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Mitochondrial DNA sequencing and large-scale genotyping 
identifies MT-ND4 gene mutation m.11696G>A associated with 
idiopathic oligoasthenospermia
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ABSTRACT

Genetic variants of mitochondrial DNA (mtDNA) were implicated to be 
associated with male infertility. Our previous whole mitochondrial genome 
sequencing and association study has identified two susceptibility mtDNA variants 
for oligoasthenospermia in Han Chinese men. In this study, we tested promising 
associations in an extended validation using 670 idiopathic oligoasthenospermia cases 
and 793 healthy controls to identify additional risk variants. We found that the genetic 
variant of m.11696G>A showed significantly higher frequency in the case group than 
that in the control group (odds ratio (OR) 2.21, 95% CI 1.21-4.04) (P=7.90×10-3). 
To elucidate the exact role of the genetic variants in spermatogenesis, two main 
sperm parameters (sperm count and motility) were taken into account. We found 
that m.11696G>A was associated with low sperm motility, with the OR of 2.38 (95 
% CI 1.27-4.46) (P =5.22×10-3). These results advance our understanding of the 
genetic susceptibility to oligoasthenospermia and more functional studies are needed 
to provide insights into its pathogenic mechanism.

INTRODUCTION

Infertility is one of the most frequently diagnosed 
diseases in reproductive health area, and male-related 
problems account for approximately half of all infertility 
cases [1–2]. A significant proportion of idiopathic 
male infertility is accompanied by quantitative and/or 
qualitative abnormalities [3, 4]. Although several genetic 
factors of nuclear genome have been reported to be 
involved in spermatogenic impairment [5, 6], only few 

genetic variants of mitochondrion genome have been 
identified to be associated with spermatogenesis and 
sperm maturation [7].

As mitochondria are the major source of ATP, they 
play critical roles in spermatogenesis, differentiation and 
optimal functioning of germ cells [8]. The 16,569 bp 
circular human mtDNA encodes two tRNAs, 22 rRNAs, 
and 13 polypeptides, which are necessary for the proper 
assembly and function of the mitochondrial complexes of 
oxidative phosphorylation (OXPHOS) [9, 10]. Sequence 
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polymorphisms in the human mtDNA are significantly 
related with the geographic origin of the indigenous 
populations. These mtDNA variants form clusters of 
related mtDNA haplotypes defined as mtDNA haplogroups 
[11]. Certain mtDNA haplogroups are associated with 
specific disease phenotypes, such as Alzheimer's disease 
and Parkinson's disease [12, 13]. Several studies have 
reported that mutations in the mtDNA resulted in either 
functionless or malfunctioning proteins, hence affected 
sperm motility in different population [14]. Hence, in this 
study, we hypothesize that mitochondrial genetic variants 
may be associated with idiopathic oligoasthenospermia in 
Han Chinese men.

Recently, we conducted a two-stage study to 
systematically elucidate the potential role of mtDNA 
genetic variants in oligoasthenospermia based on using 
next-generation sequencing (NGS) in the discovery phase 
and SNPscan in the follow-up validation phase [15]. Two 
mtDNA genetic variants, m.16179C>T and m. 12361A>G, 
were identified to be associated with low sperm count or 
motility [15].

Here we evaluated promising associations in an 
extended validation using 670 cases and 793 controls. 
We focused on the single nucleotide polymorphisms 
(SNPs) that have P values ranging from 0.1-0.2 in the 
solexa sequencing stage, reported in our previous study 
[15]. These results will advance our understanding of the 
susceptibility to oligoasthenospermia in Han Chinese men.

RESULTS

Characteristics of the study population

The final population consisted of 1463 Han Chinese 
subjects, composed of 793 fertile controls and 670 patients. 
The distributions of selected characteristics among the case 
and control subjects were presented in Table 1. No significant 
differences were identified between the case group and the 
control group regarding all selected variables (including age, 
smoking, drinking, tea consumption and BMI).

Mitochondrial DNA haplogroup distribution in 
case group and control group

To assess whether some genetic background are 
predisposing to or protecting against spermatogenic 
impairment, we first investigated the mtDNA haplogroups 
distributions among the case and control groups in the 
population. Twelve main haplogroups, including A, B, 
C, D, F, G, M*, M7, M8, M9, N* and N9 (Supplementary 
Figure 1), were detected in our study subjects. The detailed 
mtDNA haplogroups distributions were shown in Table 2. 
Compared to the control group, no significant distribution 
difference was found between these two groups. These 
results demonstrated that the genetic background (mainly 
mtDNA haplogroups) would not influence the susceptibility 
of studied subjects to spermatogenic impairment.

