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ABSTRACT
Cytogenetics and European Leukemia Net (ELN) genetic classification predict 

patients at increased risk of relapse in acute myeloid leukemia (AML) except in the 
intermediate risk group for which further prognostic determinants are required. We 
have previously shown that Natural Killer (NK) cell defects in AML are predictors of 
poor overall survival (OS). This study aimins at validating NKp30, a receptor that 
mediates NK activation, as a prognostic biomarker for AML patients with intermediate 
prognosis.

NKp30 expression was prospectively assessed at diagnosis on NK cells from 
peripheral blood by flow cytometry (N = 201 patients). Clinical outcome was evaluated 
with regard to NKp30 status.

In patients with intermediate cytogenetic (N = 162), NKp30high phenotype at 
diagnosis was predictive of better OS (HR = 0.26; 95%CI = [0.14-0.50]; P < 0.0001) 
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and relapse-free survival (RFS) (HR = 0.21; 95%CI = [0.08-0.52]; P = 0.0007). In 
patients with intermediate ELN (N = 116), NKp30high phenotype at diagnosis was 
predictive of better OS (HR = 0.33; 95%CI = [0.16–0.67]; P = 0.0019) and RFS 
(HR = 0.24; 95%CI = [0.08-0.67]; P = 0.0058). In multivariate analysis, high NKp30 
expression independently predicted improved OS (HR = 0.56, P = 0.046) and RFS 
(HR = 0.37, P = 0.048). Consistently, cumulative incidence of relapse (CIR) was lower 
in patients with high NKp30 expression (HR = 0.37, P = 0.026).

In conclusion, we propose NKp30 status as a simple and early prognostic 
biomarker that identifies intermediate-risk patients with poor prognosis who 
otherwise may not be identified with existing risk stratification systems.

INTRODUCTION

Patient stratification at diagnosis for acute myeloid 
leukemia (AML) is crucial for clinical decision making 
regarding post-remission therapy. To date, patient 
stratification is based on cytogenetics and molecular 
classifications [1, 2]. As proposed by the ELN genetic 
classification based on FLT3/CEBPα/NPM1 mutational 
status further refines patient stratification, but clinical 
uncertainty remains with an unclassifiable group of 
patients with intermediate prognosis [3, 4]. 

New molecular markers have been shown to impact 
prognosis and have been included in the revision of ELN 
classification [3, 5–7]. However, molecular markers do not 
account for the entire prognostic heterogeneity of AML 
and new markers are warranted. In this context, accurate 
estimation of the risk of relapse at diagnosis or after 
complete remission (CR) in patients with intermediate 
prognosis is essential for physicians in order to evaluate 
the potential benefits of intensive chemotherapy and 
allogeneic stem cell transplantation (allo-SCT). 

Among candidate biomarkers, immune parameters 
are currently extensively evaluated in immunomonitoring 
studies. Among immune effectors implicated in immune 
surveillance in AML, Natural Killer (NK) cells are of 
particular importance. NK cells are key components of the 
innate immunity and substantially contribute to the anti-tumor 
immune responses, in particular in the context of AML [8, 9]. 
NK cells are crucial immune effectors and play a key role 
in tumor rejection, with direct effect on tumor cells as well 
as an important role in regulation of the adaptive immune 
response through the cross-talk with antigen presenting cells 
[10]. NK cells prevent emergence of transformed cells, and 
are involved in response to chemotherapy and radiotherapy 
[11–13]. In AML, their direct effect on the tumor burden 
is illustrated by the success of hematopoietic stem cell 
transplantation with KIR-HLA mismatch in hematologic 
malignancies [14–17]. NK cell anti-tumor activity is triggered 
by NK activating receptors, including Natural Cytotoxic 
Receptors (NCR) such as NKp30 [18, 19]. Decay in anti-
tumor activity of NK cells, related to defective activating NK 
receptor expression has been described in several cancers  
[18, 20–22]. In particular, it has been previously shown that 
NCR expression at diagnosis is a potential discriminant 

biomarker in AML and in solid tumors [18, 20, 22]. Hence, 
our group previously reported that low NKp30 expression 
on NK cells was significantly associated with reduced 
survival in AML [18]. Therefore, NKp30 represents a 
potential biomarker for refinement of patient stratification, 
and might identify AML patients with high risk of relapse 
among patients with intermediate prognosis, with potential 
improvement of therapeutic decision algorithms. The present 
study was designed to address this question. 

