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ABSTRACT
Serous ovarian cancer (SOC) is the most lethal gynecological cancer. Clinical 

studies have revealed an association between tumor stage and grade and clinical 
prognosis. Identification of meaningful clusters of co-expressed genes or representative 
biomarkers related to stage or grade may help to reveal mechanisms of tumorigenesis 
and cancer development, and aid in predicting SOC patient prognosis. We therefore 
performed a weighted gene co-expression network analysis (WGCNA) and calculated 
module-trait correlations based on three public microarray datasets (GSE26193, 
GSE9891, and TCGA), which included 788 samples and 10402 genes. We detected four 
modules related to one or more clinical features significantly shared across all modeling 
datasets, and identified one stage-associated module and one grade-associated module. 
Our analysis showed that MMP2, COL3A1, COL1A2, FBN1, COL5A1, COL5A2, and AEBP1 
are top hub genes related to stage, while CDK1, BUB1, BUB1B, BIRC5, AURKB, CENPA, 
and CDC20 are top hub genes related to grade. Gene and pathway enrichment analyses 
of the regulatory networks involving hub genes suggest that extracellular matrix 
interactions and mitotic signaling pathways are crucial determinants of tumor stage 
and grade. The relationships between gene expression modules and tumor stage or 
grade were validated in five independent datasets. These results could potentially be 
developed into a more objective scoring system to improve prediction of SOC outcomes.

INTRODUCTION

Epithelial ovarian cancer (EOC) is the most lethal 
gynecological cancer and the fifth most common cause 
of cancer-related death among women in the United 
States [1]. Serous ovarian cancer (SOC), peritoneal 
carcinoma, carcinosarcoma, and mixed carcinoma with 
serous component account for 78% of all cases and 87% 
of advanced stage cases of EOC [2]. SOC is the most 
common histological subtype of EOC. Due to latent 
symptoms and lack of reliable early screening methods, 
most SOCs are diagnosed at an advanced stage (stage III-
IV; International Federation of Gynecology and Obstetrics, 
FIGO) [3]. As advanced-stage or high-grade SOCs are 
more likely to have a poor prognosis [4], discovering 

gene expression signatures associated with SOC stage and 
grade outcomes is crucial. 

Previous integrated genomic analyses of ovarian 
carcinoma subdivided SOCs into multiple molecular 
subtypes and attempted to explain their association with 
prognosis [5–7]. However, some of the SOC subtypes 
proposed by Tothill et al. were mixed with endometrioid 
ovarian cancers [6], while those defined by Verhaak  
et al. contained only high-grade SOCs [7]. In the above 
studies, researchers established tumor subtypes based on 
inherent gene expression profiles and then explored their 
relationship to clinical features, but few direct correlations 
were detected. From a clinical point of view, an applicable 
subtype system based on gene-related prognosis that can 
guide clinical therapeutic strategies is desirable. Recent 
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advances in gene interaction network methodologies 
encouraged researchers to investigate possible intrinsic links 
between functional gene clusters (i.e. functional modules) 
and prognostic factors. Identification of meaningful 
modules related to grade and stage could be beneficial for 
inferring tumor mechanism, predicting patient survival, 
and establishing novel diagnostic or therapeutic targets. A 
weighted gene co-expression network analysis (WGCNA) 
was proposed to reconstruct robust gene co-expression 
networks (modules). These modules were constructed 
in terms of large-scale gene expression profiles and the 
distinction of centrally located genes (hub genes) that drive 
key cellular signaling pathways [8, 9]. The WGCNA approach 
has provided functional interpretation tools in systems biology 
and led to new insights into the pathophysiology of breast 
cancer and endometrial cancer [9–14]. Although WGCNA 
has been applied to detect TP53 missense or null mutations in 
ovarian cancer [15], there are no reports applying WGCNA 
to systematically identify gene co-expression networks 
associated with clinical-pathological factors in SOCs.

To fulfill this gap, we conducted a WGCNA and 
calculated module-trait correlations based on three public 
microarray datasets (GSE26193, GSE9891, and TCGA), 
which included 788 samples and 10402 genes. This 
approach identified meaningful co-expression modules 
significantly related to tumor grade and stage, and revealed 
hub genes contributing to extracellular matrix interactions 
and mitosis in SOC. Our study provides a novel and broad 
application platform for the identification of SOC gene 
signatures, and may be useful to characterize new molecular 
targets and develop effective therapeutic strategies.

