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Chaperone-mediated autophagy substrate proteins in cancer
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ABSTRACT

All intracellular proteins undergo continuous synthesis and degradation. Chaperone-
mediated autophagy (CMA) is necessary to maintain cellular homeostasis through 
turnover of cytosolic proteins (substrate proteins). This degradation involves a series 
of substrate proteins including both cancer promoters and suppressors. Since activating 
or inhibiting CMA pathway to treat cancer is still debated, targeting to the CMA substrate 
proteins provides a novel direction. We summarize the cancer-associated substrate 
proteins which are degraded by CMA. Consequently, CMA substrate proteins catalyze 
the glycolysis which contributes to the Warburg effect in cancer cells. The fact that the 
degradation of substrate proteins based on the CMA can be altered by posttranslational 
modifications such as phosphorylation or acetylation. In conclusion, targeting to CMA 
substrate proteins develops into a new anticancer therapeutic approach.

INTRODUCTION

Autophagy is a tightly regulated catabolic process 
in which cytoplasmic organelles and proteins are degraded 
in the lysosome [1]. This process enables cells to retain 
cellular environmental homeostasis, quality control and 
energy balance [2, 3]. Studies reveal that autophagy acts 
as housekeeping functions, can be induced by various 
stresses to adapt to the conditions of the environment 
change [4]. There are mainly three different autophagic 
pathways according to the substrates delivery mode to 
lysosome, including macroautophagy, microautophagy 
and chaperone-mediated autophagy (CMA) [5]. CMA and 
macroautophagy are two well characterized pathways [6, 
7]. Macroautophagy is a largely nonselective degradation 
system, which delivers cytosolic components into a double-
membrane structure (autophagosome), and then fuses with 
lysosome. Whereas CMA is a selective process by which 
cytosolic substrate proteins bearing a KFERQ-like motif 
are transported into the lysosome for degradation. This 
selective degradation is mediated by binding to heat shock 
70kDa protein 8 (HSC70) [7], and then substrates become 

unfolding before delivery into the lysosome by lysosome-
associated membrane protein 2A (LAMP2A) [8]. Despite 
so many differences, the research has found the existence 
of connection between CMA and macroautophagy, with one 
compensating for another pathway if it is impaired [9, 10]. 
In general, microautophagy directly uptakes of cytosolic 
components into the lysosomal lumen by the invagination 
[11, 12]. However, the selective degradation system for 
substrates has also been found in an exceptive form of 
microautophagy, termed endosomal microautophagy (e-
MI). Both CMA and e-MI require a pentapeptide motif 
related to KFERQ in substrate proteins for binding to 
HSC70. In contrast with CMA, selective e-MI does not 
need LAMP2A and proteins unfolding [13]. Consequently, 
CMA targets and degrades substrate proteins make it quite 
different from other two autophagic pathways.

In recent years, the researchers are keen on how CMA 
influences cancer pathophysiology. Kon et al. revealed an 
increase in the activity of CMA in a variety of cancer cells, 
with the up-regulated expression of LAMP2A. They also 
demonstrated that CMA is necessary for malignant cell 
growth and tumor metastasis [14]. Nevertheless, targeting the 
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CMA in established cancer can inhibit the cancer cells is still 
being debated. Selective activation of CMA can eliminate 
cancer cells by inducing the aberrant mutant proteins 
degradation in the specific cancer cells [15]. Therefore, 
numerous researchers are particularly interested in the 
relationship between CMA substrate proteins and cancer 
biology. Through analysis of the CMA substrate proteins in 
cancer cells, CMA involves in glucose metabolism [14] and 
reducing the cellular stress [16]. In this review, we focus on 
substrate proteins which are degraded by CMA in cancer. 
We analyze the role of CMA substrate proteins in cancer and 
CMA substrate proteins are supposed to be developed into a 
curative approach for anticancer therapy.

MOLECULAR MECHANISM OF CMA

CMA is a kind of selective autophagy, which 
degrades the cytosolic proteins [17]. The process of CMA 
can be summarized as follows (Figure 1).

