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ABSTRACT
Abnormal expression of DNA repair genes is frequently associated with 

cancerogenesis of many tumors, however, the role DNA repair genes play in the 
progression of glioblastoma remains unclear. In this study, taking advantage of large 
scale of RNA-seq data, as well as clinical data, the function and prognosis value of 
key DNA repair genes in glioblastoma were analyzed by systematically bioinformatic 
approaches. Clustering was performed to screen potentially abnormal DNA repair 
genes related to the prognosis of glioblastoma, followed by unsupervised clustering 
to identify molecular subtypes of glioblastomas. Characteristics and prognosis 
differences were analyzed among these molecular subtypes, and modular driver genes 
in molecular subtypes were identified based on changes in expression correlation. 
Multifactor Cox proportional hazard analysis was used to find the independent 
prognostic factor. A total of 15 key genes, which were significantly related to 
prognosis, were identified and four molecular subtypes of disease were obtained 
through unsupervised clustering, based on these 15 genes. By analyzing the clinical 
features of these 4 molecular subtypes, Cluster 4 was found to be different from 
others in terms of age and prognosis level. A total of 5 key DNA repair genes, CDK7, 
DDB2, RNH1, RFC2 and FAH, were screened to be significantly related to the prognosis 
of glioblastomas (p = 9.74e−05). In summary, the DNA repair genes which can predict 
the prognosis of patients with Glioblastoma multiforme (GBM) were identified and 
validated. The expression level of DNA repair genes shows the potential of predicting 
the prognosis and therapy design in targeting GBM.

INTRODUCTION

According to the World Health Organization 
classification of tumors of the central nervous system, 
Glioblastoma multiforme (GBM) is the most common 
and lethal type of brain tumor [1]. It is exhibited by 
infiltrating neighboring tissue and shape-shifting without 
typical scope [2]. This tumor is highly invasive and is 
often combined with healthy brain tissue, which leads to 
a dismal prognosis after surgical resection [2]. Generally, 

the median survival time for newly diagnosed patients is 
within 2 years after standard therapy, which is surgical 
resection followed by adjuvant radiation therapy [3]. The 
satellite tumor cells which have spread from the primary 
tumor usually escape from treatment and lead to tumor 
recurrence [2]. 

The major function of DNA repair genes is 
responding to DNA damage that is induced in cells and 
through external environmental factors [4]. Mutation of 
these DNA repair genes could lead to defects or limitation 
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of DNA repair abilities. This would further cause 
accumulation of DNA damage in vivo which increases 
the risk of canceration [5, 6]. Cancer tissues over-
express DNA repair genes and therefore develop greater 
DNA repair capacity than normal tissue, resulting in 
therapy resistance [5]. In recent years, it has been proven 
that the occurrence of Glioma is closely related to the 
abnormal gene expression or abnormal protein structure 
of oncogenes and cancer suppressor genes [7]. Therefore, 
the application of microarrays plays an important role 
for glioma diagnosis, treatment and prevention. For 
instance, exploring the DNA damage signals and DNA 
repair process would help researchers find a new way of 
discussing pathogenesis of glioma, which could indicate 
the growth activity of tumor tissue and guide the clinical 
treatment and prognosis.

In this present study, a total of 539 glioblastoma 
tumor patient samples were selected and analyzed, from 
the Cancer Genome Atlas (TCGA) database, to find the 
relationship between the expression patterns of GBM 
associated DNA repair genes and different prognoses. 
Different molecular subtypes were built for further 
identification of the correlation between disease prognosis 
and different driver gene expression. Finally, a total 5 
driver genes were found to be highly predictive of cancer 
recurrence and recurrence-free survival of GBM patients. 

RESULT

Data download and preprocessing

A total of 539 glioma samples which included 
12042 gene expression values were obtained from TCGA 
database [8]. Among these, there were 498 primary glioma 
samples. A total of 194 expressed DNA repair genes were 
selected from these primary glioma samples. The process 
flow chart model is shown in Figure 1.

Screening of potentially changed DNA repair 
genes

Of the 194 DNA repair genes, a total of 141 genes 
which reached statistical significance, above 20% of the 
genetic variance and the top 20% genetic median, were 
selected for further analysis. Then, 19 genes which had 
significant influence on prognosis were identified through 
single factor survival analysis [9]. In total, 15 genes had a 
variance > 0.7 and were selected as key DNA repair genes 
which significantly influence prognoses. The genes are 
shown in Table 1.

