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ABSTRACT
A big challenge to clinical diagnosis and therapy of colorectal cancer (CRC) is its 

extreme heterogeneity, and thus it would be of special importance if we could find 
common biomarkers besides subtype-specific biomarkers for CRC. Here, with DNA 
methylation data produced by different laboratories, we firstly revealed that the 
relative methylation-level orderings (RMOs) of CpG sites within colorectal normal 
tissues are highly stable but widely disrupted in the CRC tissues. This finding provides 
the basis for using the RankComp algorithm to identify differentially methylated (DM) 
CpG sites in every individual CRC sample through comparing the RMOs within the 
individual sample with the stable RMOs predetermined in normal tissues. For 75 CRC 
samples, RankComp detected averagely 4,062 DM CpG sites per sample and reached an 
average precision of 91.34% in terms that the hypermethylation or hypomethylation 
states of the DM CpG sites detected for each cancer sample were consistent with the 
observed differences between this cancer sample and its paired adjacent normal 
sample. Finally, we applied RankComp to identify DM CpG sites for each of the 268 
CRC samples from The Cancer Genome Atlas and found 26 and 143 genes whose 
promoter regions included CpG sites that were hypermethylated and hypomethylated, 
respectively, in more than 95% of the 268 CRC samples. Individualized pathway 
analysis identified six pathways that were significantly enriched with DM genes in 
more than 90% of the CRC tissues. These universal DNA methylation biomarkers could 
be important diagnostic makers and therapy targets for CRC.

INTRODUCTION

The frequencies of somatic mutations and copy 
number aberrations in cancer genomes including colorectal 
cancer (CRC) genomes are usually very low [1–3], 

reflecting the molecular heterogeneity of CRC [4, 5]. 
The extreme molecular heterogeneity of CRC forms a 
major barrier for therapy, and thus it would be of special 
importance if we could find common biomarkers besides 
subtype-specific biomarkers for CRC. Different from 
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somatic mutations and copy number aberrations, DNA 
methylation aberrations in cancer genomes are widespread 
in cancer genomes [6, 7], which provides us the possibility 
to find common epigenetic aberrations in CRC. 

Current methods such as Wilcoxon rank-sum test [8] 
and T-test [9] can only identify differentially methylated 
(DM) CpG sites between a set of cancer samples and 
a set of normal controls. However, such population-
level DM CpG sites cannot tell us the frequencies of 
CpG sites differentially methylated in patients. Because 
the DNA methylation levels of CpG sites in a healthy 
population vary greatly across different individuals, it 
would be unreasonable to detect DNA methylation states 
of CpG sites in each cancer sample by comparing with 
the average methylation level in a set of normal samples 
[10, 11]. Recently, we found that within-sample relative 
expression orderings (REOs) of genes are highly stable 
across different samples of a particular type of normal 
tissue but widely disrupted in the corresponding cancer 
samples [12, 13]. Based on this biological phenomenon, 
we have developed an algorithm, named RankComp 
[12], to identify differentially expressed genes in each 
cancer tissue by finding those genes whose up- or down-
regulations may lead to the disrupted REOs of genes 
within this cancer sample in comparison with the highly 
stable REOs of genes predetermined in accumulated 
normal samples. Because the highly stable REOs of 
genes predetermined in accumulated normal samples can 
represent the REOs of genes in every normal tissue, the 
differentially expressed genes identified by the algorithm 
for each disease sample are the genes that are differentially 
expressed in this disease sample compared with its own 
previous normal state. 

In this study, through the analysis of DNA 
methylation data produced by different laboratories, we 
showed that the relative methylation-level orderings 
(RMOs) of CpG sites are also highly stable within normal 
colorectal samples but widely reversed in CRC tissues. 
Therefore, we supposed that the RankComp algorithm can 
be used to detect DM CpG sites in cancer samples at the 
individual-level. Using 75 paired methylation profiles for 
colorectal cancer tissues and the paired adjacent normal 
tissues, we firstly evaluated the performance of RankComp 
by evaluating the identified DM CpG sites in each cancer 
tissue according to the observed DNA methylation level 
differences (hyper- or hypo-methylation) between the 
cancer tissue and its adjacent normal tissue. Since the 
performance of RankComp was evaluated based on each 
paired samples, 75 independent tests were performed. 
Finally, we detected DM genes and significant deregulated 
pathways in each of 268 CRC samples from The Cancer 
Genome Atlas (TCGA) and revealed that there are 
common DNA methylation biomarkers of CRC, which 
could be important diagnosis makers and therapy targets 
for CRC. 