RESULTS

Baseline patient characteristics

The patient characteristics, stratified by NKp30 
expression groups, are summarized in Table 1. 21 patients 
had favorable cytogenetics (10.4%), 162 had intermediate 
cytogenetics (80.6%) and 18 had unfavorable cytogenetics 
(9.0%). The mean age (± SD) at induction was 46.7 years 
(± 10.8). Median follow-up after diagnosis was 26.31 (± 
1.6) months. Cytogenetic classification and ELN genetic 
classification [3] (FLT3/CEBPα/NPM1 mutational 
status) were routinely determined in the Biopathology 
departments of the centers involved in this study. 

Baseline NKp30 expression on Natural Killer 
(NK) cells was assessed by flow cytometry. Among the 
201 patients, 146 (72.6%) had NKp30high phenotype, 
and 55 (27.4%) had low NKp30low phenotype (Table 1). 
The frequency of patients with NKp30high and NKp30low 
phenotype did not differ between age, cytogenetics 
number of inductions, sex or post remission therapy 
(chemotherapy ± allo-SCT). 

NKp30 status stratifies patients with 
intermediate prognosis 

An important challenge is to stratify AML patients 
with intermediate cytogenetic prognosis. In the group of 
patients with intermediate cytogenetic prognosis, patients 
with NKp30high phenotype at diagnosis had better OS (HR 
= 0.26; 95%CI = [0.14–0.50]; P < 0.0001) (Figure 1B) 
and RFS (HR = 0.21; 95%CI = [0.08–0.52]; P = 0.0007) 
(Figure 1D) than patients with NKp30low phenotype, 
with better 3-year OS and RFS rates for the group with 
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Table 1 : Baseline patients characteristics (1/2)
Characteristic All NKp30 low NKp30 high

Patients, no. N (%) 201 (100) 55 (27.4) 146 (72.6)
Age at diagnosis Mean (SD) 46.7 (10.8) 47.7 (11.4) 46.4 (10.6)
Sex ratio, M/F  1.09 1.42 0.91
FAB category N (%)    
   M0  2 (1.0) 0 (0.0) 2 (1.4)
   M1   28 (13.9) 8 (14.5) 20 (13.7)
   M1/2 2 (1.0) 1 (1.8) 1 (0.7)
   M2  39 (19.4) 8 (14.5) 31 (21.2)
   M3  0 (0.0) 0 (0.0) 0 (0.0)
   M4  56 (27.9) 16 (29.1) 40 (27.4)
   M4/5 1 (0.5) 0 (0.0) 1 (0.7)
   M5  49 (24.4) 16 (29.1) 33 (22.6)
   M6  9 (4.5) 1 (1.8) 8 (5.5)
   M7  0 (0.0) 0 (0.0) 0 (0.0)
Unclassified  5 (2.5) 3 (5.5) 2 (1.4)
NA 10 (5.0) 2 (3.6) 8 (5.5)
Status at diagnosis N (%)    
   de novo 181 (90.0) 46 (83.6) 135 (92.5)
   s-AML
      MDS 17 (8.5) 8 (14.5) 9 (6.2)
      t-AML  3 (1.5) 1 (1.8) 2 (1.4)
White blood cell (109 cells/L) Median (SD) 18.8 (62.3) 30.0 (82.5) 13.9 (44.8)
Cytogenetic prognosis N (%)    
   Favorable  21 (10.4) 9 (16.4) 12 (8.2)
   Intermediate  162 (80.6) 42 (76.4) 120 (82.2)
   Adverse  18 (9.0) 4 (7.3) 14 (9.6)
Mutations in intermediate cytogenetics 
group N (%)    

   Done 158 39 119
   FLT3 ITD mut 53/158 (33.5) 12/39 (30.8) 41/119 (34.5)
   NPM1mut 75/158 (47.5) 15/39 (38.5) 60/119 (50.4)
   CEBPαmut / FLT3wt NPM1wt 11/64 (17.2) 2/19 (10.5) 9/45 (20.0)
ELN N (%)    
   Favorable  67 (33.3) 18 (32.7) 49 (33.6)
   Intermediate  116 (57.7) 33 (60.0) 83 (56.8)
      Intermediate-I 71 (9.0) 15 (27.3) 56 (38.4)
      Intermediate-II 41 (20.4) 17 (30.9) 24 (16.4)
      NA 4 (2.0) 1 (1.8) 3 (2.1)
   Adverse  18 (9.0) 4 (7.3) 14 (9.6)
Blasts (blood) at diagnosis Mean (SD) 47.3 (31.9) 52.8 (33.1) 45.1 (31.3)
Blasts (BM) at diagnosis Mean (SD) 64.5 (23.2) 70.2 (20.0) 62.3 (24.0)
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NKp30high phenotype (59.5% vs 16.7% and 57.3% vs 
8.5%, respectively).