Molecular subtypes construction

Unsupervised clustering was performed on the  
15 DNA repair genes that were determined to significantly 
influence prognosis, shown in Figure 2. According to this 

figure, it can be seen that these 15 genes were divided into 
four groups. It can be seen that the number of samples 
were quite different between the 4 subtypes. Cluster 3 hold 
the largest amount of samples in the four clusters. The 
reason for the different sample sizes is that these 15 genes 
were screened out through simple factor analysis and the 
4 clusters were clustered by these 15 selected genes. The 
number of samples in each cluster is random. Among each 
group, each gene showed significant differences in gene 
expression level. For example, in cluster 4, the expression 
levels of APEX1 (Apyrimidinic Endodeoxyribonuclease 
1), PARP2 (Poly (ADP-Ribose) Polymerase 2), DCLRE1A 
(DNA Cross-Link Repair 1A), MDC1 (Mediator of DNA 
Damage Checkpoint 1), and DCLRE1C (DNA Cross-Link 
Repair 1C) were higher compared to the other clusters. In 
cluster 2, the expression levels of DDB2 (Damage Specific 
DNA Binding Protein 2), FAH (Fumarylacetoacetate 
Hydrolase) and RNH1 (Ribonuclease/Angiogenin 
Inhibitor 1) were higher than the other clusters.

Clinical characteristics analysis of four 
molecular subtypes

All samples from the four molecular subtypes were 
analyzed for prognostic outcome using the Kaplan-Meier 
[9] single factor survival analysis, shown in Figure 3. It 
can be seen that the prognosis of cluster 4 is significantly 
better than the other three clusters. The most significant 
difference occurred between cluster 3 and cluster 4, 
which was 0.0002451. This indicates that these 15 DNA 
repair genes could significantly distinguish different 
prognostic outcomes of different samples. The analysis of 
age distribution of the four clusters are shown in Table 2. 
Based on this analysis, the age distribution of cluster 4 
was significantly different from the other three clusters, 
especially cluster 3 (0.0002451). This suggests that the 
positive prognosis of cluster 4 could be age-related. 

Correlation analysis of expression of 15 DNA 
repair genes in 4 molecular subtypes

We observed that 15 DNA repair genes from the 
four molecular subtypes showed differences in their 
individual expression correlation. Pearson Correlation 
Coefficient [10] was performed in order to determine 
the expressed correlation of these genes across all four 
molecular subtypes. The results are shown in Figure 4. 
The overall correlation between these 15 genes was small, 
which indicated that these genes likely play independent 
roles in biological pathways. Compared to the correlation 
of individual genes in different subtypes, it can be seen 
that the correlation of several genes changed significantly. 
For example, the correlation coefficient of CDK7 
(Cyclin-Dependent Kinase 7) and FAH in cluster 1 was 
0.23, while in cluster 4, the correlation coefficient was 
significantly different and decreased to -0.39. This is also 
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Table 1: DNA repair genes that influence prognosis significantly
Gene Symbol Cox p-Values Vars
CDK7 0.0210479144 0.8164490

RNASEH1 0.0063070069 0.7106625
MBD4 0.0444754216 1.0308578
MDC1 0.0106336900 0.7801713
FANCF 0.0390233510 0.9225329
FAH 0.0071272116 1.7431487
TOPBP1 0.0417646122 0.7349619
APEX1 0.0139679366 1.2269698
PMS2 0.0023484705 1.0100961
RFC2 0.0009096469 0.7259140
DDB2 0.0108868997 1.4985987
RNH1 0.0440518636 1.2254437
PARP2 0.0052141946 0.9035967
DCLRE1C 0.0253354384 1.1102217
DCLRE1A 0.0493212752 0.7516665

Figure 1: Process model flow chart.
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Table 2: Age distribution and age difference test of 4 subtypes (mann-whitney U test)
Min-Median-Max Cluster1 Cluster2 Cluster3 Cluster4

Cluster1 14-60-86 0.5545 0.7009 0.01421
Cluster2 0.5545 30-61-83 0.5777 0.03748
Cluster3 0.7009 0.5777 10-60-89 0.0002451
Cluster4 0.01421 0.03748 0.0002451 14-54-85

Figure 2: Clustering analysis of DNA repair genes which significantly influence prognosis. The horizontal axis represents 
sample, using Euclidean distance to calculate distance; the vertical axis stands for genes, using Pearson correlation coefficient to calculate 
distance, horizontal axis divides the sample into 4 parts which are cluster 1, cluster 2, cluster 3 and cluster 4. The color in red represents 
level.