RESULTS

Performance of RankComp for individualized 
differential methylation analysis 

From two independent datasets, GSE42752 and 
GSE48684, 7320 and 9962 DM CpG sites were detected 
between cancer and normal groups (T-test, FDR < 0.01), 
respectively. The two lists of DM CpG sites have 6060 
overlapped CpG sites, among which 98.69% of the overlaps 
have the concordant hypermethylation or hypomethylation 
states in the two datasets. These reproducible DM CpG 
sites were defined as the population-level DM CpG sites for 
CRC (Supplementary Table 1). Then, we did individualized 
analysis of the CpG sites for these population-level DM 
CpG sites using the RankComp algorithm (see Methods).

Firstly, we identified 152,666,734 and 218,691,193 
stable CpG site pairs with stable RMOs in at least 
99% of the 142 and 82 samples of normal colorectal 
tissues assayed by the Illumina Human Methylation  
27 Beadchip (27K) and 450 Beadchip (450K) arrays 
(Table 1), respectively. Notably, 90.62% of the stable CpG 
site pairs in the shorter list were included in the longer list 
and 99.94% of the overlapped CpG site pairs had the same 
RMOs patterns for the normal colorectal tissues (binomial 
test, p < 2.2 × 10–16). This result suggests that the within-
sample RMOs of CpG sites in colorectal normal tissues 
are highly stable and can be reproducibly detected across 
different datasets measured by different platforms. 

Based on the above finding, we evaluated the 
performance of RankComp for detecting DM CpG sites 
in cancer samples at individual-level, using 75 CRC 
samples with paired adjacent normal tissues from TCGA. 
Based on the stable CpG site pairs predetermined in the 
above 224 normal colorectal tissue samples, averagely 
4,062 DM CpG sites per sample were identified with 
FDR < 0.01. Evaluated according to the observed DNA 
methylation level differences between each cancer tissue 
and its adjacent normal tissue, RankComp reached an 
average precision of 91.34% for DM CpG sites detected 
in individual CRC samples (Figure 1). It suggests that 
RankComp can accurately find DM CpG sites in an 
individual CRC sample compared with its own previous 
normal state approximately represented by its paired 
adjacent normal tissue.

Universal and subtype-specific DM CpG sites in 
CRC tissues  

Then, we used RankComp to identify DM CpG sites 
for each of the 268 CRC samples from TCGA. A gene 
was defined as a DM gene in a disease sample if at least 
one CpG site within its promoter region was identified 
as a DM CpG site. Genes with inconsistent methylation 
aberration states (hypermethylation or hypomethylation) 
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within their promoter regions were excluded from the 
following analyses.

We found 143 genes that were hypomethylated in 
more than 95% of the 268 CRC samples (Supplementary 
Table 2). These genes universally altered in CRC might 
play important roles in CRC genesis and development. For 
example, POU5F1 (also known as OCT4), functioning in 
stem cell pluripotency and embryonic development, was 
hypomethylated in 98.13% of the 268 cancer samples, 
which is concordant with the findings that this gene is 
overexpressed in CRC [14] and may contribute to CRC 
development [15]. For another example, DNAJB8 was 
hypomethylated in 97.76% of the 268 CRC samples, 
which is concordant with the findings that this gene’s 
overexpression can enhance tumorigenicity of CRC 
cells [16]. Similarly, we found 26 genes that were 
hypermethylated in more than 95% of the 268 CRC samples 
(Supplementary Table 2). Because it is well known that 
hypermethylation of CpG sites in gene promoter regions 
tend to silence gene expression [17], we further analyzed 
whether the 26 genes universally hypermethylated in the 
CRC tissues are frequently deregulated in CRC tissues. 