Validation of oligoasthenospermia susceptible 
mtDNA variants

Through NGS of mtDNA genome, six SNPs met 
the selection criteria for the validation stage (Table 3). 
Additive models of logistic regression analyses were 
used to estimate the P values of association analyses. 
For the exploratory purpose and due to a relatively small 
sample size in this analysis, 0.1<P≤0.2 were considered 
statistically suggestive. The frequency distribution of 
these six SNPs identified in the whole mitochondrial 
genome sequencing and the validations were shown in 
Table 4. The frequency distribution of m.11696G>A was 
at a significantly increased risk of oligoasthenospermia 
compared with the controls (OR 2.21, 95%CI 1.21-
4.04) (P = 7.90×10-3). To the other genetic variants, no 
significant differences of distribution frequencies were 
identified between the two groups.

To uncover the exact role of the genetic variants 
in spermatogenesis, two main sperm parameters (sperm 
count and motility) were taken into consideration. 
According to these two parameters, the cases were further 
classified into two subgroups respectively. As shown in 
Table 4, the frequency of m.11696G>A was higher in 
the case group (with sperm concentration <15×106/ml) 
than that in the control group (OR 2.25; 95 % CI 1.15-
4.42) (P = 1.56×10-2), although the significant differences 
were not retained after Bonferroni adjustment. As to the 
sperm motility, logistic regression analysis revealed that 
only m.11696G>A was associated with a significantly 
increased risk of asthenospermia (characterized by 
reduced sperm motility, with sperm motility <40% motile 
sperm) [16] with the OR value 2.38 (95% CI 1.27-4.46) 
(P = 5.22×10-3) (Table 5). Due to the low occur frequency 
and limited sample size in this study, although m.3398C>T 
showed decreased risk of asthenospermia (P = 8.40×10-3), 
validations are still needed in a larger population (Table 5).

DISCUSSION

The role of mitochondria in spermatogenesis has been 
extensively researched [17, 18]. However, former studies 
paid close attention to single or specific genetic variants of 
mitochondrial genes participated in spermatogenesis [19, 
20]. To systematically explore the role of whole mtDNA 
genome on spermatogenesis, NGS was applied in 233 
idiopathic oligoasthenospermia cases and 233 healthy 
controls, and susceptible genetic variants were evaluated 
with SNPscan in 670 cases and 793 controls.

It has been demonstrated that mtDNA haplogroup R 
was a strong independent predictor of sperm motility [21], 
while others thought that there was no effect of mtDNA 
haplotype on sperm velocity [22]. Considering above, the 
frequency distribution of mtDNA haplogrups between 
the two groups were firstly investigated to study whether 
population heterogeneity were confounders in identifying 
candidate mtDNA genetic variants on spermatogenic 
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Table 1: The distributions of selected variables among cases and control subjects

Variables Frequency
Control fertility/

normozoospermia 
(n = 793)

Oligoasthenospermia 
(n = 670) P

aAge(years), mean±SD - 28.76±3.55 28.52±4.20 2.36×10-1

bSmoking Ever 404 (50.95%) 342 (51.04) 1.00

 Never 389 (49.05%) 328 (48.96)  
bDrinking Ever 412 (51.95%) 352 (52.54) 8.33×10-1

 Never 381 (48.05%) 318 (47.46)  
bTea consumption Ever 437 (55.11%) 368 (54.93) 9.58×10-1

Never 356 (44.89%) 302 (45.07)  
aBMI, mean±SD - 23.62±3.92 23.70±3.04 6.67×10-1

a Independent-samples T-test was used to test for differences in continuous variables such as age and body mass index 
(BMI) between the cases and controls.
b Two-sided chi-squared test was used to test the differences of categorical variables such as drinking, smoking status and 
tea consumption between cases and controls.