Figure 3: Prognostic analysis of 4 molecular subtypes. The most significant difference occurs between cluster 3 and cluster 4, and 
the cluster 4 survival rate of 5 years is significantly higher than the rate of other clusters.
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exemplified with the MDC1 and FAH genes. In cluster 2, 
the correlation coefficient was -0.65 whereas in cluster 4 
it was 0.07. These examples indicated that the same genes 
generate different regulated functions across different 
molecular subtypes.

In order to identify the differences between cluster 
4 and the other three clusters, the correlation coefficient 
of cluster 4 was compared to the correlation coefficient 
matrix of the other three clusters. The results are shown in 
Figure 5. From this figure, it can be seen that comparing 
cluster 4 to cluster 1, CDK7 and FAH showed significant 
correlations in both clusters. However, these 2 genes were 
found to have significant positive correlation in cluster 1 
whilst negative correlation in cluster 4 was observed. 
Genes RNH1 and RFC showed significant correlation 
in both cluster 1 and cluster 4, however, in cluster 1 this 

correlation was positive, while in cluster 4 the correlation 
was negative.  

Comparing the gene correlation coefficient between 
cluster 2 and cluster 4, DDB2 and FAH had significant 
correlation in both clusters, which was negative in 
cluster 2, and positive in cluster 4. RFC2 and RNH1 
showed positive correlation in cluster 2 and negative 
correlation in cluster 4. 

Comparison of cluster 3 and cluster 4 showed that 
CDK7 and FAH were significantly and positively correlated 
in cluster 3, and negatively correlated in cluster 4. 

In summary, alteration of the expression model 
of DNA repair genes could be the reason for different 
clinical survival rates between cluster 4 and the other three 
clusters. Among them, CDK7，DDB2，RNH1，RFC2 
and FAH could act as potential driver genes.

Figure 4: Expressed distribution and correlation of 4 subtypes genes. Top matrix is correlation coefficient and bottom matrix 
is scatter diagram of gene expression level. Diagonal line is distribution of gene expression level.
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Functional enrichment analysis of drive genes

Functional enrichment analysis of driver genes from 
the four subtypes was performed through R package, 
clusterProfiler [11]. The results are shown in Table 3. It 
can be seen that genes CDK7, DDB2 and RFC2 were 
significantly enriched in 2 biological pathways, global 
genome and nucleotide-excision repair, as well as 3 
Molecular Function which were mainly related to ATPase 
activity. In addition, DNA repair related biological 
pathways were enriched by the 5 genes.

Multivariate survival analysis

To further explore the influence of these 5 driver 
genes on prognosis outcome, COX multivariate survival 
analysis was utilized. Likelihood ratio was used for 
analyzing the prognosis significance. The results were 
shown in Figure 5A and were found to be significant, 
p = 9.74e-05, which indicated that all 5 genes showed 
significant influence on prognosis.

Independent data set validation

Another gene expression profile from The Cancer 
Genome Atlas (TCGA) database [8] was utilized for external 
data validation which was based on the AgilentG4502A_07_2 
array. A total of 483 patient samples and 466 with their 
clinical follow-up information were available. The results of 
COX multivariate survival analysis are shown in Figure 6A. 
It can be seen from the data that the influence of driver genes 
on prognosis were verified Figure 6B.

DISCUSSION

Glioblastoma multiforme (GBM) is a common brain 
cancer with a dismal prognosis [1]. Although a lot of effort 

has been focused on increasing the GBM survival rate in 
recent years, the mortality rate remains high. Traditional 
standard therapy, which involved surgical resection and 
adjuvant radiation therapy, was insufficient for predicting 
the risk of tumor recurrence and satellite tumor transfer 
[2, 3]. With the development of microarray technology, 
increasing data resources regarding DNA repair genes 
are available for comparing and analyzing in the cancer 
field. For this particular study, the purpose was to obtain 
the gene expression profile of DNA repair genes across 
different molecular subtypes, then explore the potential 
relation between prognostic value and expression patterns 
of DNA repair genes.   