RECOGNIZING SUBSTRATE PROTEINS 
AND TARGETING THEM TO LYSOSOME

CMA substrate proteins must contain the amino 
acid sequence of the polypeptide motif KFERQ [18]. The 
amino acids consist of a glutamine (Q) residue preceded or 
followed by the four residues, a basic amino acid of the two 
positively charged residues, lysine (K) or arginine (R), an 
acidic amino acid of the two negatively charged residues, 
glutamic acid (E) or aspartic acid (D), and one or two of 
these hydrophobic residues, K, R, phenylalanine (F), valine 

(V), leucine (L) or isoleucine (I) [19]. Nevertheless, in some 
cases, substrates bearing more than one KFERQ-like motif, 
it is demonstrated experimentally that additional motif does 
not change the degradation of the substrates, and one motif 
is sufficient [20]. The KFERQ-like motif can be buried in 
both ends or the central domain of the substrate protein. 
The motif should be exposed or accessible for chaperone 
recognition. The following conditions can promote the 
exposure of the KFERQ-like motif: a partial unfolding of 
the protein; if the motif region is binding to the intracellular 
membranes, it should be released from the membranes 
for recognition; or disassemble from the protein-protein 
interaction [21]. Posttranslational modifications in proteins 
missing change the incomplete motif into a perfect KFERQ 
motif. Such as, by phosphorylating the tyrosine (Y), cysteine 
(C) or serine (S) residue can contribute a missing negative 
charge in incomplete motif, or acetylating the K residue can 
provide a missing Q [22]. Posttranslational modifications of 
CMA-targeting motifs provide a method for the regulation 
of CMA degradation. HSC70 can recognize the substrate 
proteins in the cytosol through interaction with the KFERQ-
like motif [23]. During this process, many co-chaperones 
are involved in, such as Hsp40, Hsp90 and Hip [24, 25]. 
The chaperones/substrate protein is targeted to the surface 
of the lysosomal membrane [26].

BINDING AND UNFOLDING SUBSTRATE 
PROTEINS

Once recognized by the chaperone, the HSC70/
substrate protein complex is delivered to the lysosomal 

Figure 1: The process of CMA: (1) Recognizing substrate proteins and targeting them to lysosome; (2) Binding and 
unfolding substrate proteins; (3) Translocation into lysosomes; (4) Degradation by lysosome hydrolytic enzymes.
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membrane surface and interacted with the cytosolic tail 
of LAMP2A [26, 27]. LAMP2A, a single-span lysosomal 
membrane receptor protein, is a splice variant encoded 
by the lamp2 gene [26]. Through its 12-amino acid tail 
exposes in the cytoplasm, LAMP2A interacts with HSC70/
substrate complex [26, 28]. Before translocation, substrate 
protein needs to be unfolded; this is mediated by HSC70 
and its co-chaperones such as Hsp40, Hsp90 and Hip [29].

TRANSLOCATION INTO LYSOSOME

LAMP2A is located at the lysosome in monomeric 
form, since substrate proteins only interact with its 
monomers. This interaction induces the LAMP2A 
monomers aggregate into a 700 kDa protein complex. 
During the changing from monomeric to multimeric 
forms, lys-HSP90 (HSP90 in the lysosome) maintains 
the LAMP2A stability [24]. The multimeric forms of 
LAMP2A complexes assist CMA substrate proteins 
through the lysosome membrane. The substrate proteins 
translocation through the lysosome also needs the lys-
hsc70 (HSC70 in the lysosome) normally resident in 
lysosomes [30].

DEGRADATION

After the substrate protein is pulled into the 
lysosome, it is degraded into amino acid by lysosome 
hydrolytic enzymes [31]. Lys-hsc70 (HSC70 in the 
lysosome) induces disassembly of LAMP2A from the 
multimeric form into the monomeric form, thus the next 
substrate protein can bind to LAMP2A in a new cycle 
[24].

