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ABSTRACT

Objectives: To identify an imaging signature predicting local recurrence for locally 
advanced cervical cancer (LACC) treated by chemoradiation and brachytherapy from 
baseline 18F-FDG PET images, and to evaluate the possibility of gathering images from 
two different PET scanners in a radiomic study.

Methods: 118 patients were included retrospectively. Two groups (G1, G2) were 
defined according to the PET scanner used for image acquisition. Eleven radiomic 
features were extracted from delineated cervical tumors to evaluate: (i) the predictive 
value of features for local recurrence of LACC, (ii) their reproducibility as a function 
of the scanner within a hepatic reference volume, (iii) the impact of voxel size on 
feature values.

Results: Eight features were statistically significant predictors of local recurrence 
in G1 (p < 0.05). The multivariate signature trained in G2 was validated in G1 
(AUC=0.76, p<0.001) and identified local recurrence more accurately than SUVmax 
(p=0.022). Four features were significantly different between G1 and G2 in the liver. 
Spatial resampling was not sufficient to explain the stratification effect.

Conclusion: This study showed that radiomic features could predict local 
recurrence of LACC better than SUVmax. Further investigation is needed before applying 
a model designed using data from one PET scanner to another.
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INTRODUCTION

Cervical cancer is a significant cause of morbidity 
and mortality, being the fourth most common cancer in 
women worldwide and the sixth in Europe [1]. The five-
year survival rate strongly depends on the stage, based on 
the International Federation of Gynecology and Obstetrics 
(FIGO) classification, at the time of diagnosis: from 93% 
for stage IA to 15% for stage IVb [2]. Castelnau-Marchand 
et al. studied clinical outcomes of chemoradiation 
followed by image guided adaptive brachytherapy for 225 
patients with cervical cancers (65% with a FIGO stage ≥ 
IIB) and observed a local recurrence rate of 13% [3].

Several factors have been associated with the 
probability of local control, such as the tumor size at 
diagnosis, the volume of the high-risk clinical target 
volume at time of brachytherapy, or the overall treatment 
time. However, in the era of image guided adaptive 
brachytherapy, it remains necessary to refine the prediction 
of outcome, and more particularly to more thoroughly 
identify patients who are at high risk of local recurrence 
and who would require intensification of treatment, such 
as dose escalation or who would be candidates for clinical 
trials of radiosensitizing agents. On the opposite, it might 
be clinically relevant to identify patients with a lower risk 
of local relapse, and therefore who are less likely to benefit 
from dose escalation.

Medical imaging plays a key role in the initial 
evaluation and staging of patients, guiding subsequent 
treatment decisions. Magnetic Resonance Imaging (MRI) 
is the reference standard for the pre-therapeutic assessment 
of the T-stage of gynecological tumors due to the fact 
that the technique allows high resolution, high soft-
tissue contrast and functional imaging [4]. 18F-FDG PET 
(18-Fluorodeoxyglucose Positron Emission Tomography) 
has proved to be more accurate for the detection of 
metastatic lymph nodes [5] and allows the evaluation of 
glucose consumption and metabolic activity within the 
tumor, which provides important prognostic information 
in patients treated with chemoradiation [6]. Literature 
showed accuracies of 76 to 90% for staging of Locally 
Advanced Cervical Cancer (LACC) using MRI [7], 
compared to 60 to 69% for CT (Computed Tomography) 
[8]. However, even if conventional semi-quantitative 
PET indices such as Standardized Uptake Value (SUV), 
Metabolic Volume (MV) or Total Lesion Glycolysis (TLG) 
have proved useful as prognostic factors in LACC [6, 9], 
more information extracted from images holds promise to 
further increase the prognostic value of PET.

“Radiomics” is a non-invasive method of 
quantitative analysis of high throughput imaging traits 
that was first introduced to decode genomic activity of 
tumors [10, 11] and then applied to all pathologies and 
imaging modalities [12, 13]. Radiomics has great potential 
to influence patient care [14], from aiding diagnosis and 
classification of tumors by stage or histology [15–17], 

through the prediction of responses to radiotherapy [18] 
or to chemotherapy [19]. This technique can also be used 
to guide radiation therapy [20, 21]. Among the features 
used in this approach, textural features are of particular 
interest to characterize tumor heterogeneity.