To be more specific, bio-information of GBM, 
obtained from 539 glioblastoma tumor patients in TCGA, 
was analyzed to determine the molecular characteristics 
of genes that were associated with prognosis value. In this 
study, a total of 15 key genes were determined through 
analyzing the expression level of DNA repair genes, based 
on gene expression profiles and, prognosis differences of 
GBM patients were compared to the expression patterns of 
four different subtypes. It can be seen from the results that 
the survival times of patients are significantly affected by 
the expression level of these DNA repair genes [5]. To be 
more specific, increasing DNA repair processes in cancer 
cells would lead to multi-drug resistance [12], which 
would result in a dismal prognosis. 

A total of four molecular subtypes of GBM were 
screened by unsupervised clustering and each of them was 
shown to have different gene expression levels. The results 
indicated that these genes tend to play independent roles 
in biological pathways, because the overall correlation of 
these 15 genes was small. Compared to the correlation of 
individual gene in different subtypes, it can be seen that 
the correlation of several genes changed significantly 
among the four subtypes. In cluster 2, the correlation 
coefficient (MDC1, FAH) was −0.65 while in cluster 4, the 

Figure 5: Correlation coefficient of cluster 4 compared with correlation coefficient matrix of the other 3 clusters. The 
upper matrix stands for the significance of correlation coefficient. White color represents non-significant, yellow color represents significant 
correlation both in cluster 4 and the other clusters. The color from army green to dark blue means that compared with the other cluster, genes 
in cluster 4 show significant correlation, the darker the color is, the higher the significant was. The bottom matrix is the absolute value of 
correlation coefficient difference between cluster 1 and the other 3 clusters. The white square on diagonal line have no meaning.
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value was 0.07. These examples indicated that the same 
genes generate different regulated functions in different 
situations which need to be further explored by literature 
mining.

Cluster 4 was particularly different compared with 
the other three clusters which had shown better prognosis. 
Further analysis indicated that the age distribution in 
cluster 4 was significantly different to the other three 
clusters, especially cluster 3. This indicates that age may 
be a key factor in relation to good prognosis.

In order to identify the expression difference 
between cluster 4 and the other three clusters, the 
correlation coefficient of cluster 4 was compared to the 
correlation coefficient matrix of the other three clusters. 

Comparing cluster 3 and cluster 4, CDK7 and FAH were 
significantly positive correlated in cluster 3 but negatively 
correlated in cluster 4. The alteration of the expression 
model of DNA repair genes could be the reason for 
different clinical survival rates between cluster 4 and other 
3 clusters. Among them, CDK7，DDB2，RNH1，RFC2 
and, FAH could be the potential driver genes.

From literature mining, it can be seen that the 
expression capacity of 5 driver genes were revealed to be a 
potential predictor of prognosis [12, 13]. Up-regulation of 
CDK7 in gastric cancer cells has been shown to promote 
tumor cell proliferation and predicts poor prognosis [14]. It 
has been reported as a typical treatment target in standard 
cancer therapy and showed significant function in different 

Table 3: The significantly enriched GO terms of these 5 driver genes
ID Description q-value Gene ID

GO_BP GO:0070911 global genome nucleotide-excision repair 2.37E-05 CDK7/DDB2/RFC2
GO:0006289 nucleotide-excision repair 7.89E-05 CDK7/DDB2/RFC2
GO:0033683 nucleotide-excision repair, DNA incision 0.000859 DDB2/RFC2
GO:0006283 transcription-coupled nucleotide-excision repair 0.002274 CDK7/RFC2
GO:0090305 nucleic acid phosphodiester bond hydrolysis 0.011614 DDB2/RFC2
GO:0019439 aromatic compound catabolic process 0.013894 RNH1/FAH
GO:1901361 organic cyclic compound catabolic process 0.014484 RNH1/FAH

GO_MF GO:0008094 DNA-dependent ATPase activity 0.001207 CDK7/RFC2
GO:0042623 ATPase activity, coupled 0.002934 CDK7/RFC2
GO:0016887 ATPase activity 0.004229 CDK7/RFC2

KEGG hsa03420 Nucleotide excision repair 3.45E-06 CDK7/RFC2/DDB2

Figure 6: The relation between 5 driver genes and clinical characteristics. (A) Kaplan–Meier survival analysis of samples.  
(B) Kaplan–Meier survival analysis based on external data.
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cancers [14–16]. DDB2 has been considered a tumor 
suppressor and contributes to favorable treatment outcome 
[13]. DDB2 was found to be involved in interstrand cross-
link repair which is associated with good prognosis in 
GBM. In contract, in bad prognosis groups, DDB2 has 
showed low expression [17]. Histone deacetylase inhibitor 
(HDACi) therapy is a promising anticancer epigenetic 
treatment which is regulated by RNH1. RNH1 is reported 
to be a regulator of HDACi resistance, inducing drug 
resistance in gastric cancer [18].