Insofar as stratification at diagnosis is currently 
based on cytogenetic classification and completed 
with ELN genetic classification, we hypothesized that 
NKp30 status could refine this stratification, particularly 
in the group of intermediate prognosis. We assessed the 
prognostic value of NKp30 in patients with intermediate 
ELN. In these patients, NKp30 significantly risk-stratified 
patients, with lower OS (HR = 0.33; 95%CI = [0.16–0.67]; 
P = 0.0019) and RFS (HR = 0.24; 95%CI = [0.08–0.67];  
P = 0.0058) in patients with low NKp30 expression 
(Figure 1F and 1H, respectively), and better 3-year OS and 
RFS rates for the group with NKp30high phenotype (44.3% 
vs 7.7% and 45.7% vs 0%, respectively).

Thus, NKp30 better discriminates patients in the 
intermediate group, with survival probability comparable 
to survival of patients with adverse prognosis based on the 
reference classifications (Figures 1 and 2) and sub-stratifies 
one third of patients with intermediate ELN (Figure 2). 

In the Cox regression model, high NKp30 
expression was significantly associated with improved OS 
and RFS in patients with intermediate ELN, independent 
of other factors (HR = 0.56, P = 0.046 and HR = 0.48, 
P = 0.048, respectively), even when accounting for the 
potential effect of allo-SCT (Table 2). Consistently, CIR 
was lower in patients with high NKp30 expression (HR = 
0.37; P = 0.026) (Table 2).

Model discrimination improvement was assessed 
by the c-index (IPC cohort). The model based on NKp30 
combined with ELN had higher probability of correctly 
predicting survival (c-index = 0.716) compared with 
ELN alone (c-index = 0.683) or cytogenetic classification 
(c-index = 0.598). 

NKp30 recovery after CR is a better predictor of 
clinical outcome than NKp30 at diagnosis

NKp30 expression was assessed in 39 patients from 
the IPC prospective cohort in CR after chemotherapy, 
regardless of ELN group. Induction chemotherapy 
resulted in significant increase of NKp30 expression 
at day 30 that was maintained at least until day 90 
(Figure 3A). We then divided patients in two groups 
based on presence or absence of death 2 years after 
diagnosis. In the group of patients who do not die within 
2 years, NKp30 expression significantly increased at day 
30 (Figure 3B). This increase remained significant until 
day 60. By contrast, in the group of patients who die 
within 2 years after diagnosis, no significant increase was 
evidenced compared to diagnosis (Figure 3B). We then 
analyzed survival stratified by NKp30 expression at day 
30 in patients with intermediate cytogenetics. NKp30 
status after complete remission was a better predictor of 
clinical outcome than NKp30 status at diagnosis, with 
higher HR for OS (HR = 0.20 (95%CI = [0.04–0.82],  

Table 1: Baseline patients characteristics (2/2)
Characteristic All NKp30 low NKp30 high

Response at d15
No response at d15 
NA (Not evaluable or induction death)

N (%)
 
 

116 (57.7)
57 (28.4)
28 (13.9)

25 (45.5)
17 (30.9)
13 (23.6)

91 (62.3)
40 (27.4)
15 (10.3)

Post induction CR N (%) 169 (84.1) 42 (76.4) 127 (87.0)
No post induction CR
    Induction death
    No CR achieved

32 (15.9)
13 (6.5)
19 (9.5)

13 (23.6)
7 (12.7)
6 (10.9)

19 (12.3)
6 (4.1)
13 (8.9)

Nb of induction for CR
   1
   2
   3

N (%)
 
 
 

124 (61.7)
39 (19.4)
6 (3.0)

29 (52.7)
11 (20.0)
2 (3.6)

95 (65.1)
28 (19.2)
4 (2.7)

Consolidation N (%)
   Chemotherapy +/-Auto-SCT 118 (58.7) 28 (51.0) 90 (61.6)
   Chemotherapy +Allo-SCT 83 (41.3) 27 (49.1) 56 (38.4)
Median OS (months) 40.38 21.62 55.98
Median RFS (months) 41.86 10.61 > 60