Several studies previously carried out PET 
texture analysis to predict recurrence and response 
to chemoradiation in LACC. In 2009, El Naqa et al. 
published a study in 14 patients [22], showing that 
textural features calculated from the co-occurrence matrix 
had a higher predictive power than SUV for determining 
chemo-radiation failure risk, and that a linear combination 
of two features led to an Area Under the ROC (Receiver 
Operating Characteristic) Curve (AUC) of 0.76 for the 
prediction of response to chemotherapy. The change of 
textural features during chemoradiation was investigated 
by Yang et al. [23], showing that several features 
calculated from the gray-level run length and zone size 
matrices were significantly different in the baseline and 
post-treatment images for complete metabolic responders 
(CMR), with p < 0.001. However, neither SUV indices 
nor textural features could differentiate CMR from partial 
metabolic responders or progressive tumors, possibly 
because of the low number of patients (n = 20). In a third 
study including 90 patients treated with chemoradiation, 
the same group demonstrated the better performance of 
four textural features to distinguish CMR vs. non-CMR  
(p < 0.05) compared to the performance of SUV [24].

The aim of our study was to identify a radiomic 
signature measured on baseline 18F-FDG PET images 
predictive of local recurrence after chemo-radiation and 
brachytherapy in LACC. A second objective was to assess 
the robustness of selected non-redundant textural features 
with respect to the PET scanner used in acquiring the images.

RESULTS

Textural features for predicting local recurrence

Mean tumor volumes were not significantly different 
between groups (p = 0.2), with 39.9 ± 26.1 mL for G1 and 
39.0 ± 38.9 mL for G2. No significant differences were 
observed in the distribution of histology and stage between 
the groups (Table 1). A total of 39 cases of local recurrence 
(G1: 28, G2: 11) were clinically identified during the 
median follow-up time of 3 years.

Eight features identified patients who later showed 
local tumor recurrence in G1 (Table 2): SUVmean, SUVmax, 
SUVpeak, MV, LGZE and HGZE (p < 0.05) and TLG, 
Entropy (p < 0.01). None of the computed features were 
significantly different between relapsing patients and 
non-relapsing patients in G2, but Entropy had the lowest 
p-value (p = 0.052) and the highest AUC (0.70). No feature 
could distinguish relapsing from non-relapsing patients in 
an artificially reduced cohort from G1 (to include the same 
number of patients as G2).
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Using a stepwise model selection by AIC on all 
features, a 4-feature signature maximizing complementary 
information was identified in both groups (Equations 1 and 2).

G1: −11.27 + 3.57·Entropy − 1.02·SUVmean + 0.72· 
SUVmax−22.08·SRE  (Eq.1)

G2: −13.83 + 1.19·SUVpeak + 12.70·Homogeneity  
+ 87.25·LGZE − 0.01·HGZE  (Eq.2)

The signature trained in G2 could differentiate non-
relapsing and relapsing patients with AUC = 0.86 (C.I.: 

0.75-0.97) in G2, and was validated in G1 with AUC = 
0.76 (C.I.: 0.66-0.87). The performance of the signature 
trained in G1 was lower, with AUC = 0.77 (C.I.: 0.67-
0.88) in G1 and AUC = 0.63 (C.I.: 0.43-0.82) in G2 
(Figure 1). P-value from the Delong’s test was statistically 
significant between the AUC of SUVmax and the AUC of 
the signature trained on G2, applied on both groups (p = 
0.022 for G1, p = 0.030 for G2).

Table 1: Patient characteristics

Characteristic Value Percent

Age 48.5 ± 11.1 years (range: 27.1-83.0 years)
FIGO stage
 Ib1 6 5.1%
 Ib2 30 25.4%
 IIa 7 5.9%
 IIb 61 51.7%
 IIIa 0 0%
 IIIb 9 7.6%
 IVa 4 3.5%
 IVb 1 0.8%
Histology
 Squamous carcinoma 96 81.4%
 Adenocarcinoma 22 18.6%
PET device
 Siemens Biograph 79 66.9%
 GE Discovery 690 39 33.1%

Table 2: P-values, AUC and C.I. between relapsing and non-relapsing patients in VOI-T 

Index VOI-T G1 (N = 79) VOI-T G1 (N = 39) VOI-T G2 (N = 39)

p-value AUC 95% C.I. p-value p-value AUC 95% C.I.