PATHWAY OF CMA

CMA, acts as housekeeping functions, has crucial 
functions in cellular physiology and pathology. It is 
involved in cells at a low level under normal conditions. 
Regulation of CMA means a great deal to the steady 

state of a cell. However, there is little information on 
the signaling pathway of CMA. It can be induced by 
various stressors such as hypoxia [32], oxidative stress 
[33], DNA damage [34] and prolonged starvation [35]. 
The calcineurin/nuclear factor of activated T cells 
(NFAT) signaling pathway was the first CMA-activating 
signaling pathway identified [36]. Anguiano et al. showed 
that the activation of CMA depends on a functional 
retinoic acid receptor alpha (RARα) [37]. Studies have 
demonstrated that the targeting of rapamycin (mTOR) 
–protein kinase B (Akt) –pleckstrin homology domain 
and leucine-rich repeat protein phosphatase (PHLPP) to 
the surface of lysosomes can directly regulate CMA [38]. 
The critical mechanisms of CMA respond to mTORC2/
PHLPP1/Akt signaling pathway still need further 
investigation. Many evidences show that there is a tight 
connection between the CMA and macroautophagy 
during the degradation of autophagic process. Through 
upregulating macroautophagy can block the activity of 
CMA [39]. Likewise, CMA can be induced by blocking 
macroautophagy [33]. Similarly, CMA pathway is also 
intimately connected with the ubiquitin–proteasome 
system [40]. Cross-talk between these pathways has been 
observed, with one compensating for others if one of them 
fails. The compensation among proteolytic pathways 
contributes to maintenance of protein homeostasis.

CMA SUBSTRATE PROTEIN IN CANCER

CMA is an alternative pathway of autophagy 
mediated substrate protein by HSC70 and LAMP2A; 
HSC70 recognizes and targets substrate protein 
bearing a KFERQ-like motif to lysosomal membrane. 
LAMP2A helps substrates to translocate into lysosome 
for degradation [18, 29, 30]. These features help us to 
identify the substrate proteins in the cancer cell. CMA 
substrate protein plays dual roles in the carcinogenesis 
and the progress of malignant tumor. It reveals the depth 
mechanism between the CAM and cancer. Following is 
the summary of CMA substrate proteins in cancer (Table 
1 and Figure 2).

Table 1: CMA substrate proteins in cancer

Substrate protein Role in cancer Cancer type Ref.
AF1Q promoter ML [55]
Unphosphorylated PED suppressor NSCLC [78]
Misfolded N-CoR promoter NSCLC [16]
Vav1 promoter Pancreatic cancer [101]
PKM2 promoter NSCLC [22]
Eps8 promoter Pancreatic cancer [134]
Rnd3 suppressor Gastric cancer [148]
mutant p53 promoter Ovarian cancer [158]
HK2 promoter Ovarian cancer [15]
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AF1Q

AF1Q was first identified in acute myelomonocytic 
leukemia (AMMOL). It is described as a partner of 
mixed lineage leukemia gene fusion in AMMOL patients 
[41]. The upregulation expression of AF1Q has been 
observed in myelodysplastic syndrome (MDS) and acute 
myeloid leukemia (AML) [42–44]. High expression 
of AF1Q has been found in hematologic and solid 
malignancy patients with poor clinical outcomes [43–
50]. Overexpression of AF1Q is significantly associated 
with a higher incidence of distant metastasis [49, 50]. 
AF1Q not only plays as an oncogenic factor but also 
has a vital function in apoptosis and chemotherapy drug 
resistance. Knockdown AF1Q protein in conjunction 
with the decreased apoptotic cell death is induced by 
doxorubicin or γ radiation [42, 51]. By upregulation of 
NF-κB p65, AF1Q can enhance the radiation-induced 
apoptosis, which may explain the oncogenic mechanism 
of AF1Q [52–54]. Bioinformatics analysis showed 
that AF1Q has six amino acids sequence correlated 

with KFERQ-like motifs. The researches support that 
AF1Q clearance is involved in CMA pathway, and CMA 
abnormal may lead to AF1Q related malignant tumors 
[55]. The molecular mechanisms by which AF1Q 
influences tumor suppressor gene loss and interacts 
with oncogene are not fully understood, however, 
the degradation of AF1Q via CMA pathway offers a 
promising new treatment option for cancer.