Table 2: Distributions of mtDNA haplogroups among the control group and the case group

mtDNA 
haplogroups 

Case infertility/
oligoasthenospermia (n = 670) 

Control fertility/
normozoospermia (n = 793) OR (95%CI)a Pa 

n % n %

A 30 4.48% 34 4.29% 1.05 (0.63-1.73) 8.59×10-1

B 101 15.07% 104 13.11% 1.18 (0.88-1.58) 2.82×10-1

C 25 3.73% 31 3.91% 0.95 (0.56-1.63) 8.60×10-1

D 167 24.93% 188 23.71% 1.07 (0.84-1.36) 5.88×10-1

F 88 13.13% 115 14.50% 0.89 (0.66-1.20) 4.51×10-1

G 27 4.03% 33 4.16% 0.97 (0.58-1.63) 8.99×10-1

M* 45 6.72% 57 7.19% 0.93 (0.62-1.39) 7.24×10-1

M7 47 7.01% 60 7.57% 0.92 (0.62-1.37) 6.87×10-1

M8 43 6.42% 42 5.30% 1.23 (0.79-1.90) 3.61×10-1

M9 10 1.49% 15 1.89% 0.79 (0.35-1.76) 5.57×10-1

N* 20 2.99% 20 2.52% 1.19 (0.63-2.23) 5.88×10-1

N9 33 4.93% 37 4.67% 1.06 (0.65-1.71) 8.17×10-1

Others 34 5.07% 57 7.19% 0.69 (0.45-1.07) 9.54×10-2

a ORs and P value were obtained from multivariate logistic regression analysis.
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Table 3: Screening predisposed mtDNA variations through solexa sequencing

Gene Position Variant Amino 
acid

Case infertility/
oligoasthenospermia (233)

Control fertility/
normozoospermia (233) OR (95%CI)a Pa

ND1 3398 T to C M-T 233/0 230/3 - 1.24×10-1

ND2 5263 C to T A-V 226/7 229/4 2.37 (0.61-9.30) 1.69×10-1

CO2 7805 G to A V-I 230/3 233/0 - 1.24×10-1

ATP6 9053 G to A S-N 210/23 217/16 1.49 (0.76-2.89) 1.58×10-1

ATP6 9128 T to C I-T 229/4 225/8 0.49 (0.15-1.65) 1.91×10-1

ND4 11696 G to A V-I 220/13 227/6 1.12 (0.83-5.99) 1.01×10-1

a ORs and P value were obtained from multivariate logistic regression analysis.

Table 4: Association of six identified genetic variations in solexa sequence with oligoasthenospermia according to 
sperm concentration

Position Genotype Control

Case/idiopathic infertility

Oligoasthenospermia
Sperm concentration

≥15×106/ml <15×106/ml

n (670) OR (95%CI)a Pb n (287) OR (95%CI)a Pb n (383) OR 
(95%CI)a

Pb

3398 T/C 783/10 666/4 0.47 
(0.15-1.51) 2.82×10-1 285/2 0.55 

(0.12-2.52) 7.43×10-1 381/2 0.41 
(0.09-1.89) 3.56×10-1

5263 C/T 784/9 660/10 1.33 
(0.54-3.29) 5.38×10-1 285/2 0.61 

(0.13-2.85) 7.37×10-1 375/8 1.86 
(0.71-4.85) 2.02×10-1

7805 G/A 792/1 666/4 4.76 
(0.53-42.66) 1.85×10-1 286/1 2.77 

(0.17-44.42)- 4.61×10-1 380/3 6.25 
(0.65-60.31) 1.04×10-1

9053 G/A 742/51 615/55 1.30 
(0.88-1.93) 1.91×10-1 264/23 1.27 

(0.76-2.11) 3.63×10-1 351/32 1.33 
(0.84-2.10) 2.27×10-1

9128 T/C 781/12 663/7 0.69 
(0.27-1.76) 4.30×10-1 284/3 0.69 

(0.19-2.45) 7.71×10-1 379/4 0.69 
(0.22-2.14) 6.02×10-1

11696 G/A 776/17 639/31 2.261 
(1.21-4.04) 7.90×10-3 274/13 2.17 

(1.03-4.52) 3.50×10-2 365/18 2.25 
(1.15-4.42) 1.56×10-2

a ORs were obtained from multivariate logistic regression analysis.
b P value was obtained from multivariate logistic regression analysis. The significance level was set to 0.05/6 = 0.008, using 
a Bonferroni correction.

impairment. In our study, most of these haplogroups 
are the subgroups of macro-haplogroup M and macro-
haplogroup N. The haplogroup frequencies are in line with 
the frequencies in East Asia. And no significant differences 
were found in the mtDNA haplogroups distribution. It 
might be caused by investigating two different cases, 
asthenospermia and oligoasthenospermia, respectively. 
Also, Ruiz-Pesini supported that asthenozoospermia, but not 
oligozoospermia, was associated with mtDNA haplogroups 
in whites [23]. In other words, the genetic backgrounds may 
not affect our results of the present association study.

