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ABSTRACT

Field cancerization (FC) occurs in various epithelial carcinomas, including 
colorectal cancer, which indicates that the molecular events in carcinogenesis 
might occur in normal tissues extending from tumors. However, the transcriptomic 
characteristics of FC in colorectal cancer (CRC) remain largely unexplored. To 
investigate the changes in gene expression associated with proximity to the tumor, 
we analyzed the global gene expression profiles of cancer tissues and histologically 
normal tissues taken at various distances from the tumor (1 cm, 5 cm and the 
proximal end of the resected sample) from 32 rectal cancer patients. Significantly 
differentially expressed genes related to the distance from the tumor were screened 
by linear mixed effects analysis using the lme4 package in R. The distance-related 
differentially expressed genes that were gradually up-regulated (n=302) or gradually 
down-regulated (n=568) from normal tissues to the tumor were used to construct 
protein-protein interaction (PPI) networks. Three subnetworks among the gradually 
up-regulated genes and four subnetworks among the gradually down-regulated genes 
were identified using the MCODE plugin in the Cytoscape software program. The most 
significantly enriched Gene Ontology (GO) biological process terms were “ribosome 
biogenesis”, “mRNA splicing via spliceosome”, and “positive regulation of leukocyte 
migration” for the gradually up-regulated subnetworks and “cellular calcium ion 
homeostasis”, “cell separation after cytokinesis”, “cell junction assembly”, and “fatty 
acid metabolic process” for the gradually down-regulated subnetworks. Combined 
with the previously constructed multistep carcinogenesis model used for the analysis, 
50.59% of the genes in the subnetworks (43/85) displayed identical changes in 
expression from normal colon tissues to adenoma and colon cancer. We focused on 
the 7 genes associated with fatty acid metabolic processes in the distance-related 
down-regulated subnetwork. Survival analysis of patients in the CRC dataset from 
The Cancer Genome Atlas (TCGA) revealed that higher expression of these 7 genes, 
especially CPT2, ACAA2 and ACADM, was associated with better prognosis (p = 0.034, 
p = 0.00058, p = 0.039, p = 0.04). Cox proportional hazards regression analysis 

www.impactjournals.com/oncotarget/              Oncotarget, 2017, Vol. 8, (No. 37), pp: 61107-61117

                                                        Research Paper



Oncotarget61108www.impactjournals.com/oncotarget

revealed that CPT2 was an independent prognostic factor (p = 0.004131). Our results 
demonstrate that field cancerization occurs in CRC and affects gene expression in 
normal tissues extending from the tumor, which may provide new insights into CRC 
oncogenesis and patient progression.

INTRODUCTION

Colorectal cancer (CRC) is the third most 
common cancer in both men and women [1]. It is 
commonly accepted that CRC develops through a 
multistep carcinogenesis process from normal colorectal 
epithelium to adenoma, which then progresses to cancer, 
accompanied by the accumulation of molecular alterations 
[2]. The molecular changes that give rise to the cancer can 
occur long before the morphological abnormality of the 
tissue. Studies of such early molecular alterations could 
provide valuable information in risk assessment, early 
cancer detection and monitoring of progression in cancer 
management.

In carcinogenesis, the concept of field cancerization 
(FC, also known as field carcinogenesis, field effect, field 
defect) was proposed by Slaughter et al. in 1953 in a 
study of normal tissues in oral squamous cell carcinoma 
[3]. FC refers to the phenomenon in which histologically 
adjacent normal tissues have molecular alterations similar 
to those of the tumor itself. That is, the aberrant molecular 
alterations and environmental modifications are present 
throughout the organ that gives rise to the tumor [4]. This 
phenomenon has been studied in several epithelial tumors, 
including non-small cell lung cancer [5, 6], colorectal 
cancer [7, 8], breast cancer [9], head and neck cancer [10] 
and prostate cancer [11, 12].

The colorectum has a continuous epithelium 
that is exposed to environmental substances, including 
carcinogens, and thus provides an ideal model to study 
FC. A gradient of carcinoembryonic antigen (CEA) 
expression has been observed in normal tissues adjacent 
to CRC [13]. Recent studies of FC have revealed that 
genetic and epigenetic changes are common in normal 
tissues adjacent to the tumor in CRC. Normal tissues 
surrounding the tumor to distances as far as 10 cm exhibit 
chromosomal instability [14]. Nuclear abnormalities 
present in normal-appearing tissue in the field of CRC 
include chromatin compaction and rearrangement [8]. 
Galandiuk et al. observed the same mutation in TP53 
in both cancer and normal epithelium [15]. Aberrant 
DNA methylation has been identified as a potential 
biomarker of FC in the colon. Hypermethylation of the 
O6-methylguanine-DNA methyltransferase gene (MGMT) 
promoter has been observed in normal tissues from CRC 
patients [16–18] and favors transition mutations in P53 
and KRAS, suggesting an association with the progression 
of CRC. Other reported hypermethylated genes observed 
in normal tissues of CRC patients include SFRP2, TFPI2, 
NDRG4, BMP3 [7] and ADAMTS14 [16]. In addition to 
genetic and epigenetic changes, Facista et al. observed 

expression deficiencies in the DNA repair proteins Pms2, 
Ercc1 and Xpf in approximately 1 million crypts near 
cancers, providing evidence of FC at the protein level [19]. 
Notably, promoter methylation of MGMT in CRC is also 
associated with the adenoma-carcinoma sequence [20], 
indicating it might act as an early event in the oncogenesis 
of CRC.