SUVmean 0.025 0.65 0.52-0.78 0.226 0.104 0.67 0.49-0.84

SUVmax 0.022 0.66 0.53-0.79 0.260 0.104 0.67 0.49-0.84

SUVpeak 0.014 0.67 0.54-0.80 0.226 0.199 0.63 0.45-0.81

MV 0.021 0.66 0.54-0.78 0.206 0.391 0.59 0.40-0.77

TLG 0.001 0.72 0.61-0.84 0.091 0.221 0.63 0.44-0.81

Homogeneity 0.202 0.59 0.45-0.72 0.425 0.142 0.65 0.48-0.83

Entropy 0.004 0.70 0.57-0.82 0.160 0.052 0.70 0.52-0.87

SRE 0.375 0.56 0.43-0.69 0.470 0.168 0.64 0.47-0.82

LRE 0.404 0.56 0.43-0.69 0.473 0.178 0.64 0.46-0.81

LGZE 0.026 0.65 0.52-0.78 0.262 0.091 0.67 0.50-0.84

HGZE 0.026 0.65 0.52-0.78 0.263 0.118 0.66 0.49-0.83

Bold p-values are significant
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Influence of PET characteristics and voxel size 
on texture feature values

Three patients were excluded from the whole cohort 
for liver analysis because no whole-body PET-CT image 
showing the liver was available. From original images, 
two conventional features (SUVmax, SUVpeak) and two 
textural features (Homogeneity, Entropy) calculated in 
the liver were significantly different between the two PET 
scanners according to Wilcoxon’s test (Table 3, Figure 2).

The ability of image spatial resampling to remove 
the device-effect was also investigated on liver data. 
Neither resampling on G1 grid, G2 grid or on an isotropic 
grid of 2 mm side voxels could eliminate stratification 
effect. In all cases, at least five features were significantly 
different between the two cohorts (p < 0.001) (Table 3).

DISCUSSION

Prediction of recurrence

This study, performed in two cohorts of patients 
scanned with PET scanners having different properties, 
showed that several textural features were predictive 
of recurrence in a cohort scanned with the same PET 
machine (G1), and that a multivariate signature trained in 
G2 identified local recurrence with AUCs of 0.86 in the 
training set and 0.76 in the validation set. This signature 
was better than SUVmax when applied to both training 
and validation sets (p < 0.05). Although several studies 
discovered associations between tumor heterogeneity as 
reflected by PET texture indices and treatment outcomes, 
special attention should be paid to the methodology [25]. As 
shown in a study [26] comparing tumor delineation using 
the Nestle adaptive method [27] and a fixed threshold set 

to 40% of SUVmax, different contours lead to differences in 
some textural feature values. As there is no consensus as to 
which segmentation method should be used, these authors 
studied the sensitivity of features to the segmentation and 
identified a list of robust features for three types of cancer. 
Further, the correlation between indices is of foremost 
importance. Starting from 41 indices calculated in three 
cohorts, they identified groups of highly correlated features 
(r > 0.80), some of which being highly correlated with MV 
[26]. In our study, only features selected for their robustness 
with respect to the segmentation and resampling methods 
were used for the processing.

Volumes of VOI-T were highly variable (39.8 ± 
30.8 mL). As explained by Orlhac et al., the absolute 
resampling of SUV values avoids the volume dependence 
of textural features as opposed to relative resampling [28]. 
Another advantage of absolute resampling is the better 
distinction between tissues, and an intuitive variation in 
textural feature values [29]. Another team highlighted 
the impact of SUV discretization in such radiomic 
studies [30]. The authors showed that a fixed bin size 
(i.e. absolute resampling between two fixed boundaries) 
allows to obtain more comparable feature values between 
patients, although many teams used relative resampling 
with adaptive boundaries depending on minimum and 
maximum values in each tumor [23, 31]. In our study, 
eight features were identified as predictive of tumor local 
recurrence in G1 but not any in G2, possibly because of 
the low number of patients as suggested by results of 
univariate analysis in a subset of G1 including the same 
number of patients as in G2. Still, the highest AUC and 
the lowest p-value in G2 occurred for Entropy. AUC 
corresponding to Entropy were slightly higher than those 
found by Yang et al [24] in both groups (0.70 vs. 0.66), 
but the difference was not significant. In a previous study, 

