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ABSTRACT
Risk factors of cardiovascular diseases have long been implicated as risk 

factors for carcinogenesis, but clear explanations for their association have not been 
presented. In this article, fundamental concepts from carcinogenesis, microvascular 
hemodynamics, and immunity are collectively reviewed and analyzed in context of 
the known features of vascular ageing effects, in formulating a theory that suggests 
reduced microvascular immunity as an important driving factor for carcinogenesis. 
Furthermore, scientific, preclinical, and clinical evidence that support this new theory 
are presented in an interdisciplinary manner, offering new explanations to previously 
unanswered factors that impact cancer risks and its treatment outcome such as chronic 
drug use, temperature, stress and exercise effects among others. Forward-looking 
topics discussing the implications of this new idea to cancer immunotherapeutics are 
also discussed.

INTRODUCTION

Limitations of current knowledge that links 
cardiovascular complications to carcinogenesis

Cancer is a widespread and a lethal disease 
of neoplasms in which no reliable treatment nor its 
prevention methods have been developed. In explaining its 
natural etiology, current science interprets carcinogenesis 
in a largely three-step process that sequentially involves 
an accumulation step of oncogenic mutations, a 
tumor promotion step whereby the microenvironment 
surrounding the mutated cells fosters malignant 
transformation and clonal expansion of these “initiated” 
cells, and lastly an immuno-escape step whereby these 

cancerous cells overcome our tumoricidal immunity 
(cancer immunosurveillance) (Figure 1) [1–4]. Recently, 
increasing number of experimental and epidemiological 
evidences suggested that the epidemiological rate 
of carcinogenesis is mainly driven by the chronic 
inflammations fostering the tumor promotion step, and by 
the alterations in the immunity mechanism over the course 
of ageing, rather than by the accumulation of genetic 
mutations [5–7]. In context of these understandings, 
identification of various cardiovascular risk/preventive 
factors such as hypertension [8, 9], physical exercise [10], 
or coffee drinking [11] in association with cancer risks 
has been a perplexing topic as these factors seemingly 
have no direct contribution to any of the three steps 
to carcinogenesis. However, collective and in-depth 
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understandings on hemodynamics, immunity mechanism, 
and the vascular ageing effects reveal a new face of cancer 
immunity that helps explain many of the previously 
unanswered controversies surrounding carcinogenesis, 
cancer prevention, and its treatments.

Revisiting the fundamental basics of circulation, 
immunity, and the underlying mechanisms of 
vascular ageing

In 1951, Sternstein reported that the use of local 
vasodilators with antibiotics significantly improved 
treatment outcome of atrophic rhinitis with ozena versus 
the use of antibiotics alone, which was associated with 
increased vascularization of the nasal mucosa [12]. 
And more recently, Ben-Ami et al. showed that drug-
resistance of Aspergilus fumigatus in common pulmonary 
infections of cancer patients was attributed to its ability to 
cause occlusion in pulmonary vasculatures via secretion 
of anti-angiogenic metabolites [13], and later showed 
that co-administration of pro-angiogenic factors such 
as basic fibroblast growth factor (bFGF) and vascular 
endothelial growth factor (VEGF) significantly amplified 
the effectiveness of antifungal treatments by increasing 
the accumulation of monocytes in the infected tissues 
[14]. Interestingly, they also reported that VEGF was 
less effective than bFGF in potentiating the antifungal 
effect due to its tendency of forming immature neovessels 
[14], which implicated that even the small hemodynamic 
changes caused by different geometric features of 
capillaries are critical in the effectiveness of microvascular 
immunity.

While hemodynamic features are relatively 
simple in larger vessels, blood flow in smaller ones 
becomes increasingly complex and heterogeneous as the 
dimensional constraints of capillaries (inner diameter: 

5~10 μm) approach to those of blood constituent cells 
(5~15 μm) [15]. Composition and rheological properties 
of blood are consequently changed in the capillaries due 
to flow-network effects and interaction of WBCs with the 
endothelial lining of the draining venous vascular walls 
whereby the flow-rate is lower. As the ageing-associated 
development of endothelial dysfunctions [16–18] and 
rise in endogenous homocysteine (Hcy) level [19, 20] 
adversely influence the passage of different blood cells 
through capillaries by affecting both factors, pathological 
consequences are expected to arise.