Allo-SCT: allogeneic stem cell transplantation; Auto-SCT: autologous stem cell transplantation; BM: bone marrow; CR : 
complete remission ; FAB: French-American-British classification; M : male ; F : female; ITD: internal tandem duplication; 
MDS: myelodysplastic syndrome; NA : not available; Nb: number; t-AML: therapy-related AML; s-AML; secondary AML; 
OS: overall survival; RFS: relapse-free survival.
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Figure 1: NKp30 stratifies patients with intermediate prognosis. Patients were stratified by cytogenetic prognosis (A and C) 
and ELN (E and G). Patients with intermediate prognosis were re-classified according to NKp30 status (B, D, F and H). Panels A, B, E, 
F display Kaplan-Meier estimates of OS. Panels C, D, G, H display Kaplan-Meier estimates of RFS. Statistical analyses were performed 
using a log Rank tests. P < 0.05 was considered significant. Adv: adverse; Fav: favorable; ELN: European Leukemia Network classification; 
Int: intermediate; OS: overall survival; RFS: relapse-free survival. 
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P = 0.025) and RFS (HR = 0.24 (95%CI = [0.07–0.81],  
P = 0.041) (Figure 3C and 3D, respectively).

NKp30 downregulation appears early during NK 
maturation

The mechanisms leading to low NKp30 expression 
in AML are poorly described. Notably, the kinetics of 
NKp30 down-regulation or blockade of expression 
during the different stages of NK maturation has not been 
described in human. To address this question, NKp30 
expression was assessed by NK maturation subsets 
on 101 AML patients and 29 HV. NK cells maturation 
subtypes were defined according to CD56, CD57 
and KIR (CD158a,h and CD158b1,b2,j) expression 
(Figure 4A). In patients with NKp30low phenotype, 
NKp30 down-regulation was significant in all the 
clusters of NK cells, independent of the maturation stage 
(Figure 4B). Interestingly, NKp30 downregulation was 
observed at early stage of NK differentiation, notably in 
CD56bright NK cells and in CD57- NK cells, which are the 
clusters that express highest levels of NKp30 in healthy 
volunteers. 

NKp30 ligands

Expression of NKp30 ligand B7-H6 was assessed 
by flow cytometry on leukemic blasts of 39 patients from 
the GOELAMS cohort. B7-H6 was detected on 5% of 
leukemic blasts in 1 out of 39 patients (Supplementary 

Figure 3A). B7-H6 expression on leukemic blasts was not 
associated with NKp30low phenotype in these patients. 

We performed ELISA assays to detect soluble B7-H6 
(sB7-H6) and soluble BAG6 (sBAG6) in plasma samples 
of AML patients at diagnosis (N = 17). NKp30 expression 
was assessed in paired samples of cryopreserved PBMCs, 
and analyzed regarding to the presence or the absence of 
detectable sB7-H6 and sBAG6. sB7-H6 was detectable in 
the serum of 4 out of 17 patients (mean ±  SD = 2.1 mg/mL 
± 6.4; range: 0 to 31 ng/mL). sBAG6 was detectable in the 
serum of 15 out of 17 patients (mean ±  SD = 11.45 mg/
mL ± 11.41; range: 0 to 39.3 ng/mL). NKp30 expression 
was not significantly associated with a decreased NKp30 
expression in patients with detectable plasmatic sB7H6 or 
with the presence of BAG6 (Supplementary Figure 3B).

DISCUSSION

In acute myeloid leukemia (AML), the current 
prognosis classification based on cytogenetics and 
genetic mutations defines 3 groups, i.e. good, adverse 
and intermediate prognosis, the latter being a group of 
patients for which clinical decision making is difficult 
with respect to post-remission therapy. A refined 
classification for this subgroup of patients is therefore 
required. We hypothesized that adverse clinical outcome 
may be explained by a failure of the immune system to 
control the disease. Accordingly, a better knowledge of 
the immune system’s status may better classify patients 

Table 2: Cox regression
 Multivariate HR for OS Multivariate HR for RFS Multivariate HR for CIR