Using 16 paired samples of cancer and its adjacent normal 
tissues with both DNA methylation profiles and gene 
expression profiles available from TCGA, we found that 14 
of the 26 hypermethylated genes had lower gene expression 
levels in the cancer tissues than in the corresponding 
adjacent normal tissues in at least 15 of the 16 paired 
samples (Table 2). Among these 14 genes, five genes 
(FLI1, IRF4, NTRK3, SLC6A15, KCNQ5) were known 
cancer driver genes documented in the F-Census database 
[18]. For example, IRF4, hypermethylated in 99.63% of the 
268 CRC samples and downregulated in all the 16 paired 
cancer tissues, is an important transcript factor for the 
regulation of interferon-inducible genes and its promoter 
hypermethylation is a potential biomarker for the diagnosis 
and therapy of CRC [19]. NTRK3 (also known as TRKC), 
hypermethylated in 97.76% of the 268 CRC samples, was 
found to be hypermethylated and downregulated in 15 of the  
16 cancer tissues compared with their paired adjacent 
normal tissues respectively. This gene is a colorectal 
cancer tumor suppressor gene [20, 21]. Besides the five 
cancer driver genes, we found that TMEFF2 (also known 
as HPP1), hypermethylated in 95.52% of the 268 CRC 

Table 1:The DNA methylation profiles analyzed in this study
Dataset Normal Tumor Platform
GSE27130 118 / 27 K
GSE29490 24 / 27 K
GSE42752 41 22 450 K
GSE48684 41 106 450 K
TCGA* 75 75 450 K + 27 K

Note: *represents the paired cancer-normal samples used to evaluate the performance of Rankcomp.

Figure 1: The precision and the number of DM CpG sites detected by RankComp for each of the 75 CRC samples with 
paired adjacent normal tissues from TCGA.
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samples, was hypermethylated and downregulated in all 
the 16 cancer tissues compared with their paired adjacent 
normal tissues. It has been reported that hypermethylation 
of this gene may promote the growth and invasive potential 
of CRC cancer cells [22, 23]. ADHFE1, hypermethylated in 
98.13% of the 268 CRC samples, was hypermethylated and 
downregulated in all the 16 cancer tissues compared with 
their paired adjacent normal tissues. The downregulation 
of this gene may induce the proliferation of CRC cells 
[24]. These results suggested that these frequently 
hypermethylated and down-regulated genes could be 
essential medical targets for CRC.

On the other hand, we found 1288 and 1787 genes 
that were hypermethylated or hypomethylated in 20–80% of 
the 268 CRC samples, reflecting the heterogeneity of DNA 
methylation aberrations across different CRC genomes. 
Such genes might be subtype-specific genes associated 
with patients’ prognoses. One important clinical problem 
for CRC is to develop a signature for predicting prognoses 
of early-stage (stage I and II) patients undergoing curative 
surgery since nearly 4% of stage I [25] and 25–30% of 
stage II [26, 27] patients with curative surgery only will 
experience relapse. Here, using the overall survival time data 
of 103 TCGA samples of stage I and II CRC patients with 
complete surgical resection only, we evaluated whether the 
patients with and without the deregulation of a gene were 
significantly different in overall survival (OS) time. Using the 
univariate Cox proportional-hazards regression model [28],  
12 hypermethylated genes and 8 hypomethylated genes were 
identified to be significantly associated with OS time of stage 
I and II CRC patients treated with complete surgical resection 
only (p-value  <  0.01)  (Supplementary Table 3). For 
example, ODAM was hypermethyled in 24.27% of the 103 
stage I-II CRC patients and these patients had significantly 
shorter OS time (log-rank test, p = 0.0009) than the other 
patients without ODAM hypermethylation (Figure 2). 
This was consistent with a previous report that down-
regulation of ODAM is correlated with decreased overall 
survival in colorectal cancer since ODAM plays a protective 
role by inhibiting cells proliferation and metastasis in  
CRC [29].

Individualized analysis of pathways for CRC 

After identifying DM genes for a disease sample, we 
were able to detect pathways significantly enriched with 
the DM genes for this cancer sample. 

With FDR < 0.1, 27 pathways were significantly 
enriched with hypermethylated genes in at least 30% 
of the 268 CRC samples from TCGA. Especially, three 
cancer-associated pathways for calcium signaling [30], 
cell adhesion molecules (CAMs) [31, 32] and neuroactive 
ligand-receptor interaction [33, 34] were significantly 
enriched with hypermethylated genes in more than 
90% (93.66%, 93.66% and 92.91%, respectively) of the 
268 CRC samples (Figure 3A). Similarly, among the 
eight pathways that were significantly enriched with 
hypomethylated genes in at least 30% of the 268 CRC 
samples (Figure 3B), we found that three cancer-associated 
pathways for cytokine-cytokine receptor interaction 
(93.66%) [35], neuroactive ligand-receptor interaction 
(92.16%) [33, 34] and olfactory transduction (92.16%) 
[36, 37] were significant in more than 90% of the 268 CRC 
samples. These pathways commonly altered in CRC might 
be important for studying the mechanisms of CRC. 