Briefly, phase-separation from flow-network 
effect arises from the fact that blood cells with different 
geometric configuration, viscosity, and stiffness have a 
general tendency of following higher velocity path with 
less entry restriction at each vascular bifurcation [21]. 
Therefore, the dimensional and network structural features 
of local capillary beds determine the phase-separation 
effect with subsequent reduction in the concentration 
of larger-sized blood cell components in finer capillary 
beds and its compensating overflow of the cells in a 
small number of distal channels [22]. Network Fåhræus 
effect is a well-known phenomenon whereby hematocrit 
is reduced up to 40% in the finest capillaries versus feed 
hematocrit [21, 23]. More importantly, Network Fåhræus 
effect can be extended to cause marked variations in 
discharge hematocrit among different capillary networks 
as reported by Pries et al. [21], suggesting tissue-wide 
variations in blood functions.  Similarly, a rat model 
study showed marked phase-separation of WBCs in a 
mesenteric capillary network whereby its relative density 
to systemic level (6.0 × 109/L) in proximal capillaries 
(diameter = 8.9 ± 0.4 μm) was characterized at only 
55% (3.4 ± 0.5 × 109/L), while the WBC density in the 
compensating distal capillaries (diameter = 10.1 ± 0.4 μm) 
was characterized at 195% (11.7 ± 2.6 × 109/L) [24]. In 

Figure 1: Illustrated diagram of multistage carcinogenesis model and the role of cancer immunosurveillance in 
preventing clinical cancer development.
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further considerations, WBC discharge in fine capillaries 
less than 7 μm diameter is expected to approach "0" in 
an exponential fashion due to volume exclusion effects 
(Figure 2A). This suggests potential existence of tissue 
regions with hemodynamically inhibited oxygen supply 
and immunity cell access upon vasoconstriction in 
otherwise healthy individuals (Figure 2) [24, 25]. 

In further details, nitric oxide (NO)-modulated 
interaction of different WBCs with the endothelial lining of 
low-shear venous vascular walls and subsequent reduction 
of flows into capillaries is another contributing factor toward 
the phase-separation of blood in capillaries. Particularly, 
NO was shown to inhibit the activation and interaction of 
polymorphonuclear leukocytes (PMNs) with endothelial 
cells by suppressing cell stiffening and cell adhesion 
via CD18 expression [26], while similarly inhibiting the 
recruitment of monocytes via suppression of VCAM-1 gene 
transcription [27]. Conversely, NO plays a pivotal role in 
activation and recruitment of certain subsets of lymphocytes 
such as natural killer cells (NK cells) [28]. While delicate 
modulation of these interactions by NO is essential for 
proper immune function by the WBCs, their excessive 
activation is also known to cause “plugging” of capillaries 
that leads to significant reduction in capillary blood 
perfusion [29, 30]. Since the WBC plugging has a volume 
exclusion effect, the reduction in the effective diameter of 
capillaries and their draining venules would enhance the 
capillary flow resistance and, in turn, marked reduction of 
blood cell flow rate through the capillaries against the larger 
blood cells such as WBCs. Therefore, synergistic depression 
of local NK-cell activities in certain capillary beds may be 

expected upon reduced endothelial NO availability, owing 
to the increased capillary plugging effects by PMNs  and 
monocytes [26, 27], impaired vasodilation [31–33], and 
suppressed NK cell activation [28].  

On the basis of these hemodynamic effects, 
progressive exacerbation of the local blood cell reduction 
against larger circulating cells within and across capillary 
networks [21, 24] is expected due to epidemiologically 
characterized development of endothelial dysfunctions 
[18, 32] and elevation in systemic Hcy level [34] over 
the course of ageing. Briefly, age-dependent reduction 
in endothelial nitric oxide synthase and consequent 
reduction of NO availability in blood has been shown 
to cause chronic vasoconstriction from deficiencies in 
NO-mediated vasodilation of all types [31–33] with 
subsequent elevation in blood pressure that further 
causes progressive rarefactions in capillary beds  
[35, 36]. In addition, such NO-deficiency was found to 
reduce deformability of RBCs [37] and various WBCs 
[29] while aberrantly activating cell adhesion molecules 
(CAMs) [16, 26],  further reducing the blood flow into 
the constricted capillaries. Meanwhile, physiologically 
relevant level of diet-induced hyperhomocysteinemia 
(10.6 ± 0.2 μM) was shown to cause increased 
vasoconstriction response in cynomolgus monkeys [19], 
and similar treatment was shown to impair NO-mediated 
vasodilation response by reducing eNOS level in porcine 
models [38]. Furthermore, the Hcy inhibition of NO-
induction was shown to cause up-regulation of CAMs 
[20, 39]. These results implicate potential roles of age-
dependent endothelial dysfunctions causing reduced 