UNPHOSPHORYLATED PED

Phosphoprotein enriched in diabetes (PED) 
was first described by Helena over 20 years ago 
[56]. PED is a 15 kDa molecule consists of a NH2-
terminal death effector domain (DED) and a COOH-
terminus tail with the extracellular-regulated kinase 
(ERK) binding site and phosphorylation sites (Ser-
104 and Ser-116) [57, 58]. PED is a highly conserved 
gene, which is located on human chromosome 1q21-
22, and involves in regulating cellular functions, 
including survival and metabolism. There are 

Figure 2: CMA substrate proteins in cancer: the acetylated PKM2 displays a stronger interaction with HSC70. 
Phosphorylation translocates Rnd3 from membrane to cytosol and promotes Rnd3 interaction with CMA. Unphosphorylated PED binds 
HSC70 and degradation by CMA. However, phosphorylated PED binds to HSC70 at a low level (dotted line). Misfolded N-CoR is 
associated with HSC70 and degraded through the CMA. The degradation of mutant TP53 is mediated by the CMA and the degradation of 
TP53 through macroautophagy.
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three forms of PED in the cells: unphosphorylated, 
monophosphorylated and bisphosphorylated PED [59]. 
Combine unphosphorylated PED with ERK1/2 plays an 
important role in preventing PED translocation into the 
cell nucleus, which leads to inhibit the cell proliferation 
[60, 61]. As an endogenous substrate, PED can be 
phosphorylated by protein kinase C (PKC) at Ser-104 
[62] and protein kinase B (PKB) or Ca2+/calmodulin-
dependent protein kinase II (CaM kinase II) at Ser-116 
[63, 64]. Phosphorylation of PED will result in the 
inhibition of apoptosis by preventing ERK1/2-binding 
and enhancing the binding to MORT1 and caspase 8 [62, 
63]. Since the role of PED in apoptosis and ERK signal 
pathway, changes in PED expression may influence 
oncogenesis, cancer progression and chemotherapeutic 
sensitivity. PED has now been described as both the 
tumor suppressor and promoter. Unphosphorylated 
PED can inhibit proliferation and invasion of cells and 
correlates with good prognosis [65–68]. PED is known 
to be upregulated in several cancers and involved in 
resistance to TRAIL-mediated apoptosis [69–77]. 
Quintavalle et al. identified PED as a substrate protein 
of CMA pathway. In cancer cells, CMA targeted 
degrades phosphorylated PED (tumor promoter) at a 
reduced extent, however, unphosphorylated PED (tumor 
suppressor) at normal extent. This phenomenon fills the 
cancer cell with fuel. In cancer cells, CMA degrades 
unphosphorylated PED contributes to the resistance of 
chemotherapy and radiotherapy [78].

MISFOLDED N-COR

Nuclear receptor co-repressor (N-CoR) was first 
cloned as the protein associated with unliganded T3R-
RXR heterodimers in 1995 [79]. By mediating active 
repression through nuclear receptors, N-CoR involves in 
cellular biological processes, including tumor initiation, 
differentiation and progression [80, 81]. Because of 
inaccuracy dissociation from nuclear receptors, N-CoR 
gains the inappropriate function, which causes a variety 
of diseases, including the human cancer [82]. Numerous 
studies have mainly focused on the function of N-CoR 
in transcription regulation [79]. N-CoR has emerged 
as a regulator of tumor suppressors via transcriptional 
control [83, 84]. Many evidences support that N-CoR 
is an essential component of many tumor suppressor 
proteins [79, 85, 86]. Knockdown of N-CoR suppressed 
the motility and proliferation of tumor cells [87]. 
However, the misfolded form of N-CoR loses the tumor 
suppression role and contributes to the development 
of non-small cell lung cancer (NSCLC). Bin et al. 
find misfolded N-CoR is associated with HSC70 
and degraded through CMA in NSCLC. Degradation 
misfolded N-CoR by CMA can suppress the survival and 
growth in NSCLC cells [16].