Although considerable progress has made in 
profiling the genetic and epigenetic changes in FC of 
CRC, the transcriptome of histologically normal tissues 
in FC has not been clearly characterized. In this study, we 
performed integrated bioinformatics analysis of global 
gene expression profiles of matched cancer tissues and 
adjacent histologically normal tissues taken at various 
distances from the tumor (1 cm, 5 cm and the proximal 
end of the resected sample) to define the transcriptomic 
characteristics of distance-related FC in rectal cancer 
patients. Combined with a multistep carcinogenesis model, 
we report the key function changes in FC and identify 
carnitine palmitoyltransferase II (CPT2) as an independent 
prognostic factor in CRC patients, offering new insights 
into oncogenesis and patient progression.

RESULTS

Global gene expression profile analysis of field 
cancerization in rectal cancer patients

To illustrate distance-related FC, we collected 
tumor tissues and paired normal tissues from specimens 
surgically resected from 32 rectal cancer patients (one 
patient had colon cancer in addition to rectal cancer). 
The paired adjacent histologically normal tissues were 
collected at three different distances from the tumors as 
follows: 1 cm from the tumor (N1), 5 cm from the tumor 
(N5) and as far as possible from the tumor (proximal 
end of the resected sample, NP). The gene expression 
profiles of all 128 samples were analyzed. The clinical 
characteristics of the patients are summarized in Table 1. 
Detailed clinical information for the patients, including 
the exact distance of NP from the tumor, is presented in 
Supplementary Table 1. A schematic representation of the 
study design is shown in Figure 1.

After data preprocessing, we performed a principle 
component analysis (PCA) and hierarchical clustering of 
the data to observe the overall differences in expression 
in the samples (Supplementary Figure 1). The difference 
between cancer and normal tissues is more obvious than 
individual differences, as all cancer samples are clustered 
together and are separate from the normal samples. Then, 
we conducted a linear mixed effects analysis to identify 
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Table 1: Clinical characteristics of the patients

Clinical characteristic No. of patients (%)

Total no. 32 (100)

Age (year)

 ≥ 60 17 (53)

 < 60 15 (47)

Gender

 Male 19 (59)

 Female 13 (41)

TNM stage

 I + II 15 (47)

 III + IV 17 (53)

Differentiation

 Well and mod 28 (88)

 Poorly 40 (12)

Polyps

 With 14 (44)

 Without 18 (56)

Figure 1: Schematic representation of the stepwise selection and evaluation of genes with distance-related expression 
patterns. Cancer tissues and corresponding adjacent histologically normal tissues were obtained from 32 rectal cancer patients who underwent 
surgery. The samples obtained from each patient included primary rectal cancer tissue (T) and adjacent histologically normal tissues taken 1 
cm from the tumor (N1), 5 cm from the tumor (N5) and as far as possible from the tumor (proximal end of the resected sample, NP).
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the distance-related differentially expressed genes using a 
false discovery rate (FDR) cutoff < 0.0001, which yielded 
870 genes, of which 302 were gradually up-regulated 
(Supplementary Table 2) and 568 were gradually down-
regulated (Supplementary Table 3) from normal tissues 
to tumors (Supplementary Figure 2). We considered 
these distance-related differentially expressed genes 
as representing FC in rectal cancer patients for further 
analysis.

Protein-protein interaction network analysis 
of the distance-related differentially expressed 
genes

We used these distance-related up-regulated genes 
(302) and down-regulated genes (568) to construct PPI 
networks in STRING. The largest connected subnetwork 
for the up- and down-regulated PPI networks contained 
208 nodes (Figure 2A) and 287 nodes (Figure 2C), 
respectively. The node degree of both networks follows 
a power law distribution (Supplementary Figure 3). We 
then extracted discrete clusters from the subnetworks 
using the MCODE plugin in Cytoscape software. 
There were 3 clusters in the up-regulated subnetwork 
(left column of Figure 2C) and 4 clusters in the down-
regulated subnetwork (left column of Figure 2D), which 
included a total of 85 genes. The gene members of the 
3 up-regulated clusters and 4 down-regulated clusters are 
listed in Figure 3A and 3B, respectively. These 7 clusters 
were considered the most relevant gene sets of FC related 
to tumor proximity.

We then examined the functions of these 7 clusters 
using Gene Ontology (GO) enrichment analysis. Up to 15 of 
the most significantly enriched GO biological process terms 
corresponding to the clusters are shown in the right columns 
of Figure 2C and 2D. The enriched functions of these 
clusters are centralized. The most significantly enriched 
terms were “ribosome biogenesis”, “mRNA splicing 
via spliceosome”, and “positive regulation of leukocyte 
migration” for the gradually up-regulated cluster 1 to cluster 
3, respectively, and “cellular calcium ion homeostasis”, 
“cell separation after cytokinesis”, “cell junction assembly”, 
and “fatty acid metabolic process” for the gradually down-
regulated cluster 1 to cluster 4, respectively. These functions 
are likely closely related to FC with proximity to the tumor 
in rectal cancer patients.