Variable HR 95% CI P HR 95% CI P HR 95% CI P

Age at diagnosis
≥ 50
< 50

Reference
1.16 .68 to 1.97 .578

Reference
1.25 .66 to 2.35 .498

Reference
1.12 .51 to 2.42 .773

Disease status
MDS/t-AML
De novo

Reference
.39 .17 to .87 .021

Reference
.78 .27 to 2.24 .643

Reference
.98 .25 to 3.80 .979

Leucocytosis at 
diagnosis
<50 G/L
≥50 G/L

Reference
.88 .51 to 1.52 .655

Reference
.92 .48 to 1.75 .800

Reference
.67 .31 to 1.42 .297

Consolidation
No allo-SCT
Allo-SCT

Reference
.44 .23 to .84 .013

Reference
.48 .23 to .98 .042

Reference
.210 .08 to .51 .0006

NKp30 MFI ratio
Low
High

Reference
.56 .31 to .99 .046

Reference
.48 .23 to .99 .048

Reference
.37 .15 to .89 .026

Abbreviations: allo-SCT: allogeneic stem cell transplantation in 1st complete remission; CI: confidence interval; CIR: 
cumulative incidence of relapse; RFS: relapse-free survival; ELN: European Leukemia Net genetic classification; HR: hazard 
ratio; MDS: myelodysplastic syndrome; OS: overall survival; t-AML: therapy-related AML.
Multivariate Cox regression models were used to assess the predictive value of NKp30 expression in patients with intermediate 
ELN while adjusting for the prognostic factors in the population (age at diagnosis, disease status, leukocytosis, and allogeneic 
stem cell transplantation as a time-dependent covariate).
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especially in subgroups of patients with intermediate 
prognosis.

AML develops from somatically acquired 
mutations, some of which being the basis of prognostic 
classifications [7]. However, the microenvironment and in 
particular deficient immunity is deeply involved in tumor 
progression as well as resistance to chemotherapy and 
immunotherapy [12, 28–31]. This assumption is currently 
extensively explored in immunomonitoring studies in both 
solid tumors and hematologic malignancies, and provides 
consistent information for clinical outcome prediction [18, 

20, 22, 32–35]. Standard patient classification can thus 
be improved or completed with extremely informative 
immune parameters, either used alone or through 
combinatorial approaches with immune signatures, as 
recently shown in solid tumors [32–34, 36].

AML is an archetypal model of immune-sensitive 
cancers, notably to Natural Killer (NK) cells [37–41]. NK 
cells are immune effectors that mediate cytotoxic effects 
against leukemic cells. NK-specific natural cytotoxicity 
receptors (NCR), including NKp30, are among the 
most important receptors that trigger specific cytolytic 

Figure 2: Proposed risk stratification algorithm based on cytogenetic and ELN risk classification refined by NKp30 
status. When incorporating NKp30 expression in the integrated risk classification of AML based on cytogenetic classification and 
mutational status (ELN classification), 17% patients (29% of intermediate ELN patients) were re-classified in the unfavorable-risk group. 
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responses to tumor target cells [18, 42–45]. Several 
studies have reported NCR deficiencies in hematologic 
malignancies as well as in solid tumors, with significant 
impact on clinical outcome [18, 20–22] and control of the 
minimal residual disease [13]. 

In line, our group has demonstrated the importance of 
NK cell triggering receptor NKp30 for immune recognition 
and lysis of leukemic blasts, with significant impact on 
patient survival in an exploratory study involving 81 
patients with AML [18]. However, this proof of concept 
lacked demonstration of clinical impact on relapse risk. In 

addition, a specific analysis in subgroups of patients with 
intermediate cytogenetics and ELN was warranted before 
any clinical applications. Therefore, the present study was 
designed to validate the prognostic significance of NKp30 
on homogenous cohorts of patients in terms of age and 
chemotherapy, with a focus on intermediate-risk AML. 

In our cohort, the prognostic value of NKp30 was 
significant in both OS and RFS in the group of 162 patients 
with intermediate cytogenetics. To date, most studies 
aiming at stratifying patients with AML, have focused on 
molecular genetic lesions, and significantly improved AML 