Figure 2: Projected density reductions in RBC and WBC flowing through proximal capillaries of different effective luminal diameters 
when compared to those of arterial level , and projected pathological consequences of Chung-Fåhræus Effect (CFE) (A) The RBC density 
reduction was estimated based on the published work by Tuma and Duran that described the RBC reduction phenomenon in fine capillaries 
per Fåhræus effect [25], adjusted by predicted volume exclusion effect against the entry of RBCs. Similarly, WBC density reduction was 
estimated based on the published work by Ley et al. who quantitatively showed the reduction in the density of WBC in fine mesenteric 
capillary networks [24], adjusted by predicted volume exclusion effect against the entry of WBCs. (B) Suspected pathological consequences 
of CFE development in capillary-rich tissues.
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endogenous NO generation [18, 32] in exacerbating the 
reduction of larger blood cell availability in the constricted 
capillary-rich tissues. For convenient discussions, we 
coined this exacerbating development of RBC and WBC 
deficiencies in capillary-rich tissues due to constrictive 
and/or plugging-prone endothelial dysfunctions with the 
term “Chung-Fåhræus effect” (CFE) [21, 24, 40]. 

Projected pathological consequences of CFE

The pathological consequences upon manifestation 
of weakly prolonged CFE would include reduction of local 
immunity access, mild hypoxia, and activation of some 
immunity cells even at a moderate level, which may lead 
to pathologies arising from hypoxia-induced aberrant 
cell behavior, reduced regeneration, chronic infection, 
inflammation, and/or carcinogenesis (Figure 2B). In 
addition, more pronounced manifestation of the effect may 
further cause tissue degeneration from severe hypoxia, 
malnutrition, and chronic infections from local immune 
deficiency. Given these theoretical considerations, CFE 
allows for interesting interpretations on the epidemiology 
of known microvascular diseases including arthritis, 
diabetes, and Alzheimer’s disease (AD) with respect to the 
prevalence of primary hypertension (PHT) or peripheral 
arterial disease (PAD) over the course of ageing. Notably, 
microvascular rarefaction has been implicated as the 
direct cause of symptomatic progression in these three  
diseases [41–45].

PHT constitutes about 90~95% of all hypertension 
cases [46], and it arises from functional and structural 
capillary rarefactions causing microvascular hypoperfusion 
across the system with consequent increase in the systemic 
blood-flow resistance [47]. Briefly, the functional capillary 
rarefaction arises from excessive chronic vasoconstriction 
of arterioles, which subsequently leads to structural 
rarefactions of certain arterioles and capillaries that are 
characterized by thickened and stiffened vascular walls 
due to their prolonged exposure to elevated blood pressure  
[47]. Therefore, the prevalence of hypertension in a 
given age group is expected to represent the respective 
prevalence of constrictive and degenerative capillary 
disorders in the corresponding age group. PAD, on the 
other hand, arises from atherosclerotic narrowing of 
peripheral arteries to legs, arms, stomach, and head that 
results in reduced arterial blood-flow into the affected 
organs, which was shown to result in significant increase 
in leukocyte adhesion in venules that subsequently results 
in significant reduction in microvascular perfusion in the 
affected tissues [48]. As the atherosclerotic build-up in 
the peripheral arteries also increases the risks of further 
vascular occlusion from clot debris in the affected vascular 
subnetworks, PAD is expected to result in a more severe 
level of CFE compared to those by PHT. In short, PHT may 
be interpreted to represent the microvascular dysfunctions 
that result in weakly prolonged CFE while PAD may be 

interpreted to represent the microvascular dysfunctions that 
can potentially result in more severe level of CFE. 