Figure 1: Multivariate analysis using G1 for training, G2 for validation (left) and G2 for training, G1 for validation 
(right). ROC curves of SUVmax are also presented.
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Entropy calculated on PET images was significantly 
different between regions presenting different patterns 
of cells identified on pathological slices, suggesting that 
PET texture analysis captures the cellular heterogeneity of 
tumor and might provide additional information on tumor 
aggressiveness [32]. Unlike [24], our results showed a 
statistically significant correlation between SUV values 

and response to treatment, as it was previously reported 
[6, 33]. However, patient demographics were different 
between our study and [24], with their study having a 
higher number of advanced stages. Also, PET acquisition 
parameters and gray-level value resampling were different.

Regarding the identification of a signature for 
predicting recurrence, we chose to limit the number 

Table 3: P-values between G1 and G2 in VOI-L, with original images, images resampled on G1 grid, on G2 grid, and 
on a 2 mm × 2 mm × 2 mm grid

Index Original data G1 grid size G2 grid size Resampling 2 mm

SUVmean 0.239 0.038 0.574 0.760

SUVmax 0.001 0.001 0.006 0.004

SUVpeak 0.017 0.027 0.138 0.087

Homogeneity 0.031 <0.001 <0.001 <0.001

Entropy <0.001 <0.001 <0.001 <0.001

SRE 0.957 <0.001 <0.001 <0.001

LRE 0.967 <0.001 <0.001 <0.001

LGZE 0.504 0.118 0.638 0.742

HGZE 0.084 0.021 0.408 0.197

Figure 2: G1 vs. G2 in VOI-L for the 4 features that were significanly different between groups (original images) (*: 
0.01<p<0.05, **: 0.001<p<0.01, ***: p<0.001). 
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of parameters in the model by using AIC, a user-
independent criterion for automatic model selection. 
A model containing too few parameters results in a 
low variance at the expense of high statistical bias for 
the fit parameters, whereas a model containing too 
many parameters may overfit the data, resulting in a 
low bias at the expense of high variance. We proved 
that a combination of a few radiomic features selected 
by an algorithm avoiding overlearning is predictive of 
treatment outcome. To our knowledge, this is the first 
study evaluating a combination of textural and SUV-
based features computed on PET images to predict local 
recurrence of LACC with a validation set of images 
acquired on a separate device. Our results showed 
a difference between groups (Figure 1): the highest 
AUC was achieved using Entropy, SUVmean, SUVmax 
and SRE in G1 (AUC = 0.77), and using SUVpeak, 
Homogeneity, LGZE and HGZE in G2 (AUC = 0.86). 
Highest AUCs were reached using G2 as training set and 
G1 as validation set (AUC = 0.86 in G2, AUC = 0.76 
in G1), and the G2 signature predicted tumor recurrence 
significantly better than SUVmax in both sets. These 
results suggest that devices characterized by higher 
resolution and sensitivity are more sensitive to tissue 
heterogeneity and lead to more precise multivariate 
signature of recurrence. Other parameters such as 
injected activity, time per bed position, field of view 
could have likewise influenced the radiomic signature 
in favor of G2 PET device. An independent validation 
group will be necessary to strengthen the validity of 
this signature, but the modernization of PET scanners 
and the standardization of acquisition protocols through 
accreditations such as the EARL (European Association 
of nuclear medicine Research Ltd) FDG-PET/CT 
proposed by the European Association of Nuclear 
Medicine (EANM) are encouraging for performing 

multi-center PET radiomic studies such as suggested by 
Lasnon et al. [34].

