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ABSTRACT
Increased mammographic breast density is associated with a 4–6-fold increased 

risk of breast cancer, yet lifestyle factors that can reduce dense breasts are yet to be 
identified, and viable prevention strategies to reduce breast density-associated breast 
cancer development are yet to be developed. We investigated the associations of 
breast tissue receptor activator of nuclear factor-κB (RANK) pathway gene expression 
with mammographic density in 48 premenopausal women, with no previous history 
of cancer. Gene expression levels were measured in total RNA isolated from formalin-
fixed paraffin-embedded breast tissue samples, using the NanoString nCounter 
platform. Mammographic density was classified based on the American College of 
Radiology Breast Imaging Reporting and Data (BI-RADS). Linear regression was used 
to evaluate associations between gene expression and mammographic density. The 
mean age of participants was 44.4 years. Women with higher breast tissue RANKL 
(TNFSF11) (p-value = 0.0076), and TNF (p-value = 0.007) gene expression had higher 
mammographic density. Our finding provides mechanistic support for a breast cancer 
chemoprevention trial with a RANKL inhibitor among high-risk premenopausal women 
with dense breasts.

INTRODUCTION

Increased mammographic breast density is 
associated with a 4–6-fold increased risk of breast cancer 
[1–3]. Each 1% increase in percent mammographic 
density is associated with a 3% increase in breast cancer 
risk among women using estrogen plus progestin [1]. 
Estimates of attributable risk suggest that having dense 
breasts may account for 28–33% of breast cancer cases 
[4]. Furthermore, 2.4 million premenopausal women in the 
United States have extremely dense breasts [5]. Hence, 
providing targeted prevention to these women could 
have a major impact on reducing breast cancer incidence. 

Nevertheless, lifestyle factors that can reduce dense breasts 
are yet to be identified, and viable prevention strategies to 
reduce mammographic breast density-associated breast 
cancer development are yet to be developed. 

Preclinical studies demonstrating important 
functional roles for the receptor activator of nuclear factor-
κB (RANK) pathway, a member of the tumor necrosis 
factor (TNF) superfamily in breast development suggest 
that targeting this pathway could have utility in primary 
breast cancer prevention. RANK is the signaling receptor 
for RANK ligand (RANKL), while osteoprotegerin 
(OPG) acts as a soluble decoy receptor [6]. RANKL is 
required for mammary epithelial cell proliferation [7], 
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an essential part of breast density. Seminal experimental 
studies revealed that RANKL signaling mediates the 
major proliferative response of mammary epithelium 
to progesterone, and progesterone-driven expansion 
of mammary stem cells [8, 9]. Progesterone is a breast 
mitogen; it increases breast density, and is a risk factor for 
breast cancer, independent of estrogen [10, 11].  Notably, 
disruption of RANKL signaling attenuates progestin-
driven mammary epithelial cell proliferation, and reduces 
the onset of mammary tumors in experimental studies 
[7, 8, 12]. In addition, novel data show that RANKL 
signaling could be important in BRCA1 mutation-driven 
mammary cancer [13], and RANKL inhibition in breast 
organoids derived from pre-neoplastic BRCA mutation 
tissue attenuated progesterone-induced proliferation 
[13, 14]. Therefore, targeting RANKL signaling could 
present a path to reducing mammographic breast density, 
as well as breast-density associated breast cancer 
development. However, to the best of our knowledge, no 
study has evaluated how RANKL signaling influences 
mammographic density. Here, we investigated for the first 
time the associations of breast tissue RANK pathway gene 
expression with mammographic density in premenopausal 
women.

RESULTS

The mean age of women in our study was 44.4 
years (Table 1). The mean body mass index (BMI) was 
27.5 kg/m2. In line with the mammographic density 
distribution among US women, the majority of women 

(N=20, 41.7%) in our study had heterogeneously dense 
breasts, 18 (37.5%) had scattered areas of fibroglandular 
density and 9 (18.8%) had extremely dense breasts. We 
observed statistically significant associations between 
breast tissue RANKL (TNFSF11) and TNF gene expression 
and mammographic density, but no statistically significant 
associations between breast tissue expression of other 
genes (e.g. CYP27A1, EGFR, ESR1, IGF-1, IGFBP-3, IL-
6) and mammographic density (Figure 1A). Women with 
higher breast tissue RANKL (TNFSF11) (p-value=0.0076), 
and TNF (p-value = 0.007) gene expression had higher 
mammographic density (Figure 1B and 1C). Findings 
were similar in sensitivity analyses (P-value for RANKL 
gene expression was 0.012) where we re-categorized the 
women into lower mammographic density and higher 
mammographic density. 

