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Systematic analysis of coronary artery disease datasets revealed 
the potential biomarker and treatment target
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ABSTRACT

Coronary artery disease caused about 1 of every 7 deaths in the United States 
and early prevention was potential to decrease the incidence and mortality. We aimed 
to figure the genes involving in the coronary artery disease using meta-anlaysis. 
Five datasets of coronary heart disease from GEO series were retrieved and data 
preprocessing and quality control were carried out. Moderated t-test was used to 
decide the differentially expressed genes for a single dataset. And the combined 
p-value using systematic-analysis methods were conducted using MetaDE. The 
pathway enrichment was carried out using Reactome database. Protein-protein 
interactions of the identified differentially expressed genes were also analyzed 
using STRING v10.0 online tool. After removing unidentified or intermediate samples 
and a total of 238 cases and 189 matched or partially matched control from five 
microarray datasets were retrieved from GEO. Six different quality control measures 
were calculated and PCA biplots were plotted in order to visualize the quantitative 
measure. The first two PCs captured 91% of the variance and we decided to include 
all of the datasets for systematic analysis. Using the FDR cut-off as 0.1, nine genes, 
including LFNG, ID3, PLA2G7, FOLR3, PADI4, ARG1, IL1R2, NFIL3 and MGAM, were 
differentially expressed according to maxP. Their protein-protein interactions showed 
that they were closely connected and 24 Reactome pathways were related to coronary 
artery disease. We concluded that pathways related to immune responses, especially 
neutrophil degranulation, were associated with coronary heart disease.

INTRODUCTION

Coronary artery disease caused about 1 of every 
7 deaths, which corresponded to 375295 deaths, in the 
United States in 2011 [1]. It was estimated that about 
635,000 and 300,000, respectively, Americans have a 

new or recurrent coronary attach every year. Death rates 
of coronary heart disease have fallen from 1968 to the 
present and about 47% of the decrease in deaths caused 
by coronary artery disease contributed to treatments, 
including secondary preventive therapies after myocardial 
infarction or revascularization, initial treatments for acute 
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myocardial infarction or unstable angina and so forth [2]. 
It suggested that early prevention of coronary heart disease 
was effective to some extent.

Microarray analysis has been used as a practical 
approach to study gene expression changes, which may 
help the early diagnosis of coronary heart disease [3]. 
Despite their great promise, a lot of studies have reported 
that findings pf microarray data were not reproducible 
or were sensitive to the data perturbations [4, 5]. Even 
worse, microarray used over 10 thousand probes on tens 
or hundreds of samples, which exacerbated the accuracy 
of the potential predictors.

As a result, the systematic analysis was used to 
increase the reliability and generalizability of results. 
Through systematic analysis, we aimed to obtain a 
more precise set of differentially expressed genes, and 
analyzed their biological functions. In this study, we 
utilized the five public microarray datasets from Gene 
Expression Omnibus (GEO) repository [6] to figure out 
the genes which were differentially expressed in patients 
with coronary heart disease and control using combined 
p values and try to give suggestions on the biomarkers 
for the early prevention and treatment according to the 
functions of these genes.

RESULTS

Quality of datasets

Five microarray datasets of patient samples with 
coronary heart diseases for which matched clinical 
information was available were obtained from GEO by 
using GEOquery (Table 1). After removing unidentified 

or intermediate samples and a total of 238 cases and 189 
matched or partially matched control were selected for 
further analysis (Figure 1A). The detailed information of 
these five microarray datasets was summarized in Table 1 
and Figure 1B.

Six quality control measures were calculated (Table 
2) and PCA biplots (Figure 2A) were plotted in order 
to visualize the quantitative measure. The first two PCs 
also captured a high percentage of variance (91%), and 
the studies were more scattered in the plot. For example, 
GSE20680 had better scores in IQC, CQCp and AQCp 
while GSE20681 had better performance in CQCg, 
CQCp, AQCg and AQCp. GSE20681 and GSE48060 
had relatively poor performance. One concern is that 
the EQC were poor in all five datasets, which suggested 
that the genes involved in coronary heart disease might 
not be finely defined in Biocarta pathways. Considering 
the PCA biplots, the six quality control criteria and the 
limited datasets, we decided to include all of the datasets 
for systematic analysis.