Consistent with the projections regarding the 
pathological consequences of CFE (Figure 2B), plotting 
the gender and age specific prevalence of chronic 
microvascular diseases such as arthritis [49] and diabetes 
[50] against PHT prevalence [51] reveals strongly linear 
positive associations with correlation values (R2) exceeding 
0.97 in both genders (Figure 3A and 3B). In turn, plotting 
the gender and age specific prevalence of degenerative 
microvascular diseases such as AD [52] against PAD 
prevalence [53] yet again reveals strongly linear positive 
associations with R2 exceeding 0.98 (Figure 3C). 

Evidence suggesting the involvement of 
endothelial dysfunction from reduced NO and 
CFE in clinical cancer development

While cancer is not yet a recognized microvascular 
disease, our projections raises a possibility that it may 
yet be another disease that arises from weak CFE 
(Figure 2B). Using the same approach that characterized 
diabetes and arthritis in strongly linear association with 
PHT prevalence (Figure 3A and 3B), a simple plot of 
overall cancer incidence in each age group from SEER18 
[54] against the corresponding PHT prevalence supports 
this hypothesis by yielding strongly linear positive 
associations in both genders with R2 values exceeding 
0.98 (Figure 3D). Application of the same analysis across 
7 major cancer types without clear predisposing factors 
also yields strongly linear positive associations between 
cancer incidence of different types and PHT prevalence 
at R2 exceeding 0.96 (Figure 4A), which suggests 
possibilities of shared etiological factors between primary 
hypertension development and carcinogenesis in general. 
Of an interesting note, same analyses on the cancer 
types with known predisposing factors such as gender 
(Figure 4B) or environmental exposures (Figure 4C) show 
clearly non-linear deviations from their linear association 
to PHT prevalence, which well-reflects the known nature 
of these cancer types. Meanwhile, it is interesting to note 
that the incidence of certain cancer types including those 
of prostate, lung and bronchus of men, and skin melanoma 
of women are uniquely characterized in stronger linear 
association with PAD prevalence rather than with PHT 
prevalence (R2 of 0.9502 vs. 0.9299, 0.9278 vs. 0.9162, 
and 0.8865 vs. 0.8339, respectively) which suggested a 
somewhat different nature of these cancer development 
process versus other cancer types (Figure 5).

Given the well-established etiology of PHT 
(Figure 2A and 2B) [21, 24, 40], these observations hint 
that the vasoconstrictive microvascular rarefactions from 
dysfunctional endothelial NO production may critically 
contribute to clinical carcinogenesis in general via CFE. 
Although the observed linear associations (Figure 3, 
Figure 4 and Figure 5) do not qualify as evidence of 
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Figure 3: Gender specific disease prevalence (%) of arthritis, diabetes, AD, and cancer with respect to PHT or PAD 
prevalence (%) over the course of ageing. (A) Arthritis prevalence vs PHT or PAD prevalence showing strong linear association 
between the arthritis prevalence and the PHT prevalence in both male and female groups with R2 values of 0.9788 and 0.9834, respectively. 
(B) Diabetes prevalence vs PHT or PAD prevalence also showing strong linear association between the diabetes prevalence and the PHT 
prevalence in both male and female groups with R2 values of 0.9957 and 0.9962, respectively. (C) AD prevalence, on the other hand, is 
characterized with strong linear association with PAD prevalence in both genders with R2 values of 0.9918 and 0.9838, respectively. PAD 
prevalence in each gender and age group was estimated from the work by Criqui and Aboyans [53]. Health statistics data on diabetes, 
arthritis, cancer, and hypertension were acquired from the published statistics by Public Health Agency of Canada [49–52, 54]. (D) Gender 
specific overall cancer incidence between the ages of 0 and 85 from SEER18 database of USA [100] (seer.cancer.gov, accessed on Feb 
26th, 2015)  with respect to PHT prevalence over the course of ageing or PAD prevalence. Their strong linear association is again observed 
with PHT prevalence.  Due to lack of the corresponding data available in the USA, gender and age-group specific PHT prevalence data 
from Canada was used instead [51]. SEER18 cancer statistics registries consist of the SEER13 plus Greater California, Greater Georgia, 
Kentucky, Louisiana, and New Jersey, and include all cases diagnosed from year 2000 and later. It is noted that SEER18 registry excluded 
Louisiana cases diagnosed between July ~ December 2005 to adjust for the impacts by Hurricanes Katrina and Rita. 
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Figure 4: Gender and site specific cancer incidence between the ages of 0 and 70 from SEER18 database of USA [100] 
with respect to PHT prevalence over the course of ageing. (A) The cancer types whose incidences are not strongly influenced by 
environmental exposures or genetic/gender predispositions show strongly linear association with PHT prevalence. (B) Female cancer types 
with known genetic or hormonal predispositions also show highly linear PHT prevalence, but with notable non-linear deviations. (C) The 
cancer types whose incidences are strongly influenced by environmental exposures.
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this hypothesis by themselves, the hypothesis itself 
is alternatively supported by a store of non-clinical, 
retrospective and prospective studies that have shown 
immunity-mediated cancer preventive and antimetastatic 
effects of factors that promote peripheral vasodilation 
and endothelial NO production (Table 1). Since the 
initial discovery of aspirin’s cancer preventive effects 
[55, 56], numerous retrospective studies have reported 
similar preventive effects across a wide range of daily 
drug compounds that include general non-steroidal anti-
inflammatory drugs (NSAIDs) [57], metformin [58], 