RESULTS

Construction of gene co-expression network

WGCNA was performed to identify gene co-
expression networks associated with SOC clinical-
pathological factors. Three SOC datasets, namely, 
GSE26193, GSE9891, and TCGA, were adopted from 
the curatedOvarianData Bioconductor package (Table 1)  
[16, 17]. In total, 788 samples and 10402 genes were 
included, and ten arbitrary datasets, each containing 50% of 
all samples, were built through random sampling. Gene co-
expression networks were then built among these ten datasets 
(d1 to d10). As 3 is the lowest value that allows achieving 
more than 90% similarities in topology models of ten datasets 
(Figure 1A), a soft threshold of 3 was implemented, resulting 
in the detection of 54 significant modules (Figure 1B).

Calculation of module-trait correlations in SOCs

For each module, we calculated correlations 
between gene expression and clinical features such as 
tumor stage, grade, recurrence time, vital time, recurrence 
status, and vital status. The last four features were 

regarded as prognostic traits. Consensus module-trait 
relationships across the ten sets were also presented as 
mutually significant correlations (p < 0.05). We noticed 
that there were multiple modules associated with one or 
more traits. In particular, there were consistent correlations 
among the ten sets in four modules, each named after their 
representative color: blue, ivory, yellow, and white. For 
instance, the blue and the ivory modules were related 
to tumor stage; the yellow module was related to grade; 
and the white module was related to grade in nine out of 
ten sets. Besides, correlations between gene expression 
patterns and prognostic traits were found in a minority 
of the ten sets. In short, two stage-associated and two 
grade-associated gene modules were identified in SOCs 
using WGCNA. The correlation indexes are shown in 
Supplementary Figure 1, and the significance of module-
trait relationships is shown in Figure 1C–1E).

Module preservation analysis

A summarized Z score was calculated to determine 
universal module preservation using WGCNA R software. 
Modules with a Z score > 10 were regarded as highly 
preserved. As recommended by the WGCNA author, all 
uncharacterized genes were assigned to the gray module, 
which should have a Z score lower than that of most other 
modules [18]. We could assert that 36/54 modules were 
highly conserved (Supplementary Table 1). The Z scores 
of the gray module and the four stage-associated or grade-
associated modules were 78.82 (blue), 61.51 (yellow), 30.3 
(white), 30.0 (gray) and 27.41 (ivory). The blue module 
was regarded as a representative stage-associated module 
and the yellow module as a grade-associated module, 
because they both contained higher conservation and 
consistent association with stage or grade. Supplementary 
Table 2 contains gene symbols inside these four modules.

Identification of universal hub genes in the blue 
and yellow modules

The blue and yellow modules comprised 884 and 
561 genes, respectively. Genes with the top 200 strongest 
connections within the blue and yellow modules from each 
set were extracted to show their connections and identify 
hub genes (Supplementary Figures 2 and 3). Within 
each network, node sizes, font sizes, and color depth 
are proportional to their connectivity (sum of in-module 
degrees). Shared hub genes were readily discernible in all 
ten sets. 

To compare and integrate our gene co-expression 
networks with protein interaction data, we extracted a 
high-quality protein interaction network from the Search 
Tool for the Retrieval of Interacting Genes (STRING), 
which only contains interactions with a combined score 
above 600. The retrieved STRING network contained 
16771 nodes and 392611 edges. Nodes were defined as 
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individual genes in the network, and edges were defined 
as the interactions between genes. Subsequently, we 
found mutual genes in each module and in the STRING 
network gene set and extracted them from the respective 
subnetworks. As shown in Figures 2A and 3A, the blue 
module subnetwork contained 505 nodes and 2093 edges, 
while the yellow module subnetwork contained 313 nodes 
and 2215 edges. Since the subnetworks were extracted 
from a high-quality STRING protein interaction database 
section, derived from traceable interaction experiments, 
the data suggest that a tight regulatory relationship exists 
for these module genes in nature. 

A comparison of the top 25 hub genes throughout 
the co-expression network among the ten datasets, and 
mutual subnetwork genes, is summarized in Table 2 
(blue module) and Table 3 (yellow module). In the blue 
module co-expression network, MMP2, COL1A2, and 
COL3A1 were hub genes with tight relationships. MMP2 
interacted with COL1A2 or COL3A1 through COL16A1 
(Figure 2A). In the yellow module co-expression network, 

CDK1 interacted with CENPA through FOXM1, while 
CENPA, CDC20, AURKB, BUB1, BUB1B, and BIRC5 
interacted with each other directly (Figure 3A). The 
regulatory networks among these hub genes, although 
complex, were organized in a similar topology.