Device-dependence of radiomic features

In our study, we proposed a method to evaluate the 
variability of radiomic features between PET scanners, 
using patient data only. Both Entropy and SUVmax showed 
high differences between G1 and G2 in VOI-L with  
p ≤ 0.001. A recent article focused on the robustness of 
68Ga-DOTANOC PET-based textural features when using 
various reconstruction settings on a single PET device to 
simulate a multicenter study [35]. Although the use of one 
PET device only may not reflect the full heterogeneity 
that may exist between multicenter scanners, the authors 
identified six parameters presenting less variability than 
SUVmax as a function of the reconstruction settings: 
Homogeneity, Entropy, Dissimilarity, HGRE (High Gray-
level Run Emphasis), HGZE and ZP (Zone Percentage). 
Among these features, Homogeneity was highly robust 
with respect to the number of iterations, post-filtering level 
and reconstruction algorithm compared to SUV.

The impact of reconstruction settings was also 
investigated in retrospective studies [36, 37]. Yan et al. 
focused on the impact of Point Spread Function (PSF) 
modeling within the reconstruction, use of Time Of Flight 
(TOF) information, iteration number, grid size and Full 
Width at Half Maximum (FWHM) of the Gaussian filter 
on textural and first-order features [36]. Most features had 
a coefficient of variation (COV) lower than 20% across 
different reconstruction algorithms. A high COV was 
found for Homogeneity and SRE when varying grid size. 
This result is consistent with our study in VOI-L showing 
a high variability across the two devices. According to 
Yan et al., the grid size had the largest impact on feature 
values, whereas the FWHM and the iteration number had 

Figure 3: Radiomic feature extraction pipeline.
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a lower impact. In our study, the analysis of VOI-L after 
resampling on G1 or G2 grid showed that stratification 
effect was not only due to voxel size. Same results were 
found using an isotropic grid of 2 mm × 2 mm × 2 mm 
voxel size. The technological differences between devices 
in terms of spatial resolution and sensitivity appear to be 
a limiting factor for applying a model derived using data 
from a PET scanner to data measured on a different PET 
scanner, or for pooling data from different scanners for 
model identification.

The device-dependence of radiomic features 
and their variability according to injected activity and 
acquisition parameters may explain the decrease in AUC 
between the training and validation sets. In the AIC 
stepwise algorithm, all 11 features were initially used 
to elaborate the multivariate signature, including those 
identified to be device-dependent according to the liver 
study (G1: SUVmax, Entropy; G2: SUVpeak, Homogeneity). 
In the literature, unlike CT studies including multicenter 
data [38], validation of PET radiomic signatures were 
mostly performed on subsets of patients from the initial 
cohort, acquired on the same device with the same 
acquisition parameters.

Therefore, it is necessary to investigate the 
reproducibility of radiomic features between devices. This 
comparison can be performed in a uniform 18F-FDG-filled 
phantom or in the healthy liver of patients. This latter method, 
used in our study, is particularly useful for retrospective 
studies where phantom images are no longer available.

There are several limitations in this study, especially 
its retrospective design and single center nature, which 
are sources of biases. Moreover, a higher local recurrence 
rate was observed in this cohort compared to previous 
cohorts from our institution [3]. This difference might be 
a consequence of scheduling considerations in local PET 
acquisitions, as the priority for nuclear imaging in our 
institution depends on the evolution and aggressiveness 
of the disease.

MATERIALS AND METHODS

Patient cohort

118 patients treated between 2005 and 2014 in our 
institution were retrospectively included in this study 
(Table 1). This project was reviewed and approved by the 
Institutional Review Board.

The inclusion criteria were as follows: (i) 
histologically-confirmed LACC, (ii) no surgery 
performed except for para-aortic lymph node dissection 
as surgical staging, (iii) no cervical conization 
performed before baseline PET-CT acquisition (due to 
the risk of inflammation), (iv) squamous carcinoma or 
adenocarcinoma histological subtypes, (v) minimum 
follow-up period of 15 months after external beam 
radiation therapy in patients without recurrence.