Cross validation of expression pattern of 
distance-related differentially expressed genes in 
the multistep carcinogenesis model

In addition to the distance-related FC model we 
built in this study, our laboratory previously constructed 
a multistep carcinogenesis model composed of the 
gene expression profiles of 12 normal colon mucosa 
samples, 51 adenoma biopsy samples and 25 colon 

adenocarcinoma samples. Clinical characteristics 
of these samples are summarized in Supplementary 
Table 4. We then cross validated the distance-related 
differentially expressed genes in the multistep 
carcinogenesis model to investigate whether their 
expression trends from normal tissues to adenoma and 
cancer were similar. Among the 870 distance-related 
differentially expressed genes, 343 genes (39.43%) 
exhibited identical trends in up-regulated (131/302, 
43.05%) or down-regulated (212/568, 37.32%) 
expression from normal tissues to cancer tissues in 
the two models. Among the 85 genes in the 7 clusters 
identified in the PPI networks, 43 genes (50.59%) had 
similar trends in expression from normal tissues to 
cancer tissues in the two models, of which 32 genes 
(red color in Figure 3A) were up-regulated and 11 
genes (green color in Figure 3B) were down-regulated 
in cancer tissues. The expression patterns of these 
43 genes in the multistep carcinogenesis model are 
shown in Figure 3C and 3D. Notably, of the 35 genes 
in the “ribosome biogenesis” GO term of the distance-
related up-regulated cluster 1, 26 genes (74.29%) were 
also up-regulated in the tumor tissue in the multistep 
carcinogenesis model. This agreement indicates the 
importance of up-regulation of ribosome biogenesis 
in carcinogenesis. We considered the genes that were 
differentially expressed in both the distance-related FC 
model and multistep carcinogenesis model more relevant 
to cancer initiation and progression.

Prognostic value of fatty acid metabolic process-
associated genes

Given the impact of mitochondrion genome 
mutations on FC, we focused on fatty acid metabolic 
process-associated genes, which reflect the function of the 
mitochondrion, and evaluated their prognostic value in 
the CRC dataset from The Cancer Genome Atlas (TCGA) 
(Figure 4). Using hierarchical clustering of the 7 genes 
to divide the patients into two groups (Figure 4A), the 
7-gene signature was found to be significantly associated 
with overall 5-year survival in 375 CRC patients (log-rank 
p = 0.034, Figure 4B). For each member of the 7-gene 
signature, we divided the samples into a higher expression 
group and a lower expression group based on the median 
gene expression value. Both the log-rank test and the 
univariate Cox regression analysis confirmed that lower 
expression of CPT2, ACAA2 and ACADM in cancer 
tissues could predict poor prognosis of CRC patients 
(Figure 4C, 4D and 4E). Multivariate Cox proportional 
hazards regression analysis validated CPT2 as an 
independent prognostic factor (p = 0.004131). The Cox 
proportional hazards regression analysis of the clinical 
characteristics (including age, gender and TNM stage), 
gene signature and each single gene of the TCGA CRC 
dataset is shown in Table 2.
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Figure 2: PPI network analysis of the distance-related differentially expressed genes. The distance-related differentially 
expressed genes were imported into STRING to construct PPI networks. The largest connected subnetworks of distance-related up-
regulated genes (A) and down-regulated genes (C) are shown. The left columns of (B) and (D) show the discrete clusters identified from 
the network, whereas the corresponding right columns show the most significant enriched GO terms for each cluster.
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Figure 3: Cross validation of the gene expression patterns in the multistep carcinogenesis model. (A) and (B) list the genes 
of the distance-related up-regulated and down-regulated clusters, respectively. The colored genes in (A) and (B) exhibited identical up- and 
down-regulation trends from normal colon mucosa through adenoma to colon cancer. Their expression patterns are shown in (C) and (D), 
respectively, with red color for up-regulation in the tumor and green color for down-regulation.

Figure 4: Five-year survival analysis of the 7 fatty acid metabolism-associated genes in the TCGA CRC dataset. (A) 
Hierarchical clustering of the 7 fatty acid metabolism-associated genes from the TCGA CRC dataset. The expression levels of the genes are 
illustrated as a color spectrum, with red, black and green representing high, medium and low expression, respectively, in a matrix indexed 
by genes in rows and samples in columns. The samples were divided into two groups. (B) Kaplan-Meier survival analysis and log-rank 
test of these 7 genes, using hierarchical clustering of their expression values as the categorical variable to divide the 375 patients into two 
groups. (C), (D) and (E) show the Kaplan-Meier survival curves for CPT2, ACAA2 and ACADM, respectively.
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DISCUSSION

In this study, we built a distance-related model to 
study the characteristics of the FC transcriptome in rectal 
cancer patients. We identified significantly differentially 
expressed genes with gradient distance-related expression 
trends from normal adjacent tissues to the tumor by 
linear mixed effects analysis. Moreover, we revealed the 
key function changes in FC by PPI network analysis, 
and half of these key function-related genes exhibited 
similar expression trends from normal colon mucosa to 
adenoma and cancer, supporting possible roles in CRC 
pathogenesis. In addition, higher expression of distance-
related down-regulated fatty acid metabolism-associated 
genes was associated with the prognosis of CRC patients. 
CPT2 was shown to be an independent prognostic factor in 
predicting the overall survival of CRC patients.