GO and pathway enrichment analysis of blue 
and yellow module genes

To explore the biological functions of the blue and 
yellow modules, we performed Gene Ontology (GO) 
term enrichment analysis, as well as pathway ontology 
analyses from the KEGG, BIOCARTA, and REACTOME 
databases. All significant terms enriched in the above 
annotation systems are represented as a word cloud 
to facilitate comparison of the relative significance of 
enriched terms, where the grayscale and font size of each 
term are proportional to the adjusted p value derived from 
the enrichment analysis. For the blue module, the top 
enriched terms in GO and REACTOME pathway ontology 

Figure 1: Weighted gene co-expression network of SOC. (A) Network topology analysis was employed to choose a soft-
thresholding power to achieve scale-free topology in all modeling sets. (B) Fifty-four significant co-expression gene modules shared 
in ten random sampling sets were detected with WGCNA. Consensus gene dendrogram and module colors denote correspondence.  
(C) Correlation values of blue and ivory module-trait relationships across ten random sampling datasets. (D) Correlation values of yellow 
and white module-trait relationships across ten random sampling datasets. (E) P values of module-trait relationships of two stage-associated 
and two grade-associated modules across ten random sampling datasets (p < 0.05).
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were “extracellular matrix (ECM) organization” or “ECM 
structural constituent”. On KEGG pathway analysis, the top 

enriched terms were “focal adhesion” (adjP = 6.9e-11) and 
“ECM-receptor interaction” (adjP = 1.0e-10) (Figure 2B). 

Table 2: The top 25 hub genes of the blue module through ten datasets and the high-quality 
STRING subnetwork

