison, WI, USA) was 
added, incubated at room temperature for 2 hours, then 
25 μl/well of 10% SDS was added to stop the reaction. 

The absorbance was measured at 490 nm wavelength 
using 650 nm as reference on Tecan Spark 20M (Tecan 
Group Ltd., Zurich, Switzerland). The data was processed 
and plotted using GraphPad Prism 6 (GraphPad Software 
Inc., San Diego, CA, USA). 

Modulation of signal pathways

Ba/F3 cells harboring various EGFR mutants were 
starved in RPMI1640 for 4 hours, pre-treated with 1 uM 
gefitinib or osimertinib for 2 hours, and then stimulated 
by 100 ng/ml EGF for 10 minutes in serum-free medium. 
Cells were collected, washed once in cold PBS and 
lysed in 2×SDS lysis buffer [100 mM Tris pH6.8, 4% 
SDS, 20% glycerol, and 1× protease and phosphatase 
inhibitors (Pierce | Thermo Fisher Scientific, Waltham, 
MA, USA)]. The lysates were boiled at 100oC for  
10 minutes, and protein concentration was quantified 
by BCA Protein Assay Kit (Pierce). Equal amount of 
protein was loaded onto SDS-PAGE gel, transferred to 
nitrocellulose membrane using iBolt (Invitrogen, Carlsbad, 
CA, USA), and subjected to immunoblotting analysis 
with indicated antibodies according to manufacturers’ 
instructions.
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