CRC is an ideal model for investigating FC due 
to its continuous epithelium. Normal-appearing tissues 
adjacent to the tumor have epigenetic, proteomic and 
structural alterations in CRC patients [7, 8, 16, 21]. 
Using a similar study design, Hawthorn et al. compared 
transcript expression in a series of tumors and sites 
ranging from 1 to 10 cm distal to the tumor in 12 colon 
cancer patients [14]. Because they found no differentially 
expressed genes among the normal epithelial cell 
groups, we incorporated the tumor tissue as the 0 point 
in the distance-related model and identified 870 distance-

related differentially expressed genes by linear mixed 
effects analysis. Multistep carcinogenesis models are 
used to study the molecular alterations at various stages 
of cancer development to identify early events during 
carcinogenesis. Such models are particularly important in 
CRC because it is commonly accepted that CRC develops 
through a normal-to-adenoma-to-cancer progression 
sequence [2]. Hypermethylation of the DNA repair gene 
MGMT is a widely studied FC marker that has been 
found in both precancerous lesions and normal-appearing 
cells adjacent to tumors [17, 20]. In our study, 39.43% 
(343/870) of the distance-related differentially expressed 
genes exhibited similar up- or down-regulation trends in 
tumors compared to the normal mucosa and adenomas. 
This result indicates that the gene expression changes in 
FC might be a useful resource for discovering potential 
uncharacterized molecules in CRC pathogenesis.

Our analyses of the key PPI clusters of the distance-
related differentially expressed genes indicated significant 
up-regulation of ribosome biogenesis in the tumor, with 
74.29% (26/35) of the members of the cluster exhibiting 
similar expression trends in both models (first column of 
Figure 3A). This high degree of consistency indicates the 
relationship between up-regulated ribosome biogenesis and 
cancer onset. Ribosomes are organelles that function in 
protein synthesis, which is one important step in the central 
dogma of molecular biology, i.e., translation. The ribosome 
biogenesis process includes ribosome DNA transcription 

Table 2: Cox proportional hazards regression analysis of overall survival in TCGA dataset, including gender, age, 
TNM stage and gene expression (n=375)

Factors
Univariate cox regression Multivariate cox regression

HR 95% CI P HR 95% CI P

Gender M/F 1.0871 0.6902-1.712 0.719 0.9357 0.5726-1.529 0.790835

Age 1.028 1.009-1.048 0.0038 * 1.0385 1.0171-1.0604 0.000373 *

Stage II/I 1.084 0.3928-2.99 0.876652 0.966 0.344-2.7107 0.947

III/I 3.007 1.1636-7.772 0.023043 * 2.789 1.0258-7.5823 0.044444 *

IV/I 5.644 2.1162-15.051 0.000545 * 6.026 2.1317-17.0328 0.000705 *

gr§ Low/
High 1.6626 1.035-2.671 0.0357 * 0.6903 0.3116-1.5294 0.361205

CPT2 0.9985 0.9977-0.9993 0.000251 * 0.9984 0.9973-0.9995 0.004131 *

ACADM 0.9989 0.9982-0.9996 0.00318 * 0.9999 0.999-1.0007 0.775074

ACAA2 0.9997 0.9995-0.9999 0.00577 * 0.9998 0.9995-1 0.068882

ACAA1 1 0.9994-1 0.884 1 0.9995-1.0008 0.654016

ACADS 0.9996 0.9992-1 0.149 1 0.9999-1.0011 0.127275

ACSS2 0.9999 0.9997-1 0.469 0.9998 0.9996-1 0.111654

ACSF2 1 0.9993-1 0.928 1 0.9992-1.0009 0.975314

§Samples were divided into two groups based on the hierarchical clustering of gene expression of the 7 fatty acid metabolic 
associated genes (gr). *p<0.05. HR: hazard ratio; CI: confidence interval.
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in the nucleus, ribosome RNA (rRNA) assembly in the 
nucleoplasm and, finally, ribosome completion in the 
cytoplasm [22]. In addition to its important role in cellular 
physiological processes, growing evidence suggests that up-
regulated ribosome biogenesis has a close relationship with 
cancer [23]. Based on the necessity of efficient ribosome 
biogenesis for the increasing demand of protein synthesis 
in the cell cycle, ribosome biogenesis regulates cell cycle 
progression in proliferating cells [24, 25]. The stimulatory 
factors that regulate the cell cycle also affect ribosome 
production [26]. Recent studies have found that the rate of 
ribosome biogenesis controls the expression and activity of 
the tumor suppressor p53; that is, up-regulated ribosome 
production down-regulates p53 expression, thus promoting 
neoplastic transformation [27]. Ribosome biogenesis is also 
involved in the relationship between chronic inflammation 
and cancer [28]. Epidemiological studies have shown that 
the reduced risk of cancer onset among regular non-steroidal 
anti-inflammatory aspirin drug users is very likely due to the 
perturbation of rRNA maturation [29, 30]. Our data suggest 
that up-regulated ribosome biogenesis is a representative 
function change in FC and likely occurs early in the 
spatiotemporal dynamics of carcinogenesis.

Since Warburg first suggested the metabolic switch 
in cancer cells, studies have highlighted the important role 
of reprogrammed metabolic pathways during the process 
of cellular transformation and cancer progression [31, 
32]. Mitochondrial genomic mutation is an early marker 
of FC in head and neck squamous cancer, gastrointestinal 
cancer and prostate cancer [33–35]. Function analysis 
of the distance-related down-regulated key PPI clusters 
highlighted fatty acid metabolic processes, which reflect 
the function of the mitochondrion, one of the important 
changes in FC. The balance of fatty acid synthesis and 
oxidation is disrupted in cancer [36]. Highly proliferative 
cancer cells require increased fatty acid synthesis 
for building new membranes and producing steroid 
hormones to sustain cell growth [37]. Although fatty 
acid oxidation is much more effective in producing ATP 
than glycolysis, cancer cells prefer glycolysis to provide 
energy [31]. Studies of cancer metabolism have revealed 
that inhibition of the tumor suppressor p53 can activate 
fatty acid synthesis and inhibit fatty acid oxidation [38, 
39]. Increasing evidence suggests that fatty acids play an 
immunomodulatory role in cancer progression [40, 41]. 
As shown in our study, fatty acid oxidation is inhibited in 
cancer tissues compared to normal tissues, and 57.14% 
(4/7) of the members of the cluster exhibited similar 
down-regulation trends from normal tissues, to adenomas 
and cancer tissues. Furthermore, 3 genes showed a 
relationship with the prognosis of patients with CRC in 
the TCGA dataset, and CPT2 was an independent factor 
predicting overall survival. CPT2 is the key enzyme in 
fatty acid oxidation and is located on the mitochondrial 
membrane. Studies have recently revealed that CPT1 can 
promote tumor growth in a T cell-dependent manner [40]. 
However, much less is known about the role of CPT2 in 