VAV1

VAV family is one of the best-known proteins 
of Rho/Rac activators [88]. Vav guanine nucleotide 
exchange factor 1 (Vav1) is a 95 kDa protein of the 
Vav family (Vav1, Vav2 and Vav3). It is predominantly 
expressed in haematopoietic cells and consists of 
several functional domains including CH, DH, PH, 
SH2, and SH3 domains [89, 90]. Vav1 works as a signal 
transducer in maturation and immune response [91] and 
an adapter molecule, promoting interaction between the 
protein [89, 92]. Vav1 is a key driver of the dynamic 
regulation of actin cytoskeleton and numerous physical 
cellular processes of mature hematopoietic cells [93–
95]. It is located on chromosome 19p12-p13.2, the 
domain of karyotypic abnormalities in human solid 
tumors or hematopoietic malignancies, therefore Vav1 
has an essential function in human cancer [94]. Vav1 
is specifically expressed in human cancer and plays 
a major role in carcinogenesis and progression [96–
99], it has been defined as an oncogene [100]. Vav1 
are regulated by its degradation through an HSC70-
chaperone-mediated targeting to the lysosome [101]. 
Vav1 overexpression increases tumor cell survival, 
proliferation, and metastasis, thus drugs that targeted 
degradation Vav1 may be potent inhibitors of tumor cell 
migration.

PKM2

Cell proliferation is a process that consumes 
large amounts of energy, especially in cancer cells. In 
oncology, cells provide energy at a high rate of glycolysis 
accompanied with an increasing extrusion of lactic acid 
in the presence of oxygen, and this is called the Warburg 
effect [102, 103]. The high aerobic glycolysis has clear 
metabolic benefits for carcinogenesis and tumor growth. 
Pyruvate kinase (PK) regulates the last rate-limiting step 
of the glycolytic pathway and catalyzes the transfer of 
phosphoenolpyruvate and ADP into pyruvate and ATP 
[104, 105]. In mammals, the PK family has four known 
isoforms: PKM1, PKM2, PKL, and PKR [106, 107]. 
The isoenzyme of PK that allows the upregulation of 
phosphormetabolite pools in multicellular organisms 
is PKM2. It is an ancient variant of the pyruvate kinase 
enzyme found in unicellular organisms such as yeast and 
E. coli [108]. PKM2 possesses the less active dimer and 
the active tetramer forms [109, 110]. Dimeric PKM2 
mainly facilitates the glycolytic intermediates towards 
biosynthesis and tumor growth, whereas tetrameric PKM2 
promotes the activity of glycolysis for ATP production 
[111]. PKM2 makes an enormous contribution to cancer 
metabolism. It expresses and actives in cancer cells, which 
is correlated with the prognosis of tumor [112–114]. 
Numerous evidences support PKM2 as a tumor marker 
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[115–117]. Through reducing the oxidative metabolism of 
cells, PKM2 sustains cell growth in hypoxic environments 
and provides cells with a growth advantage in metabolites 
[118]. PKM2 is important for cancer cell growth, 
therefore the inhibitor of PKM2 is very meaningful to the 
tumor treatment. Shikonin and its analog alkannin can 
selectively inhibit PKM2 [119]. Peptide aptamers [120] 
and RNA interference targeting PKM2 [121] also induce 
a significant decrease in cancer cell proliferation through 
the inhibition of PKM2. However, PKM2 inhibitors have 
become disputed since posttranslational modifications 
of them could promote tumor growth [22, 122]. Lei 
et al. found the acetylation of PKM2 can enhance the 
interaction with chaperone. PKM2 acetylation by high 
glucose reduces the activity of PKM2 and stimulates the 
degradation of PKM2 via CMA [22]. We can promote the 
degradation of PKM2 by CMA to reduce the energy of 
cancer cells by a minimal rate of glycolysis.