propranolol [59], carvedilol [60], captopril [61], losartan 
[62], and statins [63]. And as the cancer preventive 
effects were compound-specific and not generalized 
to their drug classes in general, the shared pleotropic 
effects of promoting endothelial NO availability by these 
compounds and subsequent immunity-normalization 
effects were proposed as the common mechanism of 
their cancer preventive effects [64, 65]. In support of this 
idea, an NO-donating aspirin derivative (NO-aspirin) 
was characterized with NO-specific immunity-mediated 
cancer preventive effects, while the compound itself 

Figure 5: Gender and site specific cancer incidence between the ages of 0 and 70 from SEER18 database of USA with 
respect to PHT prevalence or PAD prevalence over the course of ageing. (A) Male cancer of prostate incidence showed stronger 
linear association against PAD prevalence than against PHT prevalence. (B) Male cancer of lung and bronchus similarly showed stronger 
linear association against PAD prevalence, while the same of women did not. (C) Female skin melanoma showed stronger linear association 
against PAD prevalence than against PHT, while male skin melanoma did not.
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Table 1: Reports of cancer prognosis and treatment effect changes upon exposure to the affecters 
of microvascular circulation

Affecter Study type Effect Cancer type Circulation effect Major findings

Physical exercise human 
retrospective 
clinical study

↓ cancer specific 
mortality in cancer 
patients

colorectal 
[102], breast 
[103], 

increased cardiac 
output and 
microperfusion

Dose-dependent reduction in cancer specific 
mortality in breast cancer patients with > 21 
MET-h/wk (multivariate adjusted RR = 0.51, 
p < 0.05), in men&women with CTNNB1-
negative colorectal cancer patients with > 18 
MET-h/wk (multivariate adjusted RR = 0.33, 
p < 0.05).

Propranolol human 
retrospective 
clinical study 
(70 propranolol 
users vs. 525 
atenolol users)

↓ metastasis/
↓ local invasiveness/
↓ cancer-specific 
mortality risk
[59]

breast increased 
microperfusion from 
increased endothelial 
NO availability  [67]

Use of propranolol, but not of atenolol, led 
to reduced cancer-specific mortality risk (HR: 
0.19: 0.06–0.60), local invasiveness (OR: 
0.24: 0.07–0.85), and metastasis risk (OR: 
0.04–0.88).

Propranolol 
+ Etolodac (PE)

human 
prospective 
clinical study 
(23 patients)

↑ progression-free 
survival/ ↑overall 
survival
[69]

pancreatic increased 
microperfusion [67] 
and anti-inflammatory 
effects

Combined use of PE with gemcitabine/
paclitaxel (GemNab) led to increased 
progression-free survival (7.2 vs. 11.8 months) 
and overall survival (10.5 vs. 15.9 months) 
compared to GemNab alone.

Chemotherapy mouse model ↑metastasis/ 
↑CXCR2, CXCR4, 
S1P/S1PR1, PIGF 
and PDGF-BB in 
serum [104]

vasodilatory 
dysfunction 
from CXCR4 
and S1P/S1PR1 
overexpression. These 
two signals elicit 
vasoconstriction [105, 
106].