Number d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 STRING_600

1 FBN1 FBN1 FBN1 FBN1 FBN1 FBN1 FBN1 FBN1 FBN1 FBN1 JUN

2 COL5A1 COL5A1 COL5A1 COL5A2 COL5A1 COL5A1 COL5A1 COL5A2 COL5A2 COL5A2 BMP4

3 COL5A2 AEBP1 AEBP1 COL5A1 COL5A2 COL5A2 COL5A2 COL5A1 COL5A1 COL5A1 BMP2

4 AEBP1 COL5A2 COL5A2 AEBP1 AEBP1 AEBP1 AEBP1 AEBP1 AEBP1 AEBP1 MMP2

5 FAP SPARC INHBA SPARC FAP FAP SNAI2 SPARC FAP SPARC ITGB1

6 SPARC SNAI2 FAP FAP SPARC MMP2 FAP FAP SNAI2 FAP FOS

7 MMP2 MMP2 SPARC MMP2 INHBA SNAI2 SPARC INHBA SPARC MMP2 NOTCH1

8 SNAI2 FAP COL3A1 INHBA MMP2 CTSK INHBA MMP2 INHBA INHBA IGF1

9 INHBA INHBA SNAI2 SNAI2 CTSK INHBA MMP2 SNAI2 MMP2 SNAI2 KDR

10 VCAN ADAM12 MMP2 VCAN SNAI2 SPARC CTSK VCAN VCAN CTSK IL6

11 CRISPLD2 CTSK CTSK CTSK COL3A1 VCAN LOX CTSK CTSK COL3A1 FN1

12 COL3A1 VCAN VCAN COL3A1 VCAN COL3A1 COL3A1 COL3A1 COL3A1 VCAN CAV1

13 ADAM12 COL3A1 CRISPLD2 ADAM12 ADAM12 CRISPLD2 VCAN ADAM12 ACTA2 COL11A1 THBS1

14 CTSK COPZ2 ADAM12 COL1A2 CRISPLD2 ADAM12 ADAM12 CRISPLD2 CRISPLD2 ZEB1 COL1A2

15 LOX COL6A3 COL6A3 COL6A3 COL11A1 COL6A3 PDLIM3 COL1A2 ADAM12 LOX EGR1

16 COL1A2 CRISPLD2 LOX CRISPLD2 LOX ZEB1 CRISPLD2 COL6A3 PDLIM3 ADAM12 ESR1

17 COL6A3 COL1A2 COPZ2 CDH11 SERPINF1 LOX SERPINF1 BGN COPZ2 ACTA2 ITGB5

18 COL11A1 SERPINF1 COL11A1 ACTA2 ECM1 COL1A2 ACTA2 LOX COL1A2 CRISPLD2 MMP1

19 CDH11 BGN ACTA2 SERPINF1 LRRC15 COL11A1 COL6A3 SERPINF1 ZEB1 COL6A3 SERPINE1

20 PDLIM3 CDH11 PDLIM3 COL11A1 ANGPTL2 SERPINF1 ECM1 OLFML2B COL6A3 PDLIM3 COL3A1

21 ZEB1 ZEB1 CDH11 PDLIM3 COL6A3 GLT8D2 GLT8D2 CDH11 COL11A1 CDH11 MMP14

22 COL6A2 LOX LRRC15 ECM1 PDLIM3 ECM1 COL11A1 FN1 SERPINF1 COL10A1 DCN

23 SERPINF1 COL11A1 FN1 OLFML2B COL1A2 COPZ2 COPZ2 COL11A1 LOX SERPINF1 COL4A1

24 LHFP PDLIM3 PDGFRB LRRC15 COL10A1 CDH11 COL1A2 ACTA2 ECM1 COL1A2 SHC1

25 ANGPTL2 EDNRA ECM1 GLT8D2 ACTA2 PDLIM3 LHFP PDLIM3 CDH11 ECM1 HIF1A

d1–d10: ten datasets sampled from the modeling datasets.

Table 1: General information of involved three modeling and five validation datasets

datasets platform Involved 
samples

Grade
(I/II/III)

Stage
(I/II/III/IV)

Recurrence
Status (N/Y)

Vital status 
(N/Y)

Modeling datasets
 GSE26193 hgu133plus2 79 4/19/56 11/6/48/14 16/63 19/60
 GSE9891 hgu133plus2 237 7/86/144 11/9/195/21 62/175 126/111
 TCGA hthgu133a 472 6/58/408 13/24/365/68 225/247 218/254
Validation datasets
 GSE17260 hgug4112a 110 26/41/43 0/0/93/17 34/76 64/46
 TCGA.RNASeqV2 RNASeq 261 1/28/226 0/18/209/33 123/138 114/143
 GSE20565 hgu133plus2 140 6/27/63 18/9/52/15 - -
 PMID15897565 hgu133a 63 2/35/25 7/4/48/4 - -

 GSE49997 ABI Human Genome 
Survey Microarray V2 204 0/50/143 0/9/154/31 70/124 137/57
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For yellow module genes, the top enriched terms in 
the GO and pathway databases were “mitotic cell cycle,” 
“DNA binding or replication” and “condensed chromosome 
kinetochore” (Figure 3B). Thus, the enriched terms in 
the annotation systems were mostly related to mitosis. 
These findings corroborate previous research implicating 
extensive cell proliferation and accelerated DNA replication 
as fundamental characteristics of tumor cells. 

Validation of the robust correlation between blue 
module eigengene expression and SOC stages

For a more intuitive depiction of the the expression 
distribution of module genes related to SOC stages, we 
calculated statistical significance via Kruskal-Wallis tests 
and plotted the module eigengene expression distribution 
for stages in each modeling dataset (i.e. GSE26193, 
GSE9891, and TCGA). For the above cases, eigengene 
expression showed significant differences between 
stages [Benjamini-Hochberg (BH) adjusted p < 0.05]. 
Meanwhile, positive correlations between eigengene 
expression and stages were universally demonstrated in 
all boxplots (Figure 4). 

Since this co-expression network was identified in 
three public datasets and the correlation of its eigengene 
expression with stages in each dataset was validated, we 
determined if this correlation would be a universal rule 
across SOCs by perusing the other five independent 
SOC datasets from the curatedOvarianData package 
(GSE49997, GSE17260, TCGA.RNASeqV2, GSE20565, 
and PMID15897565). General information for the eight 
modeling or validation datasets examined is shown 
in Table 1. We calculated the eigengene expressions 
of module genes in these five validation datasets, and 
estimated the expression distribution among different 
stages using nonparametric tests. The distribution, mean 
value, and statistical results are shown in Figure 4A. From 
the boxplot, we found that the eigengene expression of 
the blue module genes showed a statistically significant 
distribution within stage III and stage IV patients in 
GSE17260 (p = 0.0059) and GSE49997 (p = 0.0148). 
There were significant differences between stage II and 
stage III (p = 0.0105), as well as between stage II and 
stage IV (p = 0.0218). In the other three datasets, the  
p values were greater than 0.05 (data not shown). As 
fewer numbers of module genes are likely needed for 

Table 3: The top 25 hub genes of the yellow module through ten datasets and the high-quality 
STRING subnetwork

number multi1 multi2 multi3 multi4 multi5 multi6 multi7 multi8 multi9 multi10 STRING_600