cancer. Our results show that cancer tissues down-regulate 
the expression of CPT2 and that higher expression of 
CPT2 in cancer tissue independently predicts better 
prognosis in CRC patients, indicating the important 
role of fatty acid oxidation, especially CPT2, in cancer 
progression.

Our study has several limitations. First, the samples 
used in our distance-related model were all from patients 
with rectal cancer, whereas the validation data included 
both colon cancer and rectal cancer samples. Second, 
although we observed the prognostic value of CPT2 
in CRC patients, the molecular mechanism by which 
CPT2 affects cancer progression is unknown. Further 
investigations are needed. Third, we cannot arbitrarily 
consider the FC clusters identified in our study as 
representing the panorama of FC. We explored the 
functions of the key FC clusters using a GO enrichment 
analysis. An integration of the multi-omics data of 
TCGA datasets would contribute to further analyses of 
the potential regulatory pathways associated with FC 
[42]. Our data contained information about lncRNA 
expression that was not fully utilized. According to the 
study by Wang et al., small molecule drugs treat cancer by 
affecting miRNA expression, which is predicted based on 
functional similarities [43]. Therefore, studies exploring 
the relationship between FC-related lncRNA expression 
and the small molecule drugs might provide information 
for cancer therapy.

In conclusion, using a distance-related model 
constructed to study FC in rectal cancer patients, we 
identified key function changes in FC and found that 
up-regulated ribosome biogenesis and down-regulated 
fatty acid metabolism in cancer might occur early in 
carcinogenesis. Moreover, we identified CPT2 as an 
independent prognostic factor in CRC patients. Our 
findings suggest that deep investigation of FC in CRC 
may provide valuable information about oncogenesis and 
disease progression.

MATERIALS AND METHODS

Collection of clinical samples

The clinical samples were collected from 32 rectal 
cancer patients who underwent surgical resection at 
the National Cancer Center/Cancer Hospital, Chinese 
Academy of Medical Sciences, from 2014 to 2015. 
We collected rectal cancer tissue samples (T) and 
histologically normal tissue samples located at varying 
distances from the tumors, including 1 cm from the 
tumor (N1), 5 cm from the tumor (N5) and as far as 
possible from the tumor (proximal end of the resected 
sample, NP). Malignant and matched normal tissues 
from each patient were snap-frozen in liquid nitrogen 
and stored at -80°C for subsequent molecular analysis. 
The status of all tissue specimens was confirmed 
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histologically. Clinicopathological information was 
obtained for all patients. The use of human samples for 
this study was approved by the Ethics Committee of 
the National Cancer Center/Cancer Hospital, Chinese 
Academy of Medical Sciences, under approval number 
CH-BMS-015.

Microarray analysis

Total RNA was extracted using the RNeasy Mini 
kit (Qiagen, Germantown, MD, USA). The RNA was 
quantified using an ND-1000 UV-VIS Spectrophotometer 
(NanoDrop Technologies, Wilmington, DE, USA), and 
its integrity was assessed using an RNA 6000 LabChip 
kit in combination with an Agilent 2100 Bioanalyzer 
(Agilent, Santa Clara, CA, USA). RNA with integrity 
number (RIN) greater than 7.0 was used in this study. All 
samples were analyzed using an Agilent SurePrint G3 
Human GE v2 8×60K Microarray (G4851B). All sample-
labeling, hybridization and washing steps were conducted 
according to the manufacturer’s instructions. The slides 
were scanned with an Agilent SureScan Microarray 
Scanner, and the fluorescence intensities on raw images 
were read and processed to quantify data using Agilent 
Feature Extraction Software (v10.5.1.1). The raw data 
of gene features with median values greater than 100 
were normalized by the median scale method using the R 
package “limma” [44]. An expression matrix with 14,913 
gene features was used for the subsequent analysis.

We used R [45] and lme4 [46] to perform a linear 
mixed effects analysis of the relationship between gene 
expression and distance from the tumor. As a fixed 
effect, we entered the distance from the tumor into 
the model. As random effects, we entered intercepts 
for person for the effect of gene expression. P-values 
were obtained by likelihood ratio tests of the full model 
with the effect in question against the model without 
the effect in question. Genes with a false discovery 
rate (FDR) < 0.0001 were considered significantly 
distance-related differentially expressed genes that were 
gradually up-regulated or down-regulated based on the 
distance from the tumors.

Our laboratory previously constructed a multistep 
carcinogenesis model comprising gene expression 
profiles of 12 normal colon mucosa samples, 51 adenoma 
biopsy samples and 25 colon adenocarcinoma samples 
(GSE41657). We used a linear model to identify the 
gradually down-regulated or up-regulated genes from the 
normal colon mucosa, to adenoma and cancer tissues. A 
FDR < 0.05 was considered statistically significant. For 
the cross validation, the up-regulated and down-regulated 
genes in both models were intersected.