Paclitaxel or carboplatin treatment 
accelerated lung metastasis with increased 
levels of the respective cytokines. Inhibitors 
of CXCR4 or S1P/S1PR1 reduced the 
chemo-induced metastasis and increased the 
median survival time by 33.9% and 40.3%, 
respectively. 

Anti-angiogenic mouse model ↑metastasis/ ↑tumor 
invasiveness [84]

vasodilatory 
dysfunction and 
capillary rarefaction 
[107]

Treatment with VEFGFR2 inhibitor, sutinib, 
or deletion of Vefg-A commonly caused 
increased metastasis and tumor invasiveness. 
This effect persisted even after cessation of 
anti-angiogenic treatment.

Perioperative blood 
transfusion

human 
retrospective 
clinical

↑tumor recurrence/ 
↓survival/ 
↓recurrence-free 
survival [108]

colon, kidney, 
lung, non-
Hodgkin’s 
lymphoma, etc.

microvascular 
vasodilatory 
dysfunction due 
to depleted NO in 
transfusion blood 
[109] 

Colon cancer patients who received 
transfusions showed poorer survival 
and tumor recurrence outcome in dose-
dependent manner. Similar patterns were 
observed in some other cancer types as well. 
Also, transfusion was linked with two-fold 
increased risk of non-Hodgkin’s lymphoma. 
These effects are suspected to involve 
immunity anomalies.

Reduced housing 
temperature

mouse model ↑tumor progression/ 
↑metastasis/ 
↑carcinogenesis 
[110]

peripheral 
vasoconstriction

Housing temperature reduction from 30~31°C 
to 22~23°C nearly doubled tumor growth 
rate, promoted metastasis and chemical 
carcinogenesis in immunocompetent mice. 
Immunodeficient mice did not show the same 
effect. This effect was driven by reduced 
accumulation of CD8+ T cells in tumor 
microenvironments. Core temperature of the 
animals remained constant. 

Surgery stress rat model ↑lung metastasis 
[76]

lung β-adrenergic 
activation/ 
↑endothelin-1/ 
vasoconstriction [111]

Surgery stress reduced pulmonary 
marginating NK cell numbers and activity, 
leading to increased lung metastasis of 
MADB106 cancer cells by seven fold. 
Postoperative treatment with non-selective 
β-blocker nadolol and NSAID indomethacin 
reduced this effect by 75% (p < 0.0003). 
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was not characterized with a direct antitumor effect 
[66]. Similar benefits were not observed in non-modified 
aspirins. And as cancer immunity is also critical in 
prevention of metastasis or recurrence after the initial 
treatments, retrospective studies have also reported that 
the use of incidental use of propranolol, an endothelial 
NO-promoting β-blocker [67], in breast cancer patients, 
led to significantly reduced chances of distant metastasis  
(p = 0.026) and secondary tumor formation (p = 0.001) via 
immunity-mediated effects. This led to a longer disease 
free interval (p = 0.01) and 71% reduction in breast 
cancer mortality after 10 years (Hazard ratio = 0.291; 
95% CI = 0.119–0.715, p = 0.007)  [68]. Prospective 
clinical investigation of propranolol use an as adjuvant 
in the pancreatic cancer treatment with Nab-paclitaxel 
also reported consistent results [69], further supporting 
its clinical benefits. Together these findings suggest that 
cancer immunosurveillance is critically influenced by the 
availability of endothelial NO, which is known to increase 
both microcirculation (see the review, [70]) and individual 
NK cell tumoricidal activity [28]. 

A revised view on clinical carcinogenesis and 
cancer treatment in context of CFE