DISCUSSION

In this work, we have confirmed that the within-
sample RMOs of CpG sites keep highly stable in normal 
colorectal tissues, which are widely disrupted in CRC 
tissues. The intrinsic biological phenomena provide a 
basis for identifying DM CpG sites in CRC samples at 
individual-level through analyzing the widely disrupted 
RMOs of CpG sites within every individual cancer 
sample, taking the predetermined stable RMOs landscape 
in normal samples as the background. In fact, our result 
revealed that RankComp can accurately identify DM CpG 
sites for cancer samples at individual-level. 

The individualized analysis of DM genes makes 
it possible to estimate the frequency of an epigenetic 
aberration in a particular type of cancer such like CRC. 
The application of the individual-level analysis to 268 

Table 2: Down-deregulation numbers of the 14 frequently hypermethylated genes in 16 CRC 
samples compared with their paired adjacent normal tissues from TCGA

Gene 
Symble

Hypermethylation 
frequency

Down-regulated 
samples Gene Symble Hypermethylation 

frequency
Down-regulated 

samples
ADHFE1 98.13% 16 CNRIP1 97.76% 15
TMEFF2 95.52% 16 ZNF134 96.27% 15

IRF4 99.63% 16 PHOX2A 97.01% 15
ZNF132 97.01% 16 FLI1 97.01% 15
NSG1 96.27% 16 NTRK3 97.76% 15

NELL1 97.01% 16 KCNQ5 98.51% 15
SLC6A15 95.15% 15 GPM6A 97.76% 15
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CRC samples revealed universal and subtype-specific DM 
genes and pathways for CRC. Especially, we found 26 and 
143 genes that were hypermethylated and hypomethylated, 
respectively, in more than 95% of the 268 CRC samples. 
These universally aberrant DNA methylation genes 
and pathways may be important diagnostic makers and 
therapy targets for CRC, which deserves our future 
investigation. On the other hand, genes and pathways 
with DNA methylation aberrations in a part of the CRC 

samples could be subtype-specific, which provide hints 
for dissecting the inter-individual heterogeneity of CRC. 
Notably, researchers have recently proposed new methods 
such as CellMethy [38] and CpG_MPs [39] to identify 
another type of disease methylation biomarkers namely 
differential concordant methylation of adjacent CpGs, 
which may provide insight into methylation mechanisms. 
In line with this direction, we could use a slide window 
to find adjacent CpGs with concordant methylation 

Figure 2: Kaplan-Meier curves for patients grouped based on ODAM methylation. The blue and red lines represent patients 
with and without hypermethylation, respectively.

Figure 3: The KEGG pathways separately enriched with hypermethylation (A) and hypomethylation (B) genes in at least 30% of the 268 
TCGA CRC samples. 
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aberration status in disease samples after identifying DM 
CpG sites for individual cancer samples by RankComp, 
and this may deserve our future study.

In summary, the individual-level analysis of DM 
CpG sites reveals that there are common DNA methylation 
biomarkers, besides subtype-specific biomarkers, for 
CRC, which could be important diagnosis makers and 
therapy targets for CRC. 

MATERIALS AND METHODS

Data and preprocessing

DNA methylation profiles for colorectal tissues 
were collected from the Gene Expression Omnibus (GEO) 
[40] database and The Cancer Genome Atlas data portal 
(https://tcga-data.nci.nih.gov/docs/publications/tcga/?). As 
described in Table 1, DNA methylation profiles for 75 paired 
samples of cancer and adjacent normal tissues from TCGA 
were used to evaluate the performance of RankComp, 
and the other DNA methylation profiles in normal tissues 
were used to evaluate the RMOs of CpG sites in normal 
colorectal tissues. The DNA methylation profiles of 268 
samples of CRC were downloaded from TCGA for finding 
universal and subtype-specific differentially methylated 
CpG sites in CRC based on individualized differential 
methylation analysis.

Here, we only analyzed the 25,978 CpG sites 
measured by both the 27 K array and 450 K array. Using 
methylated signal intensity (M) and unmethylated signal 
intensity (U), the DNA methylation level of each probe 
was calculated by M/(U + M + 100) [41]. The probes were 
annotated to genes according to the annotation table of  
27 K platform.

Identification of the stable RMOs of CpG sites in 
normal colorectal tissues

The RMO of two CpG sites (A and B) was defined 
as stable when their RMO (A  > B or A < B in methylation 
level) was identical in at least 99% of the colorectal 
normal samples collected from multiple data sources, 
allowing 1% detection error rate. 