1 TPX2 TPX2 TPX2 KIF4A TPX2 TPX2 TPX2 KIF4A KIF4A KIF4A CDK1

2 CENPA KIF4A CENPA CENPA BUB1 KIF4A CENPA CENPA CENPA TPX2 PLK1

3 DLGAP5 CENPA KIF4A TPX2 KIF4A NUSAP1 DLGAP5 TPX2 TPX2 NUSAP1 PCNA

4 KIF4A BUB1 MELK BUB1 RACGAP1 KIF15 KIF4A BUB1 BUB1 CENPA CDK2

5 BUB1 MELK BUB1 UBE2C DLGAP5 HJURP BUB1 NUSAP1 DLGAP5 MELK CCNB1

6 NUSAP1 DLGAP5 NUSAP1 MELK MELK BUB1 UBE2C KIF15 MELK BUB1 CDC20

7 KIF15 NUSAP1 HJURP RACGAP1 UBE2C CENPA NUSAP1 DLGAP5 RACGAP1 KIF15 AURKB

8 NCAPH UBE2C RACGAP1 NCAPH CENPA NCAPH KIF15 UBE2C KIF15 DLGAP5 AURKA

9 UBE2C ASPM ASPM KIF15 NUSAP1 MELK NCAPH MELK HJURP CCNB2 MAD2L1

10 RACGAP1 HJURP NCAPH ASPM KIF15 DLGAP5 MELK RACGAP1 UBE2C HJURP MCM5

11 ASPM KIF15 DLGAP5 CCNB2 KIF23 RACGAP1 CCNB2 HJURP CCNB2 BIRC5 CDC6

12 HJURP CCNB2 KIF15 HJURP BIRC5 UBE2C HJURP ASPM ASPM RACGAP1 BUB1

13 KIF23 RACGAP1 BUB1B DLGAP5 BUB1B ASPM RACGAP1 BUB1B NUSAP1 BUB1B TOP2A

14 MELK BUB1B UBE2C NUSAP1 ASPM BUB1B KIF23 NCAPH BUB1B ASPM BUB1B

15 KIF20A NCAPH KIF20A BIRC5 HJURP ZWINT BIRC5 ZWINT NCAPH UBE2C BIRC5

16 AURKB NCAPG AURKB KIF23 PRC1 PRC1 BUB1B KIF23 KIF23 KIF23 CKAP5

17 BUB1B KIF20A KIF23 TTK NCAPH CCNB2 KIF20A NCAPG BIRC5 KIF20A ESPL1

18 PRC1 CDK1 BIRC5 BUB1B KIF20A KIF23 ASPM BIRC5 KIF20A NCAPH MCM3

19 NCAPG BIRC5 CDC20 ZWINT NCAPG BIRC5 CDK1 CENPF TTK PRC1 CCNA2

20 BIRC5 CENPF TTK NCAPG CCNB2 KIF20A NCAPG CDK1 PRC1 CDC20 CCNB2

21 CDKN3 CDCA3 NCAPG AURKB CCNB1 CDC20 AURKB KIF20A CDCA3 CDKN3 NDC80

22 PTTG1 CDC20 CENPF PRC1 TTK NCAPG ECT2 TTK CDK1 CDK1 XPO1

23 CDC20 AURKB PRC1 KIF20A AURKB CDCA8 AURKA PRC1 AURKB PTTG1 CENPA

24 CCNA2 CDKN3 NDC80 CDK1 PTTG1 PTTG1 ZWINT AURKB CDC20 CCNB1 BRCA1

25 TOP2A KIF23 CDCA3 CDC20 CDC20 AURKB PRC1 CDC20 CEP55 TTK CENPE

d1–d10: ten datasets sampled from the modeling datasets.
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Figure 2: Blue module gene network and enrichment analysis. (A) Top hub genes of the blue module are shown in blue; gene 
importance was assigned according to circle diameter and color depth, in descending order. Intersection of the top 25 hub genes with the 
high-quality STRING network is shown in red. COL16A1 is shown in green as a node connected to MMP2 and COL. (B) Gene ontology 
and pathway enrichment analysis of blue module genes.
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Figure 3: Yellow module gene network and enrichment analysis. (A)  Top hub genes of the yellow module are shown in yellow; 
gene importance was assigned according to circle diameter and color depth, in descending order. Intersection of the top 25 hub genes 
with the high-quality STRING network is shown in red. FOXM1 is shown in green as a node connected to CDK1 and CENPA. (B) Gene 
ontology and pathway enrichment analysis of yellow module genes.



Oncotarget42990www.impactjournals.com/oncotarget

clinical transformation, we attempted to use the top seven 
hub genes to replace the 884 blue module genes. These 
hub genes included MMP2, COL3A1, COL1A2, FBN1, 
COL5A1, COL5A2, and AEBP1. There were significant 
differences (with lower p values) between eigengene 
expression of the top seven hub genes and tumor stages 
in the three modeling datasets (p = 0.0003025–0.01211) 
and in four validation datasets (p = 0.0009515–0.02184) 
(Figure 4B).