Our results demonstrated that genetic variant 
m.11696G>A was associated with risk of asthenospermia. 
The G-to-A transition at position 11696 (m.11696G>A) 

in the MT-ND4 gene resulting in the substitution of an 
isoleucine for valine at amino acid position 313 is located 
in the predicted transmembrane region (Figure 1) [24]. 
Besides, it was reported that this mutation was related 
to mitochondrial diseases such as Leber hereditary optic 
neuropathy with dystonia and deafness [25–27]. This 
LHON-associated mtDNA mutation was first identified to 
be heteroplasmy in a large Dutch family [24]. Interspecies 
comparison does not show significant conservation of this 
valine, and in most mammals a threonine residue is found 
at this position (Figure 2).

Complex I (NADH-ubiquinone oxidoreductase) 
is the major entry point of electrons into the electron 
transport chain and contributes to the establishment of 
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Table 5: Association of six identified genetic variations in solexa sequence with oligoasthenospermia according to 
sperm motility

Position Genotype Control

Case/idiopathic infertility

Oligoasthenospermia
Sperm motility

≥40a <40a

n (670) OR (95%CI)a Pb n (166) OR (95%CI)a Pb n (504) OR (95%CI)a Pb

3398 T/C 783/10 666/4 0.47 
(0.15-1.51) 2.82×10-1 162/4 1.93 

(0.60-6.24) 2.94×10-1 504/0 - 8.40×10-3

5263 C/T 784/9 660/10 1.33 
(0.54-3.29) 5.38×10-1 164/2 1.06 

(0.23-4.96) 1.00 496/8 1.41 
(0.54-3.67) 6.18×10-1

7805 G/A 792/1 666/4 4.76 
(0.53-42.66) 1.85×10-1 166/0 - 1.00 500/4 6.33 

(0.71-56.85) 7.81×10-2

9053 G/A 742/51 615/55 1.30 
(0.88-1.93) 1.91×10-1 152/14 1.34 

(0.72-2.48) 3.95×10-1 463/41 1.29 
(0.84-1.97) 2.44×10-1

9128 T/C 781/12 663/7 0.69 
(0.27-1.76) 4.30×10-1 166/0 - 2.39×10-1 497/7 0.92 

(0.36-2.34) 1.00

11696 G/A 776/17 639/31 2.261 
(1.21-4.04) 7.90×10-3 160/6 1.71 

(0.66-4.41) 2.64×10-1 479/25 2.38 
(1.27-4.46) 5.22×10-3

a ORs and P value were obtained from multivariate logistic regression analysis.
b P value was obtained from multivariate logistic regression analysis. The significance level was set to 0.05/6 = 0.008, using 
a Bonferroni correction.

Figure 1: The secondary structure changes of variant m. 11696G>A are predicted by the SOSUI system (http://sosui.
proteome.bio.tuat.ac.jp). m.11696G>A would replace the amino acid residue valine at position 313 with isoleucine, which lies in the 
transmembrane region of the MT-ND4 subunit.

Figure 2: Alignment of the ND4 protein in different species showing the conservation of the amino acid 313.
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a proton gradient that is required for the bulk of cellular 
ATP synthesis [28]. This enzyme, has an overall L-shaped 
structure, with one arm, which contains all the subunits 
encoded by the mtDNA, buried in the mitochondrial 
inner membrane, and the other arm, which contains the 
catalytic center, protruding into the mitochondrial matrix 
[29]. Complex I is composed of 45 subunits, including 
mitochondrial encoded NADH dehydrogenase subunit 
(MTND) genes [30]. The seven MTND genes (MTND1, 
MTND2, MTND3, MT-ND4L, MT-ND4, MTND5, MTND6) 
comprise 38% of the total mtDNA, spanning over 6000 
bases of the mitochondrial genome [31]. Complex I accepts 
electrons from NADH, transfers them to ubiquinone 
(coenzyme Q10) and uses the energy released to pump 
protons out across the mitochondrial inner membrane [32]. 
Defects of complex I are the most common biochemical 
abnormalities in patients with mitochondrial respiratory 
chain disorders. The first-ever mtDNA point mutation was 
described in an MTND gene, and over the past 17 years, 
lots of pathogenical point mutations in the MT-ND4 gene 
have been reported [33–35].

In brief, our study demonstrated that genetic variant 
m.11696G>A increased the risk of asthenospermia. 
It is reasonable to surmise that some mtDNA genetic 
variants in the NADH dehydrogenase genes may cause 
spermatogenesis failure by decreasing activities of 
mitochondrial respiratory chain complexes. These findings 
may contribute to understanding the etiology of male 
infertility and further functional studies are still needed to 
support our findings.