The raw and processed gene expression data and 
clinical information for the samples are publicly available 
in the Gene Expression Omnibus (GEO) database under 
series accession number GSE90627.

PPI network construction and subnetwork 
analysis

STRING (Search Tool for the Retrieval of Interacting 
Genes/Proteins) was employed to construct PPI networks 
for distance-related up-regulated genes and down-regulated 
genes [47]. The networks were constructed using the default 
settings, which included only the high-confidence edges 
with STRING scores greater than 0.4. The tab-delimited 
format PPI networks were exported from STRING and 
imported into Cytoscape. We then used the “Molecular 
Complex Detection (MCODE)” Cytoscape plugin to 
identify discrete clusters (or modules/subnetworks) from 
the former PPI networks using default settings [48]. The top 
clusters (subnetworks) were screened under the conditions 
of minimum size=6 and minimum score=4. The subnetwork 
visualization and Gene Ontology (GO) functional 
enrichment analysis were conducted in STRING.

Survival analysis

TCGA CRC RNA sequencing data used for the 
survival analysis were accessed using the R package 
“TCGA2STAT” [49]. We calculated 5-year overall survival 
for the 7-gene signature and for each single gene using 
data from the TCGA CRC dataset. Hierarchical clustering 
of the expression of the 7 genes divided the sample into 
two groups, which was used as a categorical variable 
to perform survival analysis. Kaplan-Meier survival 
analysis and the log-rank test were used to evaluate the 
prognostic value of the gene signature and single genes. 
The Cox proportional hazards regression model was used 
to evaluate the independence of the prognostic factors. The 
variables tested in the Cox regression analysis included 
age at time of diagnosis, gender, TNM stage and gene 
expression. A p value of < 0.05 was considered significant.

Statistical analysis

All statistical tests were two-sided, and a 5% level of 
significance was used. The statistical analyses in this study 
were performed using R software (http://www.r-project.org).

ACKNOWLEDGMENTS

This work was supported by the National Natural 
Science Foundation of China (Project Nos. 30950013 
and 81441070), CAMS Innovation Fund for Medical 
Sciences (CIFMS) (Project No. 2016-I2M-3-005) and 
National Key Research and Development Program of the 
Ministry of Science and Technology of China (Project No. 
2016YFC0905301).

We would like to thank Dr. Ting Xiao for her helpful 
suggestion of the study design, Ms. Naijun Han and Mr. 
Xuebing Di for their technical support, and Dr. Chengli 
Zhang for her assistance in microarray experiments. 
National Key Basic Research Program (NKBRP) (Project 
No. 2015CB553901).



Oncotarget61116www.impactjournals.com/oncotarget

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

REFERENCES

1. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA 
Cancer J Clin. 2017; 67: 7–30.

2. Markowitz SD, Bertagnolli MM. Molecular origins of 
cancer: molecular basis of colorectal cancer. N Engl J Med. 
2009; 361: 2449–2460.

3. Slaughter DP, Southwick HW, Smejkal W. Field 
cancerization in oral stratified squamous epithelium; 
clinical implications of multicentric origin. Cancer. 1953; 
6: 963–968.

4. Dakubo GD, Jakupciak JP, Birch-Machin MA, Parr RL. 
Clinical implications and utility of field cancerization. 
Cancer Cell Int. 2007; 7: 2.

5. Kadara H, Fujimoto J, Yoo SY, Maki Y, Gower AC, Kabbout 
M, Garcia MM, Chow CW, Chu Z, Mendoza G, Shen L, 
Kalhor N, Hong WK, et al. Transcriptomic architecture of 
the adjacent airway field cancerization in non-small cell 
lung cancer. J Natl Cancer Inst. 2014; 106: dju004.

6. Jakubek Y, Lang W, Vattathil S, Garcia M, Xu L, Huang 
L, Yoo SY, Shen L, Lu W, Chow CW, Weber Z, Davies G, 
Huang J, et al. Genomic landscape established by allelic 
imbalance in the cancerization field of a normal appearing 
airway. Cancer Res. 2016; 76: 3676–3683.

7. Park SK, Song CS, Yang HJ, Jung YS, Choi KY, Koo DH, 
Kim KE, Jeong KU, Kim HO, Kim H, Chun HK, Park DI. 
Field cancerization in sporadic colon cancer. Gut Liver. 
2016; 10: 773–780.

8. Cherkezyan L, Stypula-Cyrus Y, Subramanian H, White 
C, Dela Cruz M, Wali RK, Goldberg MJ, Bianchi LK, 
Roy HK, Backman V. Nanoscale changes in chromatin 
organization represent the initial steps of tumorigenesis: 
a transmission electron microscopy study. BMC Cancer. 
2014; 14: 189.

9. Trujillo KA, Heaphy CM, Mai M, Vargas KM, Jones AC, 
Vo P, Butler KS, Joste NE, Bisoffi M, Griffith JK. Markers 
of fibrosis and epithelial to mesenchymal transition 
demonstrate field cancerization in histologically normal 
tissue adjacent to breast tumors. Int J Cancer. 2011; 129: 
1310–1321.