Validation of the robust correlation between yellow 
module eigengene expression and SOC grades

Significant differences were found between the yellow 
module eigengene expression values and different tumor 
grades in all modeling and validation datasets. Similarly, 
positive correlations between eigengene expression and 
tumor grades were demonstrated in all boxplots. There 
were significant differences between any pair of grade 1, 
grade 2, and grade 3 SOC in GSE9891 (p = 6.43e-09) 
and TCGA (p = 7.259e-06). Meanwhile, in GSE26193  
(p = 0.0014), GSE20565 (p = 0.0002), TCGA.RNASeqV2  
(p = 8.613e-05), and PMID15897565 (p = 0.0065), differences 
appeared between grade 1 and grade 2, as well as between 

grade 1 and grade 3. Additionally, significant differences in 
eigengene expressions between grade 2 and grade 3 tumors 
were found in GSE17260 (p = 0.0329) and GSE49997  
(p = 0.04619). We next used the top seven hub genes: CDK1, 
BUB1, BUB1B, BIRC5, AURKB, CENPA, and CDC20 to 
replace 561 yellow module genes. There were significant 
differences between the eigengene expression values of the 
top seven hub genes and tumor grades in the three modeling 
datasets and in four validation datasets (Figure 5B). 

DISCUSSION

In this study we integrated large-scale transcriptional 
profiling, incorporating three modeling datasets with 788 
SOC samples, to identify robust co-expression modules 
associated with cancer characteristics. Our long-term goal 
was to provide insights into disease biology and diagnostic 
classification, which may cover the shortage of objectivity 
in postoperative pathological diagnosis and guide 
early-phase clinical therapeutic applications. We also 
determined that co-expression networks reflect causative 
relationships between gene-gene interactions. First, this 
study constructed two SOC-stage-specific (blue and ivory) 
and two grade-specific (yellow and white) modules based 

Figure 4: Distributions of blue module eigengene expression among traits in modeling and validation datasets. Overall 
p-values and pairwise p values are shown. (A) 884 genes; (B) top 7 genes.
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on ten random datasets sampled from 788 SOC samples. 
Second, we identified the shared hub genes in these ten 
datasets and found mutual subnetwork hub genes from the 
high-quality STRING protein interaction database for the 
blue and yellow modules. Third, we illustrated hub gene 
interactions and performed gene enrichment analysis on 
GO and pathway terms. Extracellular matrix organization 
genes were enriched for stage-related modules (blue), 
while cell cycle genes were enriched for grade-related 
modules (yellow). Then, we validated the correlations 
between module eigengene expression and tumor stages 
or grades in modeling datasets and other public validation 
datasets that were not used to build co-expression 
networks but showed ideal robustness.

The top hub genes within the blue module included 
FBN1, COL5A1, COL5A2, and AEBP1. A gene 
intersection set of the top 25 hub genes among the ten 
random sampling datasets and the high-quality STRING 
database contained MMP2, COL3A1, and COL1A2. The 
last two collagen (COL) proteins interacted with each other 
directly and with MMP2 through COL16A1. According 
to previous studies on ovarian cancer biomarkers, FBN1 
and MMP2 were found to be metastasis-promoting 
markers that were stimulated or suppressed by Aurora-A 
or BRCA2. Clinically, high expression of FBN1 indicated 
poor disease-free survival [19] and overall survival [20]. 
COL5A1 and AEBP1 were also reported as metastatic 
signatures associated with poor overall survival in SOC 

Figure 5: Distributions of yellow module eigengene expression among traits in modeling and validation datasets. 
Overall p-values and pairwise p values are shown. (A) 561 genes; (B) top 7 genes.
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[21]. The expression of COL3A1, COL5A2, and COL1A2 
was also studied by immunocytochemistry and western 
blot analysis and found to be associated to drug-resistance 
in ovarian cancer [22]. ECM-receptor interaction was 
enriched based on the KEGG pathway in our study, 
while COL3A1, COL5A2, and COL2A1 were regarded 
as potential ECM components associated with cytostatic 
drug resistance in ovarian cancer cells [23]. Consequently, 
both top hub genes and intersection set genes all had close 
relationships with ovarian cancer, however, the exact roles 
of these hub genes in ovarian tumorigenesis, metastasis 
or drug resistance remain unknown. Our gene module 
co-expression network may provide clues to the complex 
regulatory networks between these various molecular 
components. Additionally, the blue module was related 
to different tumor stages and its eigengene expression 
values can be utilized as a more objective staging system 
to improve current clinical-pathological staging systems.