Although classical perspectives on carcinogenesis 
regarded age-dependent accumulation of cancer-causing 
mutations as the dominant causal factor in natural 
carcinogenesis [71], an accumulating body of evidence 
suggests otherwise, as oncogenic mutations were found 
necessary, but not sufficient, for tumorigenesis [6, 72, 73]. 
In explaining this paradox, it was recently suggested 
that the carcinogenesis in humans was likely caused 
by changing features of old tissues promoting cancer 
formation [6]. Given the fact that ageing is characterized 
by constrictive endothelial dysfunctions, reduced basal 
NO level, and progressive degeneration in capillary 
beds [33, 35, 36], this suggestion is consistent with the 
proposed theory that the progressive appearances of local 
tissues with hemodynamically reduced blood cell access 
over the course of ageing might contribute to elevating 
the cancer incidence by limiting the tissue access by the 
RBCs and, to a greater extent, immune cells. Reminiscent 
of tumor microenvironment theory [4], an apparent 
consequence of such reduced tissue access by RBCs 
is chronic hypoxia, which is a strong selection force 
and a promoting factor for carcinogenesis [74]. And as 
restricted immune cell access is expected in the same 
regions (Figure 2), increased odds of immune-escape by 
microscopic lesions may be expected in the ageing tissues 
or in those characterized with capillary rarefactions. This 
is a simple explanation as to how and why the tumor-
promoting microenvironment emerges over the course of 
ageing, which no conventional theory of carcinogenesis 
could sufficiently explain. In this new view, carcinogenic 
microenvironments may be defined as suitably hypoxic 

capillary networks for clonal expansion within a tissue 
bed, with hemodynamically restricted immune cell 
access that allows for protected clonal expansion of the 
“seed” cancer cells. Consistent with our view, positional 
effect is observed in carcinogenesis of clinical colorectal 
cancer whereby carcinogenesis is exclusively started at 
the top end of colonic crypt where stem cell is absent 
and proliferation signal is paradoxically low [75]. While 
conventional theory of stem cell-initiated carcinogenesis 
in the colonic crypts of colorectal cancer cannot account 
for this paradox [7], our new view based on CFE simply 
explains such positional effect with the finest capillary 
structures at the top of colonic crypt whereby the immunity 
access is first-likely to be compromised upon onset of the 
ageing-related microvascular rarefaction (Figure 6). 

This newly realized importance of microvascular 
hemodynamics in clinical carcinogenesis gives rise to the 
concept of effective cancer immunity (ECI), which is a 
natural derivative of the idea that microvascular immunity 
must be a composite function between the microvascular 
immunity cell availability and their individual cell activity 
(ECI = microvascular hemodynamics × individual immunity 
cell activity). This idea has immediate implications for 
optimizing current cancer treatments that are widely 
practiced in frontline clinics, as it implies potential links 
between vascular toxicity and poor microcirculation with 
elevated risks of distant metastasis and secondary tumor 
formation. In support of this idea, surgery stress with 
subsequent activation of β-adrenergic receptor activation 
alone was shown to cause reduced margination of NK cells 
into the lungs of rats with subsequently increased pulmonary 
metastatic burden, and this effect was demonstrated to 
be fully reversible by simple administration of a non-
specific β-blocker nadolol and an NSAID indomethacin 
[76]. Also, cancer treatments with acknowledged vascular 
toxicity including radiation [77, 78], cytotoxins [79, 80], 
and anti-angiogenics [81] have been characterized with 
more frequent distant metastasis [82–86]. Although the 
vascular toxicities of the treatments at the primary tumor 
site and the subsequent hypoxia have been proposed as the 
primary driver of the cancer metastasis by promoting the 
formation of premetastatic niche in distant tissues [87], 
our view suggests vascular toxicities of the treatments 
themselves as the direct driver of spontaneous premetastatic 
niche and carcinogenic microenvironments formation 
across the system for elevated risks of metastasis and 
recurrence. In support of this new view, in vivo mouse 
model study showed that chemotherapeutic pretreatment 
with cisplatin or paclitaxel prior to tumor cell injection 
significantly enhanced pulmonary metastasis by increasing 
the endothelial cells expressing VEGFR1 [88], which was 
shown to be overexpressed in the endothelial cells of lung, 
heart, kidney, brain and liver upon systemic hypoxia [89]. 
Furthermore, failure of recurrent glioblastoma treatment 
with an antiangiogenic agent bevacizumab was reported 
to be primarily due to local recurrence (46%, 17/37) and 
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formation of multifocal new enhancing lesions outside of 
the initial site of the disease (16%, 6/37) [90].