Figure 3: NKp30 recovery after CR is a better predictor of clinical outcome than NKp30 at diagnosis. (A) The kinetics of 
NKp30 expression was assessed after CR (day 30, 60 and 90 after the last induction chemotherapy) in the IPC prospective cohort. Thirty-
nine patients were tested for NKp30 expression at day 30, 28 patients at day 60 and 23 patients at day 90. The results were compared with 
NKp30 expression in healthy volunteers (N = 34) (B) Kinetics of NKp30 expression according to clinical outcome at 2 years. Kaplan-Meier 
estimates for overall survival (C) and relapse-free survival (D) by NKp30 expression at day 30 after induction chemotherapy in patients 
with intermediate cytogenetic prognosis (N = 28). Statistical analyses were performed using a Kruskal-Wallis test was used followed by a 
Dunn’s post-test, and a log Rank tests for survival analyses. P < 0.05 was considered significant. 95%CI: 95% confidence interval; Diag: 
diagnosis; CR: complete remission; HR, hazard ratio; HV: healthy volunteers; ns: non significant. 
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Figure 4: NKp30 down-regulation by NK subpopulations. (A) PBMCs were labeled with anti-CD45, -CD56, -CD3 antibodies. 
Monocytes were identified using an exclusion gating strategy described in Supplementary Figure 2, and NK subsets were separated on 
CD56, NKG2A, KIR and CD57 expression. NKp30 expression on the different subsets of NK cells is displayed for a representative patient 
of each group (NKp30low or NKp30 high) and for a healthy volunteer. (B) Flow cytometry data from 101 AML patients and 29 HV were 
analyzed for NKp30 expression on each subsets of NK cells. Statistical analyses were performed using a Kruskal-Wallis test was used 
followed by a Dunn’s post-test. HV: healthy volunteer. ns: non significant; *P < 0.05; **P < 0.01; ***P < 0.001
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patient stratification [46–51]. Some markers such as FLT3-
ITD, CEBPα and NPM1 [3, 5, 6, 49] are already used in 
clinical practice, and additional markers have been recently 
included in recommendations for prognostication. We 
assessed the prognostic significance of NKp30 in patients 
with intermediate ELN. We demonstrated that patients 
with intermediate ELN were still significantly stratified 
by NKp30 expression, with improved discrimination 
evidenced by an increase of the c-index compared to the 
cytogenetic and ELN classifications. In addition, we show 
that NKp30 is an independent predictor of clinical outcome 
in multivariate regression analyses even when accounting 
for the potential effects of allogeneic SCT, with a strong 
correlation between NKp30 status and RFS, OS and CIR.

Nonetheless, some patients with intermediate ELN 
and high NKp30 expression have an adverse clinical 
outcome. These false negative cases strongly suggest 
that additional parameters are involved in relapse. The 
immune landscape of tumors is obviously more complex, 
[52] and beside alterations of NCR, additional anomalies 
have been described on both NK cell [53–55] and T cell 
subsets [56, 57]. Clinical consequences of such immune 
profiles remain to be tested or validated. Yet, this appeals 
for integrated analysis of the immune responses in AML. 

Since low NKp30 expression is associated with poor 
prognosis, restoring NKp30 on NK cells is a therapeutic 
strategy likely to improve clinical outcome in AML 
patients. 

However, the mechanisms leading to low NKp30 
expression in AML are not fully understood. In the 
present study, the low NKp30 expression observed in a 
fraction of patients is present at all maturation stages, with 
the extreme CD56bright versus CD56dim KIR+CD57+ NK 
cell population. As previously shown, CD57+ NK cells 
in HV display lower levels of NKp30 [58] compared to 
immature NK cells, and in AML patients we observed 
a lower expression in CD57+ NK cells in both group of 
patients (NKp30high and NKp30low). These data suggests 
that NKp30 low expression in NKp30low AML patient 
group is unlinked to NK cell maturation. 

One of the hypotheses underlying the mechanisms 
involved in NKp30 down regulation in AML, a chronic 
exposure to Nkp30 ligands such as B7-H6 or BAG6 has 
been proposed and demonstrated in other cancers [59]. 
In our study, the expression of membrane-bound B7-H6 
was found extremely weak and only in one patient and 
not associated with NKp30 downregulation. As a soluble 
form of B7H6 and BAG6 can be found in the serum, we 
evaluated whether the presence or absence of these ligands 
was associated with a lower membranous expression 
of NKp30. Our data revealed that soluble B7-H6 was 
detectable in 4 out of 20 patients but was not associated 
with NKp30 low expression. Although we could detect 
BAG6 in more patients, the presence of the ligands was 
not associated with a lower NKp30 expression. Therefore 
our data do not suggest that exposure to membrane-bound 

or soluble form of NKp30 ligands is involved in NKp30 
down regulation in AML. Although these data should be 
considered as preliminary regarding the lower number 
of patients, the mechanisms of NKp30 low expression in 
AML remain elusive and warrant further studies.

An important question remains the best time point to 
evaluate NKp30 expression. To date, all studies assessing 
the prognostic value of NKp30 were performed at diagnosis. 
However, major variations of NKp30 expression have been 
described after induction chemotherapy [18, 60]. In the 
present study, NKp30 expression recovery after complete 
remission significantly stratifies patients with poor clinical 
outcome. Thus, NKp30 status appears as a relevant surrogate 
marker to monitor after complete remission.