10. Piccinin S, Gasparotto D, Vukosavljevic T, Barzan L, 
Sulfaro S, Maestro R, Boiocchi M. Microsatellite instability 
in squamous cell carcinomas of the head and neck related 
to field cancerization phenomena. Br J Cancer. 1998; 78: 
1147–1151.

11. Gabriel KN, Jones AC, Nguyen JP, Antillon KS, Janos 
SN, Overton HN, Jenkins SM, Frisch EH, Trujillo KA, 
Bisoffi M. Association and regulation of protein factors 
of field effect in prostate tissues. Int J Oncol. 2016; 49: 
1541–1552.

12. Jones AC, Antillon KS, Jenkins SM, Janos SN, Overton 
HN, Shoshan DS, Fischer EG, Trujillo KA, Bisoffi M. 
Prostate Field cancerization: deregulated expression of 
macrophage inhibitory cytokine 1 (MIC-1) and platelet 
derived growth factor A (PDGF-A) in tumor adjacent tissue. 
PLoS One. 2015; 10: e0119314.

13. Jothy S, Slesak B, Harłozińska A, Lapińska J, Adamiak J, 
Rabczyński J. Field effect of human colon carcinoma on 
normal mucosa: relevance of carcinoembryonic antigen 
expression. Tumour Biol. 1996; 17: 58–64.

14. Hawthorn L, Lan L, Mojica W. Evidence for field effect 
cancerization in colorectal cancer. Genomics. 2014; 103: 
211–221.

15. Galandiuk S, Rodriguez-Justo M, Jeffery R, Nicholson 
AM, Cheng Y, Oukrif D, Elia G, Leedham SJ, McDonald 
SA, Wright NA, Graham TA. Field cancerization in the 
intestinal epithelium of patients with Crohn's ileocolitis. 
Gastroenterology. 2012; 142: 855–864.e8.

16. Alonso S, Dai Y, Yamashita K, Horiuchi S, Dai T, Matsunaga 
A, Sánchez-Muñoz R, Bilbao-Sieyro C, Díaz-Chico 
JC, Chernov AV, Strongin AY, Perucho M. Methylation 
of MGMT and ADAMTS14 in normal colon mucosa: 
biomarkers of a field defect for cancerization preferentially 
targeting elder African-Americans. Oncotarget. 2015; 6: 
3420–3431. doi: 10.18632/oncotarget.2852.

17. Shen L, Kondo Y, Rosner GL, Xiao L, Hernandez NS, 
Vilaythong J, Houlihan PS, Krouse RS, Prasad AR, 
Einspahr JG, Buckmeier J, Alberts DS, Hamilton SR, et al. 
MGMT promoter methylation and field defect in sporadic 
colorectal cancer. J Natl Cancer Inst. 2005; 97: 1330–1338.

18. Svrcek M, Buhard O, Colas C, Coulet F, Dumont S, 
Massaoudi I, Lamri A, Hamelin R, Cosnes J, Oliveira C, 
Seruca R, Gaub MP, Legrain M, et al. Methylation tolerance 
due to an O6-methylguanine DNA methyltransferase 
(MGMT) field defect in the colonic mucosa: an initiating 
step in the development of mismatch repair-deficient 
colorectal cancers. Gut. 2010; 59: 1516–1526.

19. Facista A, Nguyen H, Lewis C, Prasad AR, Ramsey L, 
Zaitlin B, Nfonsam V, Krouse RS, Bernstein H, Payne CM, 
Stern S, Oatman N, Banerjee B, et al. Deficient expression 
of DNA repair enzymes in early progression to sporadic 
colon cancer. Genome Integr. 2012; 3: 3.

20. Lee KH, Lee JS, Nam JH, Choi C, Lee MC, Park CS, Juhng 
SW, Lee JH. Promoter methylation status of hMLH1, 
hMSH2, and MGMT genes in colorectal cancer associated 
with adenoma–carcinoma sequence. Langenbecks Arch 
Surg. 2011; 396: 1017–1026.

21. Polley AC, Mulholland F, Pin C, Williams EA, Bradburn 
DM, Mills SJ, Mathers JC, Johnson IT. Proteomic analysis 
reveals field-wide changes in protein expression in the 
morphologically normal mucosa of patients with colorectal 
neoplasia. Cancer Res. 2006; 66: 6553–6562.

22. Cisterna B, Biggiogera M. Ribosome biogenesis: from 
structure to dynamics. Int Rev Cell Mol Biol. 2010; 284: 
67–111.



Oncotarget61117www.impactjournals.com/oncotarget

23. Derenzini M, Montanaro L, Trerè D. Ribosome biogenesis 
and cancer. Acta Histochem. 2017: 1–8.

24. Thomas G. An encore for ribosome biogenesis in the 
control of cell proliferation. Nat Cell Biol. 2000; 2: 
E71–E72.

25. Derenzini M, Montanaro L, Treré D. What the nucleolus 
says to a tumour pathologist. Histopathology. 2009; 54: 
753–762.

26. Stefanovsky V, Langlois F, Gagnon-Kugler T, Rothblum 
LI, Moss T. Growth factor signaling regulates elongation 
of RNA polymerase I transcription in mammals via UBF 
phosphorylation and r-chromatin remodeling. Mol Cell. 
2006; 21: 629–639.

27. Montanaro L, Treré D, Derenzini M. Changes in ribosome 
biogenesis may induce cancer by down-regulating the cell 
tumor suppressor potential. Biochim Biophys Acta. 2012; 
1825: 101–110.