CFE implications to cancer immunotherapeutics

In addition to its implications for chemoprevention, 
CFE may be the key in explaining the recent phase III 
clinical development (P3) failures of some of the most-
anticipated “universal” cancer immunotherapeutics 
[91–93]. Briefly, late-stage clinical study results on these 
advanced immunity-based anti-cancer therapeutics have 
been disappointing despite their promising non-clinical 
and earlier phase clinical study results, which included, 
among others, a MUC1 antigen-specific Tecemotide [91] 
(Merck KGaA, Darmstadt), MAGE-A3 antigen-specific 
cancer immunotherapeutics [92] (GSK, London), and 
an hTERT epitope-specific peptide vaccine GV1001 
[93] (Kael & Gemvax, Seoul). Given the fact that these 
clinical trial protocols involved adjuvant use of cytotoxin 
or chemoradiation therapies with severe vascular toxicities 
[77–79], progressive development of CFE would lead to 
hemodynamically inhibited microvascular immunity 
with effective nullification of the immunotherapeutic 
effects during the extended trial period of P3. In support 
of this view, the P3 results on Tecemotide showed 
that its treatment group with shorter exposure time to 
chemoradiation via concurrent chemoradiotherapy was 

characterized with longer medial overall survival (MOS) 
versus its placebo group (30.8 months vs. 20.6 months, 
respectively; adjusted HR = 0.78, 0.64–0.95, p = 0.016), 
while the treatment group with longer exposure to 
chemoradiation via sequential chemoradiotherapy showed 
no survival benefits versus its respective placebo group 
(19.4 months vs. 24.6 months, respectively; adjusted 
HR 1.12, 0.97–1.44; p = 0.38). In further support of the 
adverse role of CFE and vascular toxicity against effective 
cancer immunity, the phase III clinical trial study on 
GV1001 showed successful induction of immune response 
without clinical efficacy [93]. Particularly, its post-trial 
analysis reported paradoxically enhanced survival benefit 
among pancreatic cancer patients with elevated level of 
the pro-inflammatory chemokine eotaxin (14.8 [10.1–20.5] 
months MOS in high eotaxin group versus 7.9 [5.9–11.3] 
months MOS in low eotaxin group; p = 0.0135) [94], 
which is known to elicit angiogenic responses in vivo [95] 
and a significant increase in endothelial NO production 
[96]. More importantly, it was also reported that only 
the patients with preserved high eotaxin level during the 
chemoimmunotherapy regimen were characterized with 
longer MOS, while those whose eotaxin level was reduced 
by the chemoimmunotherapy regimen did not. 

Together, our CFE-based interpretation of the 
P3 findings from these advanced immunity-based 
cancer therapeutics suggest that similar cancer-targeting 

Figure 6: Illustrated diagram showing the paradoxical positional effects of the carcinogenesis model in the colonic 
crypts of colorectal cancer. The proposed site of initial carcinogenesis via clonal expansion of the initiated cells, according to cancer 
stem cell theory, is at the bottom of the colonic crypts where the cell proliferation signals are innately up-regulated [7], but with wider 
capillary vessel dimensions. Evidence from clinical human specimens, on the other hand, showed that initial carcinogenesis exclusively 
started from the top of the colonic crypt and progressed down the colonic crypt [75]. This illustration is largely based on the description of 
cancer stem cell theory of colorectal cancer by McDonald et al. [101].
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immunotherapeutics may be incompatible with conventional 
cytotoxins and chemoradiation treatments. Conversely, these 
considerations raise a possibility that their efficacies may be 
optimized by incorporating endothelial NO-inducing or NO-
donating drugs such as carvedilol [97], nebivolol [97], statins 
[98], or metformin [99]. 

In a concluding remark, future prospective 
clinical investigations are needed in optimizing the 
current cancer treatment regimens via minimization 
of their inherent vascular toxicities. As there are many 
approved vasoprotective drug agents of historical safety 
and economic affordability with demonstrated cancer 
preventive and antimetastatic effects [64], confirmation of 
their adjuvant cancer treatment benefits may allow for an 
highly effective and affordable improvements in cancer 
treatment at low economic costs. Also, the theoretical 
considerations surrounding CFE raise the possibilities 
of future research venue involving biophysical data 
of microvascular health and its use in pre-onset risk 
assessment of cancer metastasis, recurrence, and perhaps 
the very first carcinogenesis itself. Incorporation of the 
enabling information technologies into clinical cancer 
research will be vital for advancing such developments.
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