Differentially expressed genes

Five main systematic analysis methods by combining 
p-value in MetaDE package were carried out including 
maxP, minP, roP, AW and Fisher. The counts of differentially 
expressed genes by each independent datasets and by 
selected combined p-value were listed in Table 3. Totally 
seven differentially expressed genes were detected by maxP 
and roP evaluation criteria, respectively, using detection 
competency curves and false discovery rate (FDR) cut-off 
less than 0.05. If the FDR cut-off was set as 0.1, 9 genes 
were differentially expressed (Figure 2C).

Table 1: The GEO datasets used in this study

GEO Accession Platform Source DOI control case

gse20681 GPL4133 10.1186/1755-8794-5-58 99 99

gse20680 GPL4133 10.1186/1755-8794-4-26 52 87

gse29532 GPL5175 10.1016/j.cca.2013.03.011 6 8

gse42148 GPL13607 NA 11 13

gse48060 GPL570 10.1016/j.yjmcc.2014.04.017 21 31

Table 2: Quantitative quality control measures of coronary heart disease studies

Dataset Study IQC EQC CQCg CQCp AQCg AQCp Rank

1 gse20680 6.25 0.9 1.84 8.58 1.7 9.27 2.5

2 gse20681 4.5 1.1 10.91 27.02 4.29 10.78 1.5

3 gse29532 2.85 0.53 0.24 2.42 0.08 0.01 4.5

4 gse42148 0.61 1.1 2.39 9.34 1.6 2.73 2.83

5 gse48060 4.91 0.91 0.24 0.84 0.8 3.73 3.67
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These nine genes had different patterns across 
the samples. For example, LFNG and ID3 were highly 
expressed in control samples, while ARG1 and IL1R2 
were highly expressed in patients with coronary heart 
disease. Such expression patterns matched their functions 
which were reviewed in detail in the discussion section. 
The number of differentially expressed genes were plotted 
as a function of false discovery rate FDR in the analysis 
of five different datasets and the five different systematic 
analysis algorithms (Figure 2B). And it showed that 
GSE48060 and GSE42148 performed the best.

Function analysis

The pathways shared by at least three datasets were 
plotted as heatmap (Figure 3) with a cutoff of FDR lower 

than 0.05 using Reactome database [15]. We identified 
24 pathways related to coronary artery disease by these 
criteria. Notably, most of these pathways were associated 
with the immune system. Neutrophil degranulation 
seemed to be the most important pathways associated with 
coronary heart disease.

Protein-protein interactions

The protein-protein interactions of the identified 
differentially expressed genes showed that they were 
closely connected and played a central role in vivo (Figure 
4B). For example, ARG1, LFNG, and PLA2G7 are hubs 
for this network which suggested their important function 
in human body.

Figure 1: Overview of the systematic analysis and datasets of the coronary heart disease. (A) The workflow of this study. 
(B) The number of cases (red) and controls (blue) in the five datasets of the coronary heart disease.
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Figure 2: The systematic analysis of differentially expressed genes between patients with coronary heart diseases and 
controls by combining p-value. (A) PCA biplot of six quality control measures in five datasets. (B) The number of differentially 
expressed genes plotted as FDR in the analysis of five different datasets. (C) The heatmap identifying the differentially expressed gene in 
cases and controls subjected to maxP systematic analysis when FDR was lower than 0.1.
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DISCUSSION

Differentially expressed genes in patients with 
coronary heart disease

With the microarray expression data, we can figure 
out the genes whose expression levels help diagnose the 
diseases or identify the most suitable treatment. However, 
microarray data sometimes were not reproducible or 
were too sensitive to the mildest data perturbations [3]. 
Moreover, over ten thousand probes are investigated 
in only tens or hundreds of biological samples, which 
increase the false positive targets dramatically. As a result, 
it is a good idea to utilize different datasets of similar 
experiment designs to decrease the false positives.