DISCUSSION

We provide the first evidence showing that RANKL 
gene expression is associated with mammographic density 
in premenopausal women. Our finding has translational 
potentials, and provides additional context on targeting 
RANKL signaling in breast cancer prevention. Recent 
data showing that RANKL signaling may drive BRCA1 
mutation driven mammary cancer has generated interest 
in targeting RANKL inhibition for chemoprevention 
in women with BRCA1 mutation. A dense breast on 
mammogram confers similar magnitude of risk (i.e. 4–6 
fold) as BRCA1 mutation [15]. Importantly, breast cancer 
risk decreases among women whose mammographic 

Figure 1: Breast tissue TNFSF11 (RANKL) and TNF gene expression and mammographic density in premenopausal 
women. Volcano plot showing that breast tissue TNFSF11 (RANKL) and TNF gene expression are associated with mammographic density 
in premenopausal women, but not gene expression of other proteins (e.g. IGF1, EGFR) (A) Figures showing that higher breast tissue 
RANKL (TNFSF11, p-value = 0.0076) and TNF (p-value = 0.0069) gene expression are associated with higher mammographic density in 
premenopausal women (B and C).
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density decreased over time compared to women whose 
density stayed the same [16]. Therefore, RANKL 
inhibition with denosumab could be a viable breast cancer 
prevention strategy in high-risk premenopausal women 
[17] with dense breasts. 

RANKL signaling regulates the development 
of the lobulo-alveolar mammary structures during 
pregnancy and the formation of lactating mammary 
glands [18–20]. RANK overexpression in the mammary 
epithelia impairs alveolar differentiation and lactation 
[21]. RANK and RANKL knock out mice display a 
complete defect in the formation of lactating mammary 
glands, due to decreased proliferation and survival 
of mammary epithelial cell, similar to that observed 
in progesterone receptor B knockout mice [18, 22, 
23]. RANKL signaling also activates downstream 
signaling cascades such as NF-kB and cyclin D1 [6, 
12], which are key pathways, involved in breast cancer 
development [6, 12]. Very recent studies conducted 
in Europe demonstrated that elevated serum RANKL 
levels are associated with increased breast cancer risk 
among women with high progesterone levels [24], 
while another study reported that elevated OPG levels 
are associated with increased breast cancer risk [25]. 
Our study adds to findings from these initial studies 
indicating that the RANK pathway plays an important 
role in breast cancer development.  

Besides being a strong risk factor for breast 
cancer, mammographic density and breast cancer 
share similar biological and genetic pathways [26, 
27]. Thus, being a strong intermediate phenotype 
for breast cancer provides additional support for 
targeting women with dense breasts in breast cancer 
chemoprevention. Mammographic density is highly 
heritable, with suggestion that genetic factors may 

explain 60% of the variance [28]. Nevertheless, the 
loci identified to date explain < 3% of the variance in 
mammographic density [27, 29] indicating that many 
genetic determinants are yet to be identified. Although 
some known breast cancer susceptibility loci are also 
associated with mammographic density [27], mutations 
in highly penetrant breast cancer genes; BRCA1 and 
BRCA 2 genes have not been found to be associated with 
mammographic density [30]. 

Aside from reproductive factors and alcohol 
consumption, most of the other lifestyle factors that can 
be modified to reduce breast cancer risk (e.g. obesity, 
menopausal hormone use) are only relevant to disease 
among postmenopausal women. Likewise, adult diet 
is not related to mammographic density [31], hence, 
dietary and lifestyle modifications are not likely to impact 
mammographic density. Tamoxifen is the only approved 
chemoprevention agent in premenopausal women, but 
uptake is very low due to risk of serious side effects  
[32, 33]. Therefore, denosumab could be a more attractive 
chemoprevention option in high-risk premenopausal 
women because of its safety profile [34]. It is currently 
in clinical use for the management of osteoporosis and 
for preventing bone loss, as well as fractures associated 
with cancer therapies and bone metastases [34], 
whereas tamoxifen negatively impacts bone health in 
premenopausal women [35]. Further, unlike tamoxifen, 
which must be taken daily, denosumab is typically given 
every six months [34]. Hence, chemoprevention with 
denosumab might require administration every 6 months, 
which should considerably help improve compliance. 