Treatment consisted of concurrent chemo-radiation 
followed by brachytherapy. 3D-conformationnal external 
beam radiotherapy was delivered in 25 daily fractions 
of 1.8 Gy each to reach a total dose of 45 Gy to the 
pelvis +/- the para-aortic area depending on the results 
of the primary para-aortic surgical staging. This was 
followed for all patients by a pulse-dose rate image-
guided adaptive uterovaginal brachytherapy boost, 
delivering 15 Gy to 95% of the intermediate risk clinical 
target volume [3, 39]. Concomitant chemotherapy was 
systematically administered and the standard regimen 
was cisplatin 40 mg/m2 weekly, five times during 
external radiotherapy delivery, with a sixth cycle 
administered during brachytherapy. After treatment, 
patients were evaluated at 6 weeks using a pelvic MRI 
and a clinical examination. In case of complete response, 
they were then followed every 3 months during 3 years, 
then every 6 months during the following 2 years, and 
yearly thereafter. Biopsies were performed in case of 
non-metastatic MRI-based relapse suspicion.

PET-CT acquisitions

Patients were divided in two groups, depending on 
the PET-CT device used for the baseline scan: a Siemens 
Biograph (Siemens AG, Erlangen, Germany) with LSO-
based detectors (N = 79, G1) and a General Electric 
Discovery-690 (GE Healthcare, Waukesha, WI) with 
LYSO-based detectors (N = 39, G2). 18F-FDG injected 
activities were 5.9 ± 0.9 MBq/kg for G1 and 3.5 ± 0.1 
MBq/kg for G2. Mean post-injection uptake time was 
61.9 ± 6.4 min for G1 and 60.5 ± 5.8 min for G2. In G1, 
images were reconstructed using a 2D Ordered Subset 
Expectation Maximization (OSEM) algorithm (8 subsets, 
2 iterations, no post-filtering). In G2, a fully 3D time-of-
flight iterative reconstruction scheme (VUE Point FX) 
was used (OSEM algorithm, 24 subsets, 2 iterations) 
[40]. A low-dose CT scan was acquired in both sets for 
attenuation correction.

No PSF modeling was introduced in the 
reconstructions for both scanners. The voxel size was  
5.3 mm × 5.3 mm × 3.4 mm (matrix size: 128 × 128, 4 
min/bed position) for G1 and 2.7 mm × 2.7 mm × 3.4 mm 
(matrix size: 256 × 256, 2 min/bed position) for G2. PET 
images were converted in SUV units by normalization 
using the patient body weight.

Radiomic pipeline

The entire radiomic feature extraction was 
performed using the LIFEx software (Local Image 
Feature Extraction, www.lifexsoft.org) [41]. The 
main steps of the radiomic pipeline are summarized in 
Figure 3.

The primary tumor was delineated on the PET 
images by a single observer (physicist, 3 years of 
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experience) using a 40%-threshold of SUVmax (maximum 
SUV in the lesion) within a manually drawn volume 
(LIFEx software). The resulting volume from this semi-
automatic segmentation was thereafter termed VOI-T 
(volume of interest-tumor). Special attention was paid to 
tumors located near the bladder wall due to the intense 
urinary uptake. VOI-T was systematically reviewed by a 
nuclear medicine physician (5 years of experience) and 
sometimes manually adjusted to exclude any biases due 
to bladder proximity and resulting partial volume effect.

For each VOI-T, five 1st-order features were 
extracted: SUVmean (mean SUV in the VOI), SUVmax, 
SUVpeak (mean SUV in a 1 mL sphere within the VOI such 
that the mean SUV in that sphere was maximum), MV, and 
TLG (product of SUVmean and MV).

SUV values in VOI-T were then resampled in 128 
discrete values using an absolute method in order to avoid 
the correlation between textural features and MV, reduce 
the impact of noise and the size of matrices. The minimum 
and maximum bounds of the resampling interval were 
set to 0 and 40 SUV leading to a bin size of 0.3 SUV 
(Equation 3). The higher bound was chosen to include all 
tumor SUV values [28].