EPS8

The epidermal growth factor receptor pathway 
substrate 8 (Eps8) was originally characterised as a kinase 
activity substrate of the epidermal growth factor receptor 
(EGFR) [123]. Eps8 maps to the human chromosome 
12p13.2 and play an important role conserved in evolution 
[124]. Fazioli et al. demonstrated that Eps8 exists in 
two isoforms: p97Eps8 and p68Eps8 [123], and most 
studies referring mainly to the p97Eps8 isoform. Eps8 is 
universally expressed [124], and overexpression of Eps8 
leads to increased mitogenic signaling and malignant 
transformation [125]. Growing evidence reveals that 
the expression of Eps8 is elevated in most human solid 
tumor types and hematologic malignancies, including oral, 
thyroid, pituitary, esophageal, lung, breast, colorectal, 
pancreatic, ovarian, cervical cancer and mixed lineage 
leukemia [126–129]. Furthermore, elevated expression 
of Eps8 has been variously linked to tumorigenesis, 
proliferation and migration, and represents a poor 
prognosis in patients with cancer [126, 130–132]. To 
improve the prognosis of cancer patients, researchers 
make great effort to downregulate the expression of Eps8 
by chemotherapeutics agents. Yang et al. demonstrated 
that mithramycin A could suppress tumor cell formation 
and metastasis in several cancer cell lines through an 
inhibition of Eps8 [133]. Furthermore, as a new CMA 
substrate protein, Eps8 has two KFERQ-like motifs for 
recognizing by HSC70 [134]. Since Eps8 exposes the 
imperative function in cancer progression, future research 
may accelerate protein degradation of Eps8 by CMA in 
cancer cells.

RND3

Rnd3, also known as RhoE, is a small signaling 
G protein. It is an atypical member of the Rho GTPase 

family [135], which involves in diverse cellular functions 
such as apoptosis, cell polarity and cell-cycle progression 
[136]. Such functions contribute to cancer cell migration 
and metastasis [137]. There is some controversy over 
the function of Rnd3 in tumor biology. Rnd3 has been 
considered either as an anti-oncogene or an oncogene. 
Interestingly, Rnd3 differentially expresses in various 
types of cancer. For example, Rnd3 is overexpressed in 
pancreatic cancer [138] and NSCLC [139, 140] and under-
expressed in prostate cancer [141] and gastric cancers 
[142]. However, evidences strongly support Rnd3 may 
act as an anti-oncogene, such as hepatocellular carcinoma 
[143], squamous cell carcinoma [144], breast cancer 
[145, 146], prostate cancer [141], colorectal carcinoma 
[147], and lung cancer [145]. Researchers demonstrated 
that Rnd3 is a novel substrate protein for CMA, and the 
degradation of Rnd3 by CMA pathway can maintain 
cell proliferation in gastric cancer [148]. Thus, finding 
the natural products to reduce the degradation of Rnd3 
through CMA as a treatment for cancer may evolve over 
the next several years.

MUTANT TP53

Tumor protein p53 (TP53), also known as 
p53, was first identified in 1979 as an SV40-binding 
protein by Lionel Crawford [149]. The TP53 maps 
to the human chromosome 17p13.1 and encodes a 53 
kDa phosphoprotein [150]. TP53, the ‘guardian of the 
genome’, acts as a checkpoint control for cell cycle, 
cell differentiation, programmed cell apoptosis or 
death, and DNA synthesis and repair [151, 152]. The 
TP53 protein serves as a major barrier against cancer 
development, and the inactivation of TP53 pathway 
is found in human tumors [153, 154]. The majority of 
these mutations in TP53 are single-base substitution 
and loss of alleles [155]. TP53 mutations result in loss 
of tumor suppressor activities and gain of oncogenic 
functions [156]. TP53 mutants are contributing to tumor 
survival, proliferation, genomic instability, disruption of 
tissue architecture, angiogenesis, invasion, migration, 
and metastasis [157]. The researchers found that 
degradation of mutant TP53 is specifically mediated by 
the CMA pathway [158]. Thus, reducing the level of 
mutant TP53 proteins via CMA represents an attractive 
anticancer strategy.