The gene intersection set of the yellow module hub 
genes and the high-quality STRING database contained 
CDK1, BUB1, BUB1B, BIRC5, AURKB, CENPA, and 
CDC20. The last six genes interacted with each other 
directly, while CDK1 interacted with CENPA through 
FOXM1. Cytoplasmic CDK1 overexpression was 
correlated with cancer growth and poor overall survival 
in 249 EOCs [24]. CDK1 was also found to be a potential 
target of transcription factors to regulate paclitaxel 
resistance in EOC patients [25]. While a few EOC studies 
implicated BUB1, BUB1B, BIRC5, AURKB, CENPA, and 
CDC20, multiple studies in contrast identified aberrantly 
increased expression of FOXM1 and its regulatory factors 
[26–29]. Overexpression of BUB1 was reported in non-
small cell lung cancer [30] and breast cancer [31]. TPX2 
(Targeting Protein for Xklp2), CENPA, and KIF4A were 
the top three hub genes in most of the ten sets. Although 
the function of TPX2 in EOC pathology is unknown, 
it was reported as a biomarker of poor survival in 143 
EOC patients [32]. In cervical cancer, the expression of 
TPX2 was correlated with histological grading, FIGO 
staging, and lymph node metastasis [33]. Additionally, 
TPX2 was verified as a target gene of microRNA-491 in 
esophageal cancer and played a critical role in cancer cell 
invasion in both esophageal [34] and colon cancer [35]. 
Moreover, TPX2 was found to be a binding partner and 
activator of AURKA [36]. KIF4A, on the other hand, is 
critical for mitotic regulation, including chromosome 
condensation, spindle organization, and cytokinesis [37]. 
Abnormal expression of KIF4A induced apoptosis in 
breast cancer [38] and metastatic invasion in lung cancer 
[39]. In summary, compared with blue module hub genes, 
much less is known about the molecular actions of the 
yellow module hub genes. Research on these hub genes 
is imperative to fully uncover how alterations in cell 
differentiation relate to SOC.

Due to the high heterogeneity of gene expression 
profiles, it is more difficult to find shared co-expression 

networks across databases of ovarian cancers than it is 
for other types of tumors. Although some significant 
modules were detected among very few datasets, these 
modules may not provide accurate information on actual 
biological characteristics of tumors. In one network 
analysis of ovarian cancer, COL5A2, TPX2, and BIRIC5 
were also identified as hub genes using the joint sparse 
regression model [40]. Another study built a Bayesian 
network model, which used only the TCGA dataset and 
68 seed genes reported in the literature [41]. In another 
publication, WGCNA was performed based on TCGA 
RNA-sequencing data and only studied TP53 mutations 
[15]. To the best of our knowledge, our study is the first to 
construct a thorough and weighted co-expression network 
analysis of gene expression relationships with prognostic 
factors and outcome. Moreover, 788 SOC patients were 
used to build the WGCNA model and another 778 
patients were used to validate it. Since the yellow module 
eigengene expression showed a negative correlation with 
cell differentiation and its distribution showed significant 
differences among distinct tumor grades, we conclude 
that there is some regulatory causality between hub genes 
expression profiles and tumor grades. This is relevant, 
inasmuch as high-grade SOCs entail significantly higher 
risk of death than low-grade ones, while the existing 
grading system does not reliably differentiate grade 2 from 
grade 1 or grade 3 patients. We speculated that hub gene 
expression could be used to represent a true continuum 
from grade 1 to 3 and reliably divide grade 2 SOCs into 
low-grade and high-grade groups. Our future work will 
further refine and validate the above classification method 
in multicenter prospective studies including SOC patients 
with various tumor grades.

MATERIALS AND METHODS

Datasets filtering

The ovarian cancer datasets were adopted from the 
curatedOvarianData Bioconductor package [16]. This 
package represents a manually curated data collection for 
gene expression meta-analysis of patients with ovarian 
cancer, and includes both uniformly prepared microarray 
data and curated and documented clinical metadata. 
According to our special rules, only datasets and samples 
that contain tumor stage and grade information, as well 
as survival data (recurrence status, vital status, recurrence 
time, and vital time) were reserved. Accordingly, 
GSE17260, TCGA.RNASeqV2, and GSE49997 datasets 
were excluded from the validation sets due to absence 
of stage I or stage II patient data. GSE20565 and 
PMID15897565 were added into the validation sets as 
they contained complete grade and stage information. 
All the datasets were originated from both microarrays 
platforms (hthgu133a, hgu133plus2, and hgug4112a) and 
RNA-seq technologies. We finally kept three modeling 
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and five validation datasets (Table 3). To adapt to gene 
co-expression network analysis, only the common genes 
in all 3 modeling datasets were kept. Adjustment for batch 
effects was performed using the ComBat method [42], and 
788 patients were randomly sampled to form ten datasets, 
extracting half of the total samples each time. These ten 
sets were used to construct a gene co-expression network.