In conclusion, findings from our study provide 
essential mechanistic support for targeting RANKL 
signaling in reducing breast cancer development in high-
risk premenopausal women with dense breasts. 

Table 1: Characteristics of 48 premenopausal women from the St. louis breast tissue registry who 
provided breast tissue and mammographic density data

Mean (Standard deviation)
Age, years 44.38 (4.0)
Body Mass Index, kg/m2 27.45 (5.9)

Number of observations (%)
Race
 White Non-Hispanic 33 (68.8)
 African American 12 (25.0)
 Others 3 (6.2)
Mammographic density
 1 1 (2.1)
 2 18 (37.5)
 3 20 (41.7)
 4 9 (18.8)
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MATERIALS AND METHODS

Study population

We identified 48 premenopausal women, with 
no previous history of cancer, who had a screening 
mammogram and subsequent breast biopsy at the Joanne 
Knight Breast Health Center, Washington University 
School of Medicine (WUSM), St. Louis, MO between 
December 2008 and 2015, and afterwards had their 
breast tissue samples stored in the well-annotated St. 
Louis Breast Tissue Registry (SLBTR), Department of 
Surgery, WUSM. The SLBTR was created in 1993 as 
part of the National Cancer Institute (NCI) Cooperative 
Breast Cancer Tissue Resource. It maintains a publicly 
available supply of archival breast tissue specimens 
coupled with clinical, pathological, and follow-up data 
from five hospitals in the St. Louis region. Breast tissue 
specimens were evaluated for pathologic diagnosis by 
breast pathologists using standard diagnostic criteria. 
Eligibility criteria for our study included (i) women must 
be premenopausal at the time of mammogram; (ii) no 
history of ovariectomy (ii) no evidence of cancer on breast 
biopsy, (iii) breast biopsy must have been done within 30 
days of having a mammogram. Exclusion criteria were 
(i) history of any cancer, (ii) selective estrogen receptor 
modulator, aromatase inhibitors, or bisphosphonates use 
within 6 months of having a mammogram, (iii) history of 
breast implants, reduction mammoplasty, or augmentation. 

RANK pathway gene expression

Gene expression levels were measured in total RNA 
isolated from formalin-fixed paraffin-embedded (FFPE) 
breast tissue samples, using the NanoString nCounter 
platform. We selected this platform because it reliably 
monitors gene expression in archival specimens, has 
technical reproducibility, and allows direct measurement 
of RNA expression levels without enzymatic reactions 
or bias. In addition to RANKL gene, we also targeted 
known genes in TNF superfamily such as TNF and 
TNFRSF13B. We designed nanoString probes to monitor 
gene expression of additional genes (such as CYP27A1, 
EGFR, ESR1, IGF-1, IGFBP-3, IL-6) that may be related 
to breast cancer risk. Gene expression was performed at 
the McDonnell Genome Institute (MGI), WUSM. Digital 
transcript counts from the NanoString nCounter assay was 
normalized using the housekeeping genes (ACTB, RPLP0, 
and SF3A1) following the manufacturer’s guidelines. 

Mammographic density assessment

Mammographic density was classified based on the 
American College of Radiology Breast Imaging Reporting 
and Data (BI-RADS) system as (i) Almost entirely fatty, (ii) 

Scattered areas of fibroglandular density, (iii) Heterogeneously 
dense, (iv) Extremely dense.  In sensitivity analyses, we 
categorized the women into 2 groups; lower mammographic 
density group (entirely fatty breast and scattered areas of 
fibroglandular patterns), and higher mammographic density 
group (heterogeneously dense and extremely dense). 

Statistical analyses

NanoString nCounter transcript counts were 
normalized to the positive spike-in control probes, and 
subsequently to the housekeeping genes (ACTB, RPLP0, 
and SF3A1). Background was measured by negative 
spike-in controls. For each sample, a geometric mean of 
the counts of housekeeping genes was calculated. The 
average of the housekeeping geometric means across 
samples was also calculated and then divided by each 
sample’s housekeeping genes’ geometric mean to obtain 
the scaling factor for the corresponding sample. A gene 
was considered to be expressed if its normalized count 
was higher than the mean normalized count of the negative 
control probes in at least 10 samples. Normalized counts 
were log transformed prior to downstream analysis. 
A linear regression was used to evaluate associations 
between gene expression and mammographic density. All 
analyses and visualizations were performed in R software 
version 3.1.2.
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