HK2

Hexokinases (HKs) catalyze the cardinal process 
in glycolysis [159]. There are four isoforms of HK in 
mammals: HK1, HK2, HK3, and HK4 [160, 161]. HK2 
is associated with the mitochondrial membrane, so 
loss HK2 can inhibit glucose metabolism and destroy 
the mitochondria [162]. Among these isozymes, the 
high expression of HK2 has been observed in lung, 
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breast, pancreatic, ovarian cancers and hepatocellular 
carcinoma, and this is usually associated with poor 
prognosis [163–167]. HK2 is regulated by the 
transcription factors such as p53, Myc, and HIF-1 [168]. 
Besides, the effective anticancer drug 3-bromopyruvate 
(3BP) is a structural analog of pyruvic acid, which 
plays the inhibitory effects on HK2 [169–171]. HK2 is 
characterized as an oncoprotein since its role in tumor 
onset [164]. The researchers found HK2 degrades 
via CMA [15]. This suggests CMA may manipulate 
cellular metabolism and it may be a means of anticancer 
therapeutics.

SUBSTRATE GENES TARGET 
NETWORKS SUGGEST CMA 
INVOLVES IN WARBURG EFFECT OF 
CANCER

To identify the relevance of the cancer-associated 
substrate proteins, we analyze the substrate proteins 
by the Database for Annotation, Visualization 
and Integrated Discovery (DAVID). DAVID is a 
publicly available tool designed by the Laboratory of 
Immunopathogenesis and Bioinformatics, which is able 
to introduce the gene on KEGG pathway [172]. It can 
get access at http://david.abcc.ncifcrf.gov. The cancer-
associated substrates were inputted into the Functional 
Annotation tool of DAVID. Table 2 lists the KEGG 
pathways association with substrate genes. Among 
the five pathways, the molecular pathway entitled 
“hsa05230: central carbon metabolism in cancer” 
shows a great association with substrates in cancer. The 
schematic illustration of CMA substrate proteins involve 
in Warburg effect is illustrated in Figure 3.

In this pathway, HK2 and PKM2 are involved 
in Warburg effect by catalyzing glycolysis. In the 
beginning of the 20th century, Otto Warburg noticed 
that cancer cells show a high level of glycolysis 
accompanied with lactic acid fermentation even in 
the presence of oxygen [173]. This process is known 
as the Warburg effect [109]. This indicates that cancer 
cells prefer aerobic glycolysis for energy, rather than 
mitochondrial oxidative phosphorylation. The Warburg 
effect contributes to the survival and proliferation 
of tumor cell [174]. Previous studies reveal a critical 
role of PKM2 in tumorigenesis by promoting the 
Warburg effect. In cancer cells, knockdown of PKM2 
increased oxygen consumption, reduced glucose uptake 
and lactate production [175]. HK2, a CMA substrate, 
catalyzes the first crucial step of glucose metabolism 
by phosphorylation of glucose to glucose-6-phosphate 
(G6P) [176]. The KFERQ-like motif of HK2 also binds 
to glucose molecules. The CMA motif of HK2 is hid in 
the protein when there is a glucose molecule. In other 
conditions, this motif is exposed for the recognizing 

by HSC70 [177]. CMA influences the glycolysis of 
malignant cell via degrading the enzymes of glycolytic 
and TCA cycle. Thus the maintenance of the Warburg 
effect requires functional CMA in cancer cells [14]. 
CMA substrate proteins may develop into a new 
anticancer therapeutic approach through decreasing the 
glycolysis of the cancer cell.