To evaluate the reproducibility of stable RMOs of 
CpG sites between different platforms, we identified two 
lists of stable CpG site pairs in the normal samples assayed 
by 27 K and in the normal samples assayed by 450 K, 
respectively, and then calculated their concordance. If the 
two lists of stable CpG site pairs shared k stable CpG site 
pairs, among which s pairs had the same RMO patterns in 
the two lists, then the concordance score was calculated as 
s/k. The probability of observing this concordance score 
by chance was calculated according to the cumulative 
binomial distribution model [42].

P = − −
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Where Pe (Pe =0.5) is the probability of the RMO of 
one CpG site pair shared by the two lists by chance. 

Identification of individual-level DM CpG sites 
by the RankComp algorithm

The flowchart of using RankComp for detecting 
individual-level DM CpG sites is shown in Figure 4. 

As shown in Figure 4, highly stable CpG site pairs 
with consistent RMOs in at least 99% of normal samples 

Figure 4: The flowchart of the individual-level DM CpG sites analysis with RankComp algorithm.
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accumulated from different laboratories were identified, 
which were next used as normal background. Second, 
we identified reversal CpG site pairs of each CpG site 
for a given cancer sample in comparison with their 
stable RMOs in normal samples. Finally, the Fisher’s 
exact test was used to determine whether a CpG site was 
differentially methylated in a given cancer sample by 
testing the null hypothesis that the proportion of reversal 
CpG site pairs supporting the hypermethylation of this 
CpG site was equal to the proportion of reversal CpG 
site pairs supporting the hypomethylation of this CpG 
site. For a given CpG site C, if its methylation level was 
stably lower (or higher) than that of a CpG site C’ in the 
normal samples but this ordering was reversed in a cancer 
sample, then this reversal CpG site pair could support 
hypermethylation (or hypomethylation) of C in this cancer 
sample. The detail of the RankComp algorithm, previously 
developed for detecting individual-level differential 
expression genes, is described in [12]. The software of the 
RankComp algorithm is available at https://github.com/
pathint/reoa.

Performance evaluation of RankComp 

To ensure the individual-level DM CpG sites to be 
associated with cancer, we focused on individualizing the 
CpG sites that were found to be differentially methylated 
at the population-level. Thus, the T-test was used to detect 
population-level DM CpG sites between cancer samples 
and normal controls using two independent datasets, 
respectively, and the DM CpG sites consistently detected 
from the two independent datasets were defined as the 
population-level DM CpG sites for CRC. The p-values were 
adjusted using the Benjamini-Hochberg procedure [43]. 

The DNA methylation profiles for 75 CRC tissue 
samples with paired adjacent normal tissues were used to 
evaluate the performance of RankComp. We firstly identified 
DM CpG sites in each of the 75 cancer samples by RankComp 
using DNA methylation data on cancer samples alone. We 
then evaluated the precision of individual-level DM CpG sites 
for each of the cancer samples using the observed methylation 
level differences (hypermethylation or hypomethylation) 
between this cancer sample and its paired adjacent normal 
sample as the golden standard. The underlying assumption 
of this evaluation is that the previously normal state of a 
cancer tissue could be approximately represented by the 
adjacent normal tissue of the cancer tissue. For a cancer 
sample, if the hypermethylation or hypomethylation states of 
DM CpG sites detected by RankComp are consistent with 
the golden standard, then they are defined as true positives 
(TP); otherwise, false positives (FP). The precision of the 
DM CpG sites detected for each CRC sample is calculated 
as the positive predictive value: TP/(TP + FP). Since the 
performance of RankComp was evaluated based on each 
paired samples, 75 independent tests were performed. 

KEGG pathways

For pathway enrichment analysis, data of 234 
pathways covering 5981 unique genes was downloaded 
from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (Release 58.0) [44]. The hypergeometric 
distribution model was used to determine the biological 
pathways that were significantly enriched with hyper- and 
hypomethylated genes, respectively [45]. The p-values were 
adjusted using the Benjamini-Hochberg procedure [43].

Abbreviations

CRC: colorectal cancer; RMOs: relative methylation-
level orderings; DM: differentially methylated; TCGA: The 
Cancer Genome Atlas; 27 K: Illumina Human Methylation 
27 Beadchip; 450 K: Illumina Human Methylation 450 
Beadchip; TP: true positives; FP: false positives. 
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