R(x) round 128 1(x)
40

(Eq.3)= ×

Three gray-level matrices were calculated in each 
VOI-T: the Gray-Level Co-occurrence Matrix (GLCM), 
the Gray-Level Run Length Matrix (GLRLM) and the 
Gray-Level Zone Length Matrix (GLZLM). Two methods 
were described in the literature to compute gray-level 
matrices in 3-dimensions [42]. In this study, GLCM and 
GLRLM were computed in 13 directions first to consider 
all independent directions between one voxel and its 26 
neighbors [30]. Each textural feature extracted from these 
matrices corresponds finally to the average value over the 
13 directions. Six textural indices (Homogeneity, Entropy 
from GLCM; Short-Run Emphasis (SRE), Long-Run 
Emphasis (LRE) from GLRLM; Low Gray-level Zone 
Emphasis (LGZE), High Gray-level Zone Emphasis 
(HGZE) from GLZLM) were analyzed as proposed by 
Orlhac et al [26].

Statistical analysis

All statistical analyses were performed using R 
software version 3.3.2.

First, a univariate analysis was performed to assess 
the ability of each individual feature for predicting 
local recurrence in each group separately. P-values of 
Wilcoxon’s tests were computed between non-relapsing 
and relapsing patient features calculated in VOI-T 
for G1 and G2 separately. ROC analyses including 
AUC calculations were also performed to evaluate 
the performance of each feature using pROC library. 
95% Confidence Intervals (C.I.) were computed using 

2000 stratified bootstrap replicates [43]. To evaluate the 
influence of the patient number in univariate analysis, 100 
random subsets of 39 patients from G1 were drawn so that 
the number of patients was identical to that in G2, and 
the mean p-value of each index was computed from all 
drawings.

Second, a multivariate analysis was performed 
using the original datasets to evaluate the added value of 
a combination of features for predicting local recurrence, 
and to develop a signature applicable in both groups. A 
stepwise model selection using the Akaike Information 
Criterion (AIC, library MASS) was applied to determine 
the best 4-feature multivariate signature for both groups 
[44, 45], successively used for training and validation of 
the model: first, G1 as training set and G2 as validation set, 
and secondly G2 as training set and G1 as validation set. 
The AIC is a measure of the relative quality of statistical 
models based on information theory. It allows comparison 
of the least-square fits of a given dataset obtained using 
several models of varying complexity. For a model m, with 
N the sample size, Km the number of parameters and SSm 
the sum of squares of the distances of the points from the 
model curve, the AIC of the model (AICm) is defined as 
follows (Equation 4):

AIC N ln
SS
N

2 K 1 (Eq.4)m
m

m( )= + +

The model with the smallest AIC value is a 
compromise between goodness of fit on a given dataset 
and number of parameters.

Delong’s test was performed between AUC of the 
4-feature signature and AUC of SUVmax only for both 
groups.

Influence of PET characteristics and voxel size 
on texture feature values

To evaluate the influence of the PET scanner on 
texture index values, a spherical volume of 75.5 mL for 
G1 and 75.7 mL for G2 was drawn in the liver (VOI-L). 
This region was supposed to be a homogeneous region of 
reference after systematic verification of the normal liver 
function [28]. Another parameter influencing textural 
feature values is the voxel size [29, 36]. G1 images were 
resampled on G2 grid (2.7 mm × 2.7 mm × 3.4 mm) and 
G2 images on G1 grid (5.3 mm × 5.3 mm × 3.4 mm) 
using bicubic interpolation. G1 and G2 images were also 
resampled to a common grid with a voxel size of 2 mm × 
2 mm × 2 mm. The same radiomic pipeline as for VOI-T 
(Figure 3) was applied to VOI-L. Wilcoxon’s tests were 
performed between G1 and G2 in VOI-L on native and on 
the three sets of resampled images to determine the extent 
to which technological differences can influence radiomic 
feature values and if spatial resampling is sufficient to 
remove the device dependence.
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CONCLUSIONS

In this study, we defined a 4-feature signature 
predicting local recurrence in LACC in two cohorts, 
and we validated the signature derived from the images 
acquired on the most recent scanner (G2) on the G1 group 
with AUC > 0.75 using radiomic features only. For both 
PET scanners, we showed that this signature predicted 
tumor recurrence better than SUVmax.

We also demonstrated that it is challenging to 
merge images from two different PET scanners with 
different acquisition parameters without introducing 
bias due to differences between acquisition protocols. 
Multi-center or multi-device studies must thus be 
performed with caution, ensuring that biases are taken 
into account in the analyses.
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