In this study, we combined five datasets of coronary 
heart disease and used the combined maxP value to figure 

out nine important and reproducible genes which were 
differentially expressed between patients and controls. 
These nine genes were LFNG, ID3, PLA2G7, FOLR3, 
PADI4, ARG1, IL1R2, NFIL3 and MGAM. These genes 
were differentially expressed in all five microarray 
datasets, which suggested that their significant roles in 
the coronary heart disease. When the protein-protein 
interactions of these nine genes were investigated, we 
found that there genes had many interactors (Figure 4B), 
which indicated that their critical roles in vivo. Notably, 
LFNG, PLA2G7, and ARG1, which were annotated by 
the red arrows, were obviously hubs in the protein-protein 
interaction networks.

LFNG (lunatic fringe) is a member of the fringe 
gene family and acts in the Notch receptor pathway, 
which regulated macrophage activation and cardiovascular 
calcification [7]. Mutations on Notch1 pathways led to 

Table 3: The number of differentially expressed genes in the five datasets of coronary heart disease using 
moderated-t test and meta-analysis combined p value

Cutoff gse20681 gse20680 gse29532 gse42148 gse48060 roP maxP

p <= 0.01 70 89 17 506 633 163 136

p <= 0.05 415 418 227 1445 1697 500 423

FDR <= 0.01 0 0 0 1 3 2 2

FDR <= 0.05 0 2 0 9 109 7 7

Figure 3: The heatmap of enriched pathways from Reactome. Only the pathways which were significantly enriched with the 
cutoff of FDR lower than 0.05 in at least two datasets were shown in the plot.
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high rate of coronary heart disorders like stenosis and 
calcification. ID3 (inhibitor of DNA binding-3) was 
shown to be an upstream regulator to protects against 
the formation of atherosclerosis and the SNP in the 
coding region of the ID3 gene were directly associated 
with coronary artery pathology [8]. Such findings 
matched our results that LFNG and ID3 were lowly 
expressed in patients with coronary heart diseases, whose 
low expression levels might contribute to the disease 
progression. ARG1 regulated the C-reactive protein (CRP) 
levels whose high levels were risk factors of coronary 
heart disease [9]. The mutations on PLA2G7 gene have 
been reported to be associated with coronary artery disease 
since 15 years ago and some alleles had been proved to 
increase the risk of coronary heart disease [10]. Again, 
these findings supported our results that these genes were 
highly expressed in patients. Other five genes were also 
closely related with coronary heart disease progression or 
prognosis in many studies [11–13].

Neutrophil degranulation and coronary heart 
disease

We identified 24 pathways related to coronary 
artery disease. Notably, most of these pathways were 

associated with immune system. It has been reported that 
innate and adaptive immune responses played critical 
roles in the development and progression of coronary 
heart disease [14]. The primary cause of coronary artery 
disease, atherosclerosis was widely accepted as a chronic 
inflammatory disease. It supported our findings.

Neutrophil degranulation was the top one pathway 
associated with coronary heart disease in our list, which 
was served as a case study. Neutrophils are important 
inflammatory cells and bone from marrow-derived white 
blood cells. Then they migrate from the bloodstream to 
sites of tissue inflammation and induce inflammation by 
undergoing burst and degranulation which was illustrated 
in Figure 4A [15]. The immune function of neutrophils 
determined the degranulation will alleviate the coronary 
heart disease. For example, it was noticed that neutrophils 
degranulation was able to mediate the damage of the vascular 
and myocardial [16]. Moreover, the function of stimulated 
neutrophils secreted proteolytic neutral proteases which in 
further promoted the detachment of endothelial cells from 
vessel walls and the adherence of platelets to subendothelial 
collagen and fibronectin [17]. Ricevuti, Mazzone [18] found 
that neutrophil aggregation and oxygen metabolites release 
increased in the coronary sinuses of patients with coronary 
heart disease. Although there were a lot of studies about the 

Figure 4: The function analysis of the differentially expressed genes. (A) The pathway illustration of neutrophil degranulation 
which was the top enriched pathway. (B) The protein-protein interactions between the nine differentially expressed genes and their 
interactors. The important hubs (LFNG, ARG1, and PLA2G7) were annotated by the red arrows.
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association between neutrophils and coronary heart disease, 
the attention decreased dramatically in the recent 10 years. 
We proposed that neutrophils may function critically in 
the progression of coronary heart disease and serve as the 
treatment targets.