Importantly, NKp30 status at diagnosis is assessable 
on peripheral blood cells by flow cytometry, a fast, cost-
effective and reproducible method broadly used and fully 
validated. Its clinical applications have recently been 
further developed with the evaluation of minimal residual 
disease which implies sequential testing in the course 
of therapy [61]. Therefore this method can be readily 
included in the algorithm of treatment decision. 

To conclude, our data demonstrates that NKp30 
expression at diagnosis is an independent prognostic 
biomarker that refines classifications used in clinical 
practice. To our knowledge, NKp30 expression on NK 
cells is the first prognostic biomarker in intermediate risk 
AML assessable at diagnosis and based on an immune 
parameter. The present study provides bases for using 
NKp30 status as a prognostic biomarker for clinical 
decision-making regarding post-remission therapy. 
Moreover, our study provides a strong rationale to develop 
therapeutic strategies to maintaining high levels of NKp30 
expression to improve clinical outcome after complete 
remission. Complementary studies are required to further 
explore the mechanisms of NKp30 down-regulation for 
the development of therapeutic strategies for patients with 
defective NK cells.

MATERIALS AND METHODS

Patients and study design

Baseline NKp30 expression on NK cells at 
diagnosis was assessed in a total of 201 patients. Two 
cohorts of patients were merged in the present study. 
The Paoli Calmettes Institute (IPC) prospective cohort 
included 115 patients with newly diagnosed non-acute 
promyelocytic leukemia (APL) AML admitted between 
November 2007 and November 2012, aged 18 to 65 years 
(mean ± SD = 47.1 ± 10.6) and treated with conventional 
3+7 induction chemotherapy as previously described [23]. 
The Groupe Ouest Est d’Etude des Leucémies Aiguës et 
autres Maladies du Sang (GOELAMS) cohort included 
86 patients from the LAM2006IR prospective multicenter 
randomized trial, included between November 2007 
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and April 2012 (NCT00860639), aged 18 to 65 years 
(mean ± SD = 46.3 ± 11.0). All patients had previously 
untreated AML with intermediate cytogenetics. Patients 
received conventional 3+7 induction chemotherapy with 
or without the addition of Gemtuzumab Ozogamicin [24]. 
Patients with APL AML and patients above 66 years were 
excluded. 

Ethics statement 

All participants gave written informed consent in 
accordance with the Declaration of Helsinki. The entire 
research procedure was approved by the ethical review 
boards from the IPC and the GOELAMS. 

Clinical samples

Fresh total peripheral blood samples (IPC 
cohort) or peripheral blood mononuclear cells (PBMC) 
cryopreserved in 90%FCS/10%DMSO (GOELAMS 
cohort) were obtained from randomly selected patients 
before induction chemotherapy and from age-matched 
healthy volunteers. For the GOELAMS cohort, handling, 
conditioning and storing of samples were performed by 
the FILOtheque AML (N° BB-0033–00073), tumor bank 
of the FILO group, Cochin hospital, Paris. 

Flow cytometry analysis

A FACS Canto II (IPC cohort) and a LSR Fortessa 
(GOELAMS cohort) (BD Biosciences, San Jose, CA), 
and FACS Diva Software (BD Biosciences) and FlowJo 
Software (Treestar, Inc., San Carlos, CA) were used for 
flow cytometry. NK cells from whole blood EDTA or 
frozen PBMC were immunostained with antibodies listed 
in Supplementary Table 1. Red blood cells were lysed 
with BD FACS Lysing solution (BD Biosciences) before 
acquisition. The NKp30 mean fluorescence intensity (MFI) 
ratio (NKp30 MFI/isotype control MFI, referred to as 
rMFI) was calculated for each patient. NKp30 expression 
was assessed at diagnosis and after complete remission, at 
day 30, 60 and 90 after the last induction chemotherapy. 
When material was available, leukemic blasts were stained 
with antibodies listed in Supplementary Table 2. Analyses 
were performed in the Biopathology department and on 
the IPC Immunomonitoring platform. Samples from the 
IPC cohort and from the GOELAMS cohort were analyzed 
blinded to the study endpoint.