28. Brighenti E, Calabrese C, Liguori G, Giannone FA, Trerè 
D, Montanaro L, Derenzini M. Interleukin 6 downregulates 
p53 expression and activity by stimulating ribosome 
biogenesis: a new pathway connecting inflammation to 
cancer. Oncogene. 2014; 33: 4396–4406. doi: 10.1038/
onc.2014.1.

29. Cao Y, Nishihara R, Wu K, Wang M, Ogino S, Willett 
WC, Spiegelman D, Fuchs CS, Giovannucci EL, Chan AT. 
Population-wide impact of long-term use of aspirin and 
the risk for cancer. JAMA Oncol. 2016; 2: 762–769. doi: 
10.1001/jamaoncol.2015.6396.

30. Brighenti E, Giannone FA, Fornari F, Onofrillo C, Govoni 
M, Montanaro L, Treré D, Derenzini M. Therapeutic 
dosages of aspirin counteract the IL-6 induced pro-
tumorigenic effects by slowing down the ribosome 
biogenesis rate. Oncotarget. 2016; 7: 63226–63241. doi: 
10.18632/oncotarget.11441.

31. Koppenol WH, Bounds PL, Dang CV. Otto Warburg's 
contributions to current concepts of cancer metabolism. Nat 
Rev Cancer. 2011; 11: 325–337.

32. Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: 
fatty acid oxidation in the limelight. Nat Rev Cancer. 2013; 
13: 227–232.

33. Kim MM, Clinger JD, Masayesva BG, Ha PK, Zahurak 
ML, Westra WH, Califano JA. Mitochondrial DNA quantity 
increases with histopathologic grade in premalignant and 
malignant head and neck lesions. Clin Cancer Res. 2004; 
10: 8512–8515.

34. Sui G, Zhou S, Wang J, Canto M, Lee EE, Eshleman JR, 
Montgomery EA, Sidransky D, Califano JA, Maitra A. 
Mitochondrial DNA mutations in preneoplastic lesions of 
the gastrointestinal tract: a biomarker for the early detection 
of cancer. Mol Cancer. 2006; 5: 73.

35. Parr RL, Dakubo GD, Crandall KA, Maki J, Reguly B, 
Aguirre A, Wittock R, Robinson K, Alexander JS, Birch-
Machin MA, Abdel-Malak M, Froberg MK, Diamandis EP, 
et al. Somatic mitochondrial DNA mutations in prostate 

cancer and normal appearing adjacent glands in comparison 
to age-matched prostate samples without malignant 
histology. J Mol Diagn. 2006; 8: 312–319.

36. Röhrig F, Schulze A. The multifaceted roles of fatty acid 
synthesis in cancer. Nat Rev Cancer. 2016; 16: 732–749.

37. Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J. 
2012; 279: 2610–2623.

38. Parrales A, Iwakuma T. p53 as a regulator of lipid 
metabolism in cancer. Int J Mol Sci. 2016; 17: 2074–2011.

39. Berkers CR, Maddocks ODK, Cheung EC, Mor I, Vousden 
KH. Metabolic regulation by p53 family members. Cell 
Metab. 2013; 18: 617–633.

40. Hossain F, Al-Khami AA, Wyczechowska D, Hernandez C, 
Zheng L, Reiss K, Valle LD, Trillo-Tinoco J, Maj T, Zou W, 
Rodriguez PC, Ochoa AC. Inhibition of fatty acid oxidation 
modulates immunosuppressive functions of myeloid-
derived suppressor cells and enhances cancer therapies. 
Cancer Immunol Res. 2015; 3: 1236–1247.

41. Miccadei S, Masella R, Mileo AM, Gessani S. ω3 
polyunsaturated fatty acids as immunomodulators in 
colorectal cancer: new potential role in adjuvant therapies. 
Front Immunol. 2016; 7: 486.

42. Jiang W, Jia P, Hutchinson KE, Johnson DB, Sosman JA, 
Zhao Z. Clinically relevant genes and regulatory pathways 
associated with NRASQ61 mutations in melanoma through 
an integrative genomics approach. Oncotarget. 2015; 6: 
2496–2508. doi: 10.18632/oncotarget.2954.

43. Wang J, Meng F, Dai E, Yang F, Wang S, Chen X, Yang 
L, Wang Y, Jiang W. Identification of associations between 
small molecule drugs and miRNAs based on functional 
similarity. Oncotarget. 2016; 7: 38658–38669. doi: 
10.18632/oncotarget.9577.

44. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, 
Smyth GK. Limma powers differential expression analyses 
for RNA-sequencing and microarray studies. Nucleic Acids 
Res. 2015; 43: e47.

45. R Core Team. R: a language and environment for statistical 
computing. (R Foundation for Statistical Computing: 
Vienna, Austria), 2016.

46. Bates D, Maechler M, Ben Bolker S, Walker. Fitting linear 
mixed-effects models using lme4. J Stat Softw. 2015; 67: 
1–48.

47. Szklarczyk D, Franceschini A, Wyder S, Forslund K, 
Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos 
A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, et al. STRING 
v10: protein-protein interaction networks, integrated over 
the tree of life. Nucleic Acids Res. 2015; 43: D447-D452.

48. Bader GD, Hogue CW. An automated method for finding 
molecular complexes in large protein interaction networks. 
BMC Bioinformatics. 2003; 4: 2.

49. Wan YW, Allen GI, Anderson ML, Liu Z, 2015. 
TCGA2STAT: simple TCGA data access for integrated 
statistical analysis in R. R package version 1.2. Available 
at: https://CRAN.R-project.org/package=TCGA2STAT.