In conclusion, we aggregated five coronary 
heart disease microarray datasets from GEO series by 
systematic analysis. Nine genes which were significantly 
differentially expressed in all the five datasets were 
identified. These genes played important roles in patients 
with coronary artery disease according to the expression 
levels, protein-protein interactions and enriched pathways. 
We also concluded that pathways related to immune 
responses were enriched with the differentially expressed 
genes and neutrophil degranulation was one of the most 
important processes.

MATERIALS AND METHODS

Datasets

Coronary heart disease and myocardial infarction 
were used as the keyword to search in GEO series (https://
www.ncbi.nlm.nih.gov/geo/browse/?view=series). After  
removing datasets which were not obtained from 
patients’ tissues or were short of proper controls, 5 
datasets were used to study the expression profiles in 
patients with coronary heart diseases. The processed 
data were downloaded as the series matrix using R 
package GEOquery [19]. The mRNA expression levels 
of targeted patients and controls were extracted from all 
the samples and were transformed into log2 scale before 
further analysis. In GSE20681, 99 cases and 99 controls 
were analyzed by expression profiling microarray using 
platform GPL4133 [20]. In GSE20680, 52 control 
and 87 cases were analyzed using the same platform, 
after intermediates cases were removed [21]. Datasets 
GSE29532 contained totally 55 samples at different 
time points, and only the expression profiles on patient 
admission were extracted in this study, which contained 
only 6 controls and 8 cases using platform GPL5175 [22]. 
GSE4128 analyzed 11 controls and 13 patients in Asian 
Indians using platform GPL13607. In GSE48060, 21 
control and 31 myocardial infarction patient groups were 
analyzed under platform GPL570 [23].

Data pre-processing

The expression levels of all datasets were 
transformed into log2 scale. R package MetaQC were 
utilized to finish the preprocessing of datasets [24]. The 
largest interquartile range (IQR) of expression values were 
used to represent the genes with multiple probe IDs. The 
expression levels of 5 datasets were first merged together 
according to the gene symbol and the genes that appeared 
in less than 4 datasets were filtered out. Given the fact 

that most genes were not expressed or not informative in 
vivo, 20% of unexpressed genes and 20% of uninformative 
genes were removed in order to decrease false positive.

Quality control

Quantitative quality control measures were 
calculated to represent the quality of these datasets with 
the help of MetaQC [24]. The measures included internal 
quality control index (IQC), external quality control 
index (EQC), accuracy quality control index for genes 
or pathways (AQCg and AQCp) and consistency of 
differential expression quality control (CQCg and CQCp) 
indexes. IQC represented the internal homogeneity of co-
expression, which identified potentially inconsistent or 
outlier studies from quantified co-expression dissimilarity. 
EQC index was calculated with the supervision of 
external pathway database MSigDB. The Biocarta and all 
pathways of version 5.2 from MSigDB were applied to 
evaluate its consistency with each study. AQC and CQC 
aimed at quantifying the reproducibility of differentially 
expressed genes or pathways detected in an individual 
study compared to those detected by systematic analysis 
from all other studies.

Principal component analysis (PCA) biplots were 
plotted with the help of MetaQC to visualize the quality 
of studies in systematic analysis. The six quality control 
measures were projected into a 2D space; that is, the 
coordinates of each quality criterion were determined by 
its correlation to the first two principal coordinates.

Identification of differentially expressed genes

MetaDE package provides functions for conducting 
5 different systematic analysis methods for differential 
expression analysis [25]; that is, Fisher, adaptively 
weighted Fisher (AW), minimum p-value (minP), 
maximum p-value (maxP) and rth-ordered p-value (roP). 
Moderated t-test was used to decide the differentially 
expressed genes for a single dataset. The heatmap of the 
differentially expressed genes under 0.1 FDR threshold 
across studies where created. To assess the performance 
of these different methods, we compared the numbers 
of detected differentially expressed genes from different 
methods under different p-value thresholds using detection 
competency curves.

Function analysis

The pathway enrichment was carried out using 
Reactome database and FDR adjustment was applied to 
identify significantly enriched pathways [26, 27]. The 
pathways shared by at least three datasets were plotted 
as heatmap. Protein-protein interactions of the identified 
differentially expressed genes were also analyzed using 
STRING v10.0 online tool that visualizes known and 
predicted protein-protein interactions [28].
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