Gene co-expression network construction 

Gene co-expression network analysis was 
performed using the R package WGCNA [9]. The 
process is summarized as follows. First, a matrix of 
pairwise correlations between all pairs of genes across 
all selected samples was constructed. Second, we chose 3 
as the proper soft-thresholding power to which co-
expression similarity is raised to achieve consistent scale-
free topology in multiple datasets (Figure 1A). Third, 
with the chosen power value, we performed automatic 
network construction and module detection with the 
following major parameters: maxBlockSize of 20000, 
minModuleSize of 40, deepSplit of 4, and mergeCutHeight 
of 0.25. This procedure comprised calculation of network 
adjacencies and topological overlap dissimilarities, 
followed by scaling of topological overlap matrices and 
calculation of consensus topological overlap. Then, 
we built a hierarchical clustering dendrogram of gene 
expression data for each dataset, and performed adaptive 
branch cutting to identify shared functional modules. Some 
modules with similar expression profiles were merged, 
according to pre-defined parameters (Figure 1B) [43]. 

Calculation of module-trait correlations and 
module preservation

Next, we determined correlations among gene 
expression modules and clinical traits for each of the 
above ten data sets. Tumor stage and grade, as well as 
survival data (recurrence status, vital status, recurrence 
time, and vital time) were chosen as clinical traits. 
Modules having significant relationships with one or 
more traits are shown in Supplementary Figure 1. After the 
above procedures, modules shared in ten or nine sets were 
detected (Figure 1C–1E). Modules were labeled using a 
conventional color scheme.

A WGCNA integrated function (modulePreservation) 
was used to calculate module preservation statistics and 
the Z summary score (Z score) was applied to evaluate 
whether a module was conserved or not [19].

Calculation of eigengene expression

In the co-expression network, the first principal 
component (PC) of each module’s gene expression matrix 
is referred to as the module eigengene (ME), a single 
value that represents the highest percent of variance 

for expression values for all module genes in a sample 
[44]. Thus, the expression profiles of module genes can 
be summarized as the expression profile of MEs. For 
convenience, ME expressions were used to discuss the 
correlation of gene expression modules with clinical 
traits. Moreover, module similarities can be measured 
with MEs, and some modules with high similarities can 
be merged according to a predefined threshold. Expression 
distribution differences in ME among multiple tumor 
grades or stages were calculated via nonparametric 
Kruskal-Wallis tests based on a null distribution inferred 
from permutation. If statistical significance existed among 
grades or stages, pairwise differences were estimated by 
Tukey’s HSD tests, and pairwise p values adjusted by the 
BH method (Figures 4–5).

Hub gene identification

To evaluate the interactions of module genes and 
identify hub genes in each dataset, we calculated their in-
module connectivity from the scale-free, weighted gene 
co-expression networks established in the ten sets as 
defined above. The connectivity of one node was defined 
as the sum of correlation coefficients with other nodes in 
a ‘signed’ topological overlap matrix (TOM) based on 
an adjacency matrix. For illustration purposes, we only 
extracted the top 200 strongest connections within the blue 
and yellow modules from each set to show the distribution 
of hub genes (Supplementary Figures 2 and 3). 

Furthermore, we extracted a subnetwork 
with module genes from the high quality STRING 
protein interaction database (combined score ≥ 600)  
(Figures 2A and 3A) [45]. Since the STRING database 
weights and integrates information from numerous 
sources, including experimental repositories, 
computational prediction methods and public text 
collections, we only parsed the high-quality part of it, 
hoping to get a convincing interaction subnetwork of 
our module genes. The subnetwork was illustrated with  
Gephi [46]. 

Enrichment analysis

Enrichment analysis was based on either Fisher’s 
exact test or hypergeometric test using the R package dnet 
[47]. We employed the hypergeometric test to estimate 
enrichment significance in our modules, and the p values 
were batch-adjusted with the BH method. All the enriched 
terms are represented as word clouds, whit font grayscales 
and sizes proportional to their enrichment significance 
[48] (Figures 2B and 3B).
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