Threshold determination

Patients were classified into two groups according 
to NKp30 rMFI. The dichotomy between NKp30low and 
NKp30high patients was based on dispersion criteria of 
the IPC prospective cohort. Figure 5A displays inter-
individual variability of NKp30 expression in AML 

patients. The distribution of NKp30 expression was a 
juxtaposition of three Gaussian distributions (d’Agostino-
Pearson normality test and Kernel density estimation). 
The intersection between the first and the second peak 
was NKp30 rMFI = 7.8 (Figure 5A). All the possible 
thresholds were tested in the range of NKp30 expression 
for overall survival (OS) (Figure 5B). The threshold 
based on dispersion criteria was discriminant for survival 
analyses. 

For samples from the GOELAMS cohort, analyses 
were performed on frozen PBMCs on a different cytometer. 
Paired samples were analyzed on both cytometers (fresh 
total blood on a CantoII and paired frozen PBMCs on a 
LSR Fortessa). The correlation between both methods was 
high (r = 0.90) and no correction factor was applied to the 
measurements of NKp30 expression in the GOELAMS 
cohort. For the rest of the study, patients from both cohorts 
were classified into 2 distinct subgroups (NKp30high and 
NKp30low phenotype) for survival analyses according to 
this threshold. 

For patients assessable for NKp30 expression after 
complete remission, a second threshold was determined 
according to the methodology described above. The 
intersection between the 2 Gaussian distributions was 18.6 
(Supplementary Figure 1).

Soluble B7-H6 (sB7-H6) and BAG6 (sBAG6) 
detection by ELISA

ELISA were performed as previously described 
[25]. Briefly, 96-well plates were coated with 5µg/mL 
mouse anti-B7-H6 mAb (clone 5.51.18) or anti-BAG6 
mAb. B7-H6-Fc and BAG6 fusion protein were used 
as standard. The standard and the samples were added 
at 100µL/well, and the plates were incubated overnight 
at 4°C. After incubation, plates were washed and B7-
H6 protein was detected with the biotinylated rabbit 
anti- B7-H6 796 antibody at a final concentration of 
1 mg/mL in PBS/ 0.05% Tween20 for 2 hours at room 
temperature. After washing, streptavidin-HRP (1:200; 
R&D) was added for 30 minutes at room temperature. 
Subsequently, plates were washed and developed using 
3,3’,5,5’-tetramethylbenzidine (TMB) Liquid Substrate 
System (Sigma). The absorbance was measured at 450 nm.

End points and statistical analysis

Statistical analyses were carried out using SPSS 
(SPSS software, Chicago, IL), Graph Pad Prism (Graph 
Pad Software, San Diego, CA) and R software (www.r-
project.org). The limit of significance was set at P < 0.05. 
The X², Fisher’s exact test and t test were used to compare 
baseline variables among patients with high or low NKp30 
phenotype. For multiple comparisons, a Kruskal-Wallis test 
was used followed by a Dunn’s post-test. OS was defined 
as the time from diagnosis until death from any cause, and 
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relapse-free survival (RFS) as the time between induction 
and relapse or death, whatever occurred first. Data were 
censored at the date of allo-SCT in 1st complete remission.  
Patients without allo-SCT in CR1 and without an event 
(death or relapse) were censored at the time of their last 
follow-up. Survival times were estimated by Kaplan-Meier 
method and compared using the log-rank test. A multivariate 
Cox regression model was used to assess the predictive value 
of NKp30 expression while adjusting for other prognostic 
factors (age at diagnosis, disease status, ELN, leukocytosis, 

and allo-SCT as a time-dependent covariate). Cumulative 
incidence of relapse (CIR) was calculated using cumulative 
incidence estimates to accommodate competing risks, using a 
Cox regression model, while adjusting for prognostic factors 
cited above. All the subgroup analyses were defined a priori. 

Model discrimination was assessed by the 
c-index after exclusion of patients with allo-SCT in first 
complete remission [26]. This study conformed to the 
recommendations for tumor marker prognostic studies 
(REMARK) [27]. 

Figure 5: Threshold determination for NKp30 expression on NK cells (IPC prospective cohort). (A) Distribution histograms 
of NKp30 mean fluorescence intensity (MFI) ratio (NKp30 MFI / isotype control MFI) in patients with AML at diagnosis. The curves are 
estimates of population density distribution. (B) The volcano plot shows log of P value for overall survival according to threshold for 
NKp30 expression at diagnosis. The dashed line represents the threshold used in the rest of the study. The black line represents the limit 
of statistical significance (P < 0.05). The normality of distributions were evaluated with a d’Agostino-Pearson normality test and a Kernel 
density estimation.
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