MATERIALS AND METHODS

Study population and sample collection

This study was approved by the Ethics Review 
Board of Nanjing Medical University. The protocol 
and consent form were approved by the Institutional 
Review Board of Nanjing Medical University prior to 
the study. After the study procedures were explained and 
all questions were answered, all of the subjects signed 
informed consent forms.

We performed a two-stage case-control analysis. 
The whole mitochondrial genome solexa sequencing 
phase included 233 idiopathic oligoasthenospermia 
cases and 233 healthy controls which were consecutively 
recruited from Affiliated Hospitals of Nanjing Medical 
University (NJMU Infertile Study). The details of 
solexa sequencing were described in Lu et al 2015. For 
validations, we enlarged the sample size by testing 670 
oligozoospermia patients and 793 controls, which were 
continuously enlisted from Renji Hospital. All infertile 
male subjects were genetically unrelated Han Chinese 
men and selected based on an andrological examination, 
including examination of medical history, physical 
examination, semen analysis, scrotal ultrasound, hormone 

analysis, karyotyping and Y-chromosome microdeletion 
screening. Those with a history of cryptorchidism, 
vascular trauma, orchitis, obstruction of the vas deferens, 
abnormalities in chromosome number or microdeletions 
of the azoospermia factor region on the Y chromosome 
were excluded from the study [36]. All controls, which 
had a normal reproductive history and normal physical 
examination, had children within 1 year. After completing 
a questionnaire, each subject donated 5 ml of blood as a 
source of genomic DNA for further genotyping analysis.

Semen analysis

Semen analysis for sperm concentration and 
motility was conducted on the basis of the World Health 
Organization (WHO) criteria [37]. To ensure the reliability 
of diagnosis, each subject was examined twice. The semen 
parameters (sperm concentration and sperm motility) 
were dichotomized based on WHO reference values. 
The controls consisted of proven fertile men with normal 
semen parameters. Considering the effect of mtDNA 
genetic variant on sperm concentration or sperm motility 
separately, we stratified the case group into two sub-
groups respectively: concentration-group I (with sperm 
concentration ≥ 15×106/ml) and concentration-group II 
(with sperm concentration < 15×106/ml), motility-group I 
(sperm motility ≥ 40% motile sperm) and motility-group 
II (sperm motility < 40% motile sperm) [37].

SNP selection and genotyping for validation

Through NGS of mtDNA genome, variations in 
each person were scored relative to the revised Cambridge 
reference sequence (rCRS) [38], and individual 
haplogroup was defined according to the reported East 
Asian mtDNA phylogenetic tree [39]. We selected 
SNPs from the same analysis as Lu et al 2015, meeting 
the following criteria for the validation: (i) SNPs had 
0.1<P≤0.2 in the comparison between 233 cases and 233 
controls; (ii) SNPs were potentially functional.

Selected genetic variants were genotyped by a 
custom-by-design 48-Plex SNPscanTM Kit (Cat#:G0104; 
Genesky Biotechnologies Inc., Shanghai, China). This 
kit was developed according to patented SNP genotyping 
technology by Genesky Biotechnologies Inc., which 
was based on double ligation and multiplex fluorescence 
PCR [40]. In order to validate the genotyping accuracy 
using SNPscanTM Kit, five percent of the samples were 
randomly selected for repeat genotyping by single 
nucleotide extension using the Multiplex SNaPshot Kit 
(Applied Biosystems Inc., Foster City, CA, USA), and the 
concordance rates were more than 99%.

Statistical analysis

Basic descriptive diversity statistics were calculated 
with DnaSP. The association analysis of stage one was 
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performed using PLINK (version 1.07; http://pngu.mgh.
harvard.edu/~purcell/plink/). Statistical analysis of stage 
two was performed by Stata 10.0 (StataCorp LP, USA). 
Infertility risks were estimated with odds ratios (OR) and 
95% confidence intervals (95% CI) using multivariate 
logistic regression. Two-sided tests were utilized and the 
Bonferroni adjustment for multiple testing was used. Thus 
if there are n tests in a particular set of interest and an 
investigation-wide 5% test is required, the applied P value 
for a truly significant result is calculated as 0.05/n. Results 
will also be commented for which, although not attaining 
significance after applying the rather stringent Bonferroni 
adjustment, nevertheless returned a spot P value of < 5%.
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