CONCLUSIONS AND FUTURE 
PERSPECTIVES

CMA is one of the autophagy-lysosome pathway 
which targets substrate proteins to the lysosomal 
membrane one by one for their degradation [7, 19]. 
CMA substrate protein plays a crucial role in cancer. 
However, substrate proteins found in CMA pathway 
may also degrade through other proteolytic systems, 
such as proteasomes or macroautophagy. For example, 
AF1Q and Rnd3 are degraded through the CMA and the 
proteasome-based system [55, 148]. This phenomenon 
suggests that CMA and proteasome system can co-
regulate the substrate proteins. Prolonged glucose 
starvation can induce the degradation of mutant TP53 
via macroautophagy [178]. Likewise, the cross-talk is 
existing in CMA and macroautophagy [179]. Mutant 
TP53 maybe select the mode of degradation between 
macroautophagy and CMA under different conditions. 
Different states of substrate proteins also influence the 
degradation through CMA, such as posttranslational 
modifications and different mutant alleles. In fact, 
acetylation contributes to the degradation of PKM2 by 
CMA [22].

By assessing the role of CMA substrate protein in 
cancer, we find PKM2 and HK2 are the key enzymes 
in glycolysis which contribute to the Warburg effect 
of the malignant cell. Abundant data indicate that 
blockade of CMA decrease the levels of glycolytic 
enzymes [180]. This result is somewhat counterintuitive 
because we insist that inhibiting CMA would lead to an 
accumulation of CMA-dependent glycolytic enzyme. 
Since blockade of CMA pathway is still debated, 
targeting to the CMA substrate proteins provides a 
new direction of cancer therapy. The fact that the CMA 
substrate protein motif is not in strict conformance 
with a five-amino acid residue sequence [20, 181], this 
makes it possible to create a motif out of an imperfect 
motif acquiring more effective recognition through 
posttranslational modifications [78, 182, 183]. Such as, 
acetylation the K residue can provide a missing Q, which 
explains that acetylation can increase the targeting of 
some glycolytic enzymes interaction with HSC70 
[22]. HSC70 targets unphosphorylated PED, changing 
phosphorylated PED into unphosphorylated PED may 
suppress tumorigenesis. Selective modulation of cancer-
associated CMA substrate proteins can also aid study 
the molecular mechanism of tumorigenesis. Such as, 
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PKM2 is a crucial downstream protein of mammalian 
target of rapamycin (mTOR) [184]. Disruption of mTOR 
may suppress oncogenic PKM2-mediated tumorigenesis. 
Research shows a cross-talk between macroautophagy 
and CMA [185], mTOR also plays a crucial role in 
regulating macroautophagy [186]. PKM2 may as a key 
protein between macroautophagy and CMA for further 
cancer-associated study.

In principle, approximately 30% of proteins in 
the cytoplasm contain the HSC70-targeting sequence 
[187, 188], more CMA substrate proteins are pending 
further verification. CMA substrate proteins assist us to 
comprehend the relationship between CMA and cancer 
cells. Selective modulation of cancer-associated CMA 
proteins by posttranslational modifications shows the 
potential for cancer therapy.

Figure 3: A schematic illustration of CMA substrate proteins involve in Warburg effect: glucose translocation through 
the plasma-membrane by glucose transporters (GLUT1/2) is rapidly phosphorylated to glucose-6-phosphate (G6P) 
by HK2. PKM2 dimers and tetramers possess low and high levels of pyruvate kinase activity, respectively. PKM2 dimer redirects the 
conversion of pyruvate to lactate; the PKM2 tetramer promotes the oxidative phosphorylation through the mitochondria respiratory chain. 
The Warburg effect describes the enhanced conversion of glucose to lactate by tumor cells, even in the presence of adequate oxygen that 
would ordinarily be used for oxidative phosphorylation.

Table 2: List of five KEGG pathways and relative genes

KEGG pathway Genes P-Value Benjamini

hsa05230:Central carbon 
metabolism in cancer HK2, PKM, TP53 5.0E-4 3.1E-2

hsa04930:Type II diabetes mellitus HK2, PKM 2.8E-2 5.8E-1

hsa00010:Glycolysis/
Gluconeogenesis HK2, PKM 3.8E-2 5.5E-1

hsa01200:Carbon metabolism HK2, PKM 6.4E-2 6.4E-1

hsa04919:Thyroid hormone 
signaling pathway N-CoR, TP53 6.4E-2 5.6E-1

hsa05202:Transcriptional 
misregulation in cancer N-CoR, TP53 9.4E-2 6.4E-1
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