The function enrichment analysis showed that driver 
genes were significantly enriched in DNA repair biological 
pathways, including global genome, nucleotide-excision 
repair, transcription-coupled nucleotide-excision repair, 
nucleic acid phosphodiester bond hydrolysis and organic 
cyclic compound catabolic processes. These pathways 
suggested that DNA repair functions are vital in the 
response to prognostic value. Understanding the different 
expression patterns of DNA repair genes in normal tissues 
and cancer tissue could guide the diagnosis and treatment, 
as well as further predict the prognosis. 

In summary, molecular characterization of GBM 
screened from a DNA repair gene expression database 
shows the potential of predicting the prognosis and 
selecting individual targeted therapeutic approaches for 
different molecular subtypes of GBM. This approach 
could make the clinical diagnosis of GBM cheaper, more 
precise and, faster. However, the results required further 
validation with an increased number of patient samples.    

MATERIALS AND METHODS

Data download and preprocessing

The gene expression profiles were obtained from The 
Cancer Genome Atlas (TCGA) database [8] which was 
based on AffyU133a array. A total of 539 glioblastoma tumor 
patient samples were selected, which included 498 primary 
glioblastoma patient samples. The Kyoto Encyclopedia 
of Genes and Genomes (KEGG, http://www.genome.jp/
kegg/) database [19] was utilized for the identification of 
initial DNA repair genes. A total of 248 DNA repair genes 
were obtained from KEGG and 181 DNA repair genes 
were obtained from previous articles. The level 3 data was 
downloaded from TCGA database [8] and converted into 
expression measures. Afterwards, background correction 
and quartile data normalization were performed.

Screening of potentially changed DNA repair 
genes

For the same type of disease, different patients 
may have a different prognosis. These may be related 
to different levels of gene expression. First, genes with 
obvious expression alterations were screened. Then, the 

variance and median of the expression level of these genes 
were calculated in all selected samples. Genes which 
had above 20% of the genetic variance and the top 20% 
genetic median were selected from database.

Screening of DNA repair genes which related to 
prognosis

The survival time of patients is affected by the 
expression level of DNA repair genes [5]. Potentially 
altered genes, which were screened from patient samples, 
were separately analyzed using single factor survival 
analysis through R survival software [20]. Genes with 
P-values less than 0.05 and variance greater than 0.7 were 
selected.

Glioma molecular subtype construction based on 
DNA repair genes

DNA repair capacity plays an important role in 
maintaining genetic stability and steady state of cells. 
Accumulated DNA repair in cancer cells would allow 
them to develop multi-drug resistance [12]. Glioma 
molecular subtypes were built by unsupervised clustering 
of DNA repair genes which affect prognosis.

Clinical characteristics analysis of molecular 
subtypes

The Kaplan-Meier [9] single factor survival analysis 
was used for clinical characteristics analysis of molecular 
subtypes, including age, survival time and gene expression 
level. Different clinical characteristics were identified and 
compared through observing individual subtypes.

Screening of driver genes which associated with 
differential clinical features among molecular 
subtypes

Driver genes of different molecular subtypes were 
screened which highlighted differences in clinical features. 
The expression correlation between these molecular 
subtypes and distribution was analyzed by Pearson 
Correlation Coefficient [10] and those gene sets which had 
significantly changed correlation between subtypes were 
selected as potential driver genes.

Functional enrichment analysis of drive genes in 
different subtypes

Functional enrichment analysis of driver genes 
from subtypes was performed through R package, 
clusterProfiler [11], Biological pathways and biological 
functions were selected which involved driver genes.
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Individual prognostic factor exploring based on 
multifactor COX proportional hazards model

Multifactor COX proportional hazards model was 
built to observe the influence of driver genes on prognosis 
by using R survival package [20]. 

Verifying clinical significance of drive genes 
through external data

Another gene expression profile from The Cancer 
Genome Atlas (TCGA) database [8] was utilized 
for external data validation, which was based on the 
AgilentG4502A_07_2 array. A total of 483 patient samples 
and their clinical follow-up information were available. 
The influence of driver genes on